Питаться, чтобы «жить»: как проверить блок питания компьютера. Как устроен компьютерный блок питания и как его запустить без компьютера

15.08.2019


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Сегодня не редко можно увидеть, как люди выбрасывают компьютерные блоки питания. Ну или БП просто валяются без дела, собирая пыль.

А ведь их можно использовать в хозяйстве! В этой статье я расскажу, какие напряжения можно получить на выходе обычного компьютерного блока питания.

Небольшой ликбез о напряжениях и токах компьютерного БП

Во-первых, не стоит пренебрегать техникой безопасности.

Если на выходе блока питания мы имеем дело с безопасными для здоровья напряжениями, то вот на входе и внутри него 220 и 110 Вольт! Поэтому, соблюдайте технику безопасности. И позаботьтесь о том, чтобы никто другой не пострадал от экспериментов!

Во-вторых, нам потребуется Вольтметр или мультиметр. С помощью него можно измерить напряжения и определить полярность напряжения (найти плюс и минус).

В-третьих, на блоке питания вы можете найти наклейку, на которой будет обозначен максимальный ток, на который рассчитан блок питания, по каждому напряжению.

На всякий случай отнимите от написанной цифры 10%. Так вы получите наиболее точное значение (производители часто врут).

В-четвертых, блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Поэтому не пытайтесь получить на выходе переменное напряжение.Мы же расширим набор напряжений путем комбинирования номинальных.

Ну что, усвоили? Тогда продолжаем. Пора определиться с разъемами и напряжениями на их контактах.

Разъемы и напряжения компьютерного блока питания

Цветовая маркировка напряжений компьютерного блока питания

Как вы могли заметить, провода, выходящие из блока питания, имеют свой цвет. Это не просто так. Каждый цвет обозначает напряжение. Большинство производителей стараются придерживаться одного стандарта, но бывают совсем китайские блоки питания и цвет может не совпадать (именно поэтому мультиметр в помощь).

В нормальных БП маркировка по цветам проводов такая:

  • Черный — общий провод, «земля», GND
  • Белый — минус 5V
  • Синий — минус 12V
  • Желтый — плюс 12V
  • Красный — плюс 5V
  • Оранжевый — плюс 3.3V
  • Зеленый — включение (PS-ON)
  • Серый — POWER-OK (POWERGOOD)
  • Фиолетовый — 5VSB (дежурного питания).

Распиновка разъемов блока питания AT и ATX

Для вашего удобства я подобрал ряд картинок с распиновкой всех типов разъемов блока питания на сегодняшний день.

Для начала изучим типы и виды разъемов (коннекторов) стандартного блока питания.

Для «запитки» материнской платы используется разъем ATX с 24 контактами или разъем AT с 20-ю контактами. Он же используется для включения блока питания.

Для жестких дисков, сидиромов, картридеров и прочего используется MOLEX.

Большая редкость сегодня разъем для flopy — дисков. Но на старых БП можно встретить.

Для питания процессора используется 4-контактный разъем CPU. Их бывает два или еще сдвоеный, то есть 8-контактный, для мощных процессоров.

Разъем SATA — пришел на смену разъема MOLEX. Используется для тех же целей, что и MOLEX, но на более новых устройствах.

Разъемы PCI, чаще всего служат для подачи дополнительного питания на разного рода PCI express устройства (наиболее распространены для видеокарт).

Перейдем непосредственно к распиновке и маркировке. Где же наши заветные напряжения? А вот они!

Еще одна картинка с распиновкой и цветовым обозначением напряжений на разъемах БП.

Ниже приведена распиновка блока питания типа AT.

Ну вот. С распиновкой компьютерных блоков питания разобрались! Самое время перейти к тому, как получить необходимые напряжения из блока питания.

Получение напряжений с разъемов компьютерного блока питания

Теперь, когда мы знаем, где взять напряжения, воспользуемся таблицей, которую я привел ниже. Пользоваться ей надо следующим образом: положительное напряжение+ ноль= итого .

положительное ноль итого (разность)
+12В +12В
+5В -5В +10В
+12В +3,3В +8,7В
+3,3В -5В +8,3В
+12В +5В +7В
+5В +5В
+3,3В +3,3В
+5В +3,3В +1,7В

Важно помнить, что ток итогового напряжения будет определяться минимальным значением по использованным номиналам для его получения.

Также не забывайте, что для больших токов желательно использовать толстый провод.

Самое главное!!! Блок питания запускается замыканием проводов GND и PWR SW . Работает до тех пор, пока данные цепи замкнуты!

ПОМНИТЕ! Любые эксперименты с электричеством необходимо проводить со строгим соблюдением правил электробезопасности!!!

Дополнение по разъемам. Уточнение распиновки PCIe и EPS разъемов.

Современные блоки питания, в общем, и для компьютера в частности, представляют собой довольно сложные устройства. Основных только электрических характеристик больше десятка, а есть еще шумовые, тепловые, массогабаритные. Все блоки питания стандарта АТХ являются импульсными преобразователями с различными вариациями схемных решений, но с единым принципом работы. Без специального оборудования, в виде управляемых нагрузок, осциллографа и некоторых других устройств невозможно протестировать соответствие стандарту характеристик, указанных на наклейке и в паспорте блока питания. Самый простой вопрос "Хватит ли блока питания ХХХ для работы компьютера УУУ?" на самом деле вовсе не так прост. Для ответа на поставленный вопрос необходимо ознакомиться с разнообразными характеристиками существующих блоков питания и типичным потреблением компьютерного железа.

Характеристики блока питания

Все основные характеристики и требования в той или иной степени описаны в документах, известных как ATX12V Power Supply Design Guide Version 2.2, SSI EPS12V Power Supply Design Guide Version 2.91 и аналогичных. Эта документация предназначается производителям блоков питания для обеспечения совместимости их аппаратуры с общепринятым стандартом ATX. Сюда входят геометрические, механические и, конечно же, электрические характеристики устройств. Вся документация доступна в открытом виде в сети Internet (ATX12V PSDG/SSI EPS PSDG). Приведем основные темы, описанные в этой документации. Начать стоит с наиболее важной величины, которая указывается на каждом блоке питания доступном в розничной продаже.

  • Допустимая мощность нагрузки

Каждый блок питания имеет несколько выходных каналов с различным напряжением и рассчитан на определенную долговременную мощность по каждому из них. Современный стандарт предписывает наличие каналов с напряжением +5В, +12В, +3.3В, -12В и дежурное напряжение +5В. Общая мощность обычно обозначена в ваттах на наклейке (по-английски звучит как Total Power). Эта величина представляет собой сумму всех мощностей по каждому из каналов и легко подсчитывается суммированием произведения токов на соответствующие напряжения. К примеру, у нас имеется блок питания с мощностью 500 ватт, с указанными допустимыми токами: +3.3В 30А, +5В 30А, +12В 40А, -12В 0.8А, +5Вд 2.5А. Перемножив и просуммировав, получаем итоговую цифру (250+480+9.6+12.5) = 752.1 Вт. Почему же на наклейке указано 500Вт? Дело в том, что существует взаимная зависимость каналов их совместной максимальной мощности. На наклейке указано, что максимальная мощность по каналам +3.3В и +5В не может превышать 152 Вт в любом случае, а общая суммарная мощность каналов +12В и +3.3 & 5В не должна превысить 480 Вт. То есть, мы можем нагрузить блок на полную мощность по +12В, оставив без нагрузки низковольтные каналы, либо при полной мощности каналов +3.3 и +5В (152 Вт в нашем случае), можем использовать только 328 Вт по +12В. Поэтому при подсчетах нужно быть внимательным и всегда обращать внимание на допустимую комбинацию нагрузки по каждой линии. Обычно это указано на наклейке, в виде общей ячейки с единой величиной мощности для нескольких каналов.

С учетом этого фактора новый пересчет мощности будет выглядеть так: 152+328+9.6+12.5=502.1 Вт, либо 0+480+9.6+12.5=502.1 Вт, либо любая из допустимых вариаций между этими двумя крайними значениями распределения мощностей по каналам. Исходя из этого, возникает вопрос – а как же тестировать блок: на полной нагрузке по низковольтным каналам, либо на максимальной мощности канала +12В? А может на каком-то промежуточном значении? Рассмотрим этот момент в дальнейшем подробнее.

Также не стоит путать параметры максимальной долговременной мощности и пиковой мощности (Total Peak Power), допустимой на небольшой период времени (17 секунд согласно ATX 2.2 и 12 секунд по EPS 2.91). К примеру, блок питания с номинальной мощностью 500Вт может выдать в пике до 530 Вт, но для блока питания постоянно работать с превышением номинальной мощности нежелательно, ведь запас прочности компонентов может оказаться не очень большим, и жарким летом случится неприятный фейерверк.

  • Допустимый уровень отклонения напряжений

Эта характеристика является одним из основных и определяет допустимое отклонение каждого из напряжений. Удобнее и нагляднее будет представить эти величины как две таблицы, взятые из стандарта EPS 2.91:

Таблица 20 отражает максимально допустимый уровень отклонений, а таблица 21 – опциональный, с более жесткими рамками, актуальными для графических станций и серверов. Если отклонение по напряжению будет ниже 5-10% порога, вероятно появление сбоев в работе компьютера, либо спонтанные перезагрузки во время большой нагрузки на процессор или видеокарту. Слишком же высокое напряжение негативно сказывается на тепловом режиме работы преобразователей на материнской плате и платах расширения, а также способно вывести из строя чувствительные схемы винчестеров, либо вызвать их повышенный износ. В более лояльном ATX Power Supply Design Guide дополнительно для каналов с напряжением +12В регламентируется допустимое 10%-ное отклонение при пиковой нагрузке на эти каналы. При этом напряжение канала +12V2 (обычно используемого для питания процессора) не должно снизиться менее +11 В.

  • Уровень пульсаций

Не менее важным является и минимально возможные выбросы (пульсации) напряжения на каждой из линий. Допустимые рамки описаны в стандарте как обязательные и выглядят так:

Источниками пульсаций обычно являются схемы преобразователей внутри самого блока питания, а также мощные потребители с импульсным характером потребления, такие как процессоры, видеокарты. Винчестеры и имеющийся в них блок магнитных головок во время частого перемещения также может создавать всплески помех, однако их величина мощности значительно меньше.

  • Входное напряжение, эффективность и PFC

Блок питания обязан работать во всех допустимых режимах при следующих входных напряжениях:

Наличие напряжений, указанных в таблице ниже, не должно приводить к повреждению схем блока питания. Пропадание сетевого напряжения на любой период времени, в любой момент работы также не должно приводить к неисправности блока. При включении, ток зарядки высоковольтных конденсаторов не должен превышать номинальные значения входных цепей (предохранитель, выпрямительные диоды и схемы ограничения тока).

Существует миф, что более мощный блок питания потребляет больше мощности из розетки, по сравнению с маломощным дешевым собратом. На самом деле, часто в реальности имеет место обратная ситуация. Каждый блок имеет потери энергии при преобразовании сетевого напряжения в низковольтное постоянное, идущее к компонентам компьютера. КПД (эффективность) современного дешевого блока обычно колеблется около величины 65-70%, в то время как более дорогие модели могут обеспечивать эффективность работы до 85%. Например, подключив оба блока к нагрузке 200 Вт (примерно столько потребляет большинство компьютеров), мы получим потери 70 Вт в первом случае и лишь 30 Вт во втором. 40 ватт экономии при ежедневной работе компьютера по 5 часов в сутки и 30-дневном месяце помогут сэкономить 6 кВт на счете за электроэнергию. Конечно, это мизерная цифра для одного ПК, но если взять уже офис на 100 компьютеров, то цифра может оказаться заметной. Также стоит учесть, что эффективность преобразования различна при разной мощности нагрузки. А поскольку пик КПД приходится на 50-70% диапазон нагрузок, практического смысла в приобретении БП с двукратным и более запасом мощности нет.

Эффективность работы должна превышать 70% для полной нагрузки, и 65% для 20%-нагрузки. При этом рекомендуемая эффективность как минимум 75% или лучше. Существует добровольная система сертификации для производителей, известная как Plus 80 . Все источники питания, участвующие в этой программе, имеют эффективность преобразования свыше 80%. На текущий момент список участников-производителей в инициативе Plus 80 включает более 60 наименований.

Также нельзя путать КПД блока питания с такой характеристикой как коэффициент мощности (Power Factor). Существует реактивная мощность и активная, и коэффициент мощности отражает отношение реактивной мощности к общей суммарной мощности потребления. Большинство блоков питания без каких-либо схем коррекции обладают 0.6-0.65 фактором мощности. Поэтому импульсные блоки питания в значительной степени создают реактивную мощность, и их потребление выглядит как мощные импульсы во время пиков синусоиды сетевого напряжения. Это создает помехи в электросети, которые могут повлиять на другие устройства, питаемые от той же электросети. Для устранения этой особенности применяются схемы с пассивной коррекцией фактора мощности (Passive PFC) и активной (Active PFC). Активный PFC эффективно справляется с этой задачей, по сути, являясь преобразователем между самим блоком питания и электросетью. Фактор мощности в блоках с использованием APFC легко достигает величины 0.97-0.99, что значит практически полное отсутствие реактивной составляющей в потреблении БП. Пассивная схема коррекции Power Factor представляет собой массивный дроссель, включенный последовательно сетевым проводам блока питания. Однако он значительно менее эффективен и на практике повышает фактор до 0.7-0.75. С точки зрения компьютера и потребителя разницы между блоком с APFC и блоком вообще без коррекции практически нет, использование первых выгодно компаниям электроснабжения.

  • Сигнальные линии PSON и PWOK

PSON (Power Supply ON) – специальная сигнальная линия для включения\выключения блока питания логикой материнской платы. Когда этот сигнал не подключен к земле, блок питания должен оставаться в выключенном состоянии, за исключением канала +5В (дежурное). При логическом нуле (напряжение ниже 1 В) – логика включает блок питания. PWOK (Power OK) – сигнальная линия, по которой блок питания сообщает материнской плате, что все выходные линии находятся в нормальном состоянии и стабилизация осуществляется в заданных стандартом пределах. Время задержки появления сигнала при нормальной работе блока питания с момента подачи логического нуля по PSON – 900 мс.

  • Схемы защиты

Блок питания должен иметь схемы защиты, которые отключат основные выходы при нештатных ситуациях. Защита должна блокировать повторный запуск до повторного появления сигнала включения на проводе PSON. Защита от перегрузки по току (Over Current Protection, OCP) обязательна для линий +3.3, +5, +12, -12, +5 (дежурное), минимальный порог срабатывания – 110%, максимальный 150%. При перегрузке блок должен выключится и не включаться до появления сигнала включения, или до полного обесточивания сетевого напряжения. Защита от перенапряжения (Over Voltage Protection, OVP) также обязательна и должна отслеживаться внутри самого источника питания. Напряжение никогда не должно превышать указанные в таблице 29 в любой момент времени.

Защита от перегрева (Over Temperature Protection, OTP) блоков питания не является обязательной функцией, поэтому весьма важно соблюдать условия эксплуатаций источников питания в тесных корпусах, либо в местах с ухудшенной вентиляцией. Максимальная температура воздуха во время работы не должна превышать +50°С. Некоторые производители рассчитывают и указывают мощность блока питания при пониженной температуре +25, или даже +15°С, и попытка нагрузить указанной мощностью подобное изделие в жаркую погоду может привести к неприятному финалу. Это именно тот случай, когда примечание шестым пунктом снизу имеет значение. Если удается найти допустимый температурный диапазон для конкретной модели блока на тестах, мы указываем это явно в таблице с характеристиками.

Защита от короткого замыкания (Short Curcuit Protection, SCP) – является обязательной для всех блоков питания, проверяется кратковременным подключением силовой шины между каналами и землей блока питания.

  • Немного о разделении +12В канала на несколько «виртуальных»

Набившее оскомину разделение каналов вызвано требованием стандарта безопасности EN60950, который предписывает ограничить ток на доступных пользователю контактах на уровне 240 ВА. Так как общая суммарная мощность канала +12В в мощных блоках питания может превышать эту величину, было принято решение ввести разделение на несколько отдельных каналов с индивидуальной защитой по току менее чем 20А. Эти раздельные каналы вовсе не обязаны иметь индивидуальную стабилизацию внутри БП. Поэтому на самом деле, почти все блоки питания имеют один сильноточный канал +12В, вне зависимости от количества виртуальных каналов. Хотя на рынке имеется несколько моделей с действительно раздельными стабилизаторами и несколькими независимыми линиями +12В, однако это лишь исключение из общего правила. Для компьютерных комплектующих виртуальное, как и реальное разделение по каналам никоим образом не сказывается, а те из компонент, которые могут потребовать ток более чем 18-20А, имеют возможность подключения двух разделенных каналов. Так 8-контактный разъем питания процессора на материнских платах имеет по два контакта на каждый из двух каналов, а топовые видеокарты NVIDIA и AMD имеют два 6-контактных (либо комбинацию из 6-контактного и 8-контактного, как у Radeon 2900 XT, Radeon HD 3870 X2, GeForce 9800 GX2) разъема.

Кроме электрических характеристик имеются и физические. Каждый блок, претендующий на соответствие форм-фактору ATX должен иметь ширину 150мм, при высоте 86мм. Глубина блока может варьироваться от 140мм до 230мм и более.

  • Кабельное оснащение блока

Существующие блоки питания оснащаются массой кабелей с разными типами разъемов. Информация об их длинах и количестве позволит еще до покупки определить, подойдет ли конкретная модель под нужный корпус, либо придется докупать переходники и удлинители. Все эти параметры отображаются в виде таблицы для каждого из протестированных блоков. Верхняя часть – несъемные кабели, а ниже, в случае наличия отстегиваемых проводов, с отступом указаны количество и длины всех кабелей с разъемами.

Если на одном проводе имеется несколько разъемов – длины до каждого записываются в ряд. К примеру, общая длина кабеля в примере выше для последнего разъема SATA – 45+15+15 = 75см. Нестандартные разъемы, к примеру, 3-контактный кабель мониторинга оборотов вентилятора, или переходники указываются в нижних строках таблицы. Кроме перечисления кабелей и их видов, определяется толщина проводов, использованных в кабелях, наличие дополнительных проводов для мониторинга и компенсации сопротивления проводов к разъему (так называемые Vsense-провода).

  • Шумность системы охлаждения

Почти все блоки питания оснащаются вентилятором для активного охлаждения компонентов внутри корпуса. Кроме этого, вентилятор также выбрасывает подогретый воздух внутри корпуса компьютера наружу в окружающую среду. Большинство современных источников питания имеют вентилятор типоразмера 120 мм, расположенный на нижней стенке. Все чаще встречаются модели с вентилятором 135 или даже 140 мм, благодаря чему можно добиться снижения уровня шума при сохранении эффективности охлаждения. Однако в старших мощных моделях по-прежнему применяется 80 мм вентилятор в задней торцевой стенке, который выбрасывает воздух из БП наружу. Возможны также вариации с использованием разного расположения вентилятора, либо применением нескольких вентиляторов. Почти все блоки оснащены схемой динамического управления оборотами вентиляторов, в зависимости от температуры внутри БП (чаще всего температуры радиатора с диодами стабилизатора).

Мощность, потребляемая различным комплектующими

Наибольшая доля потребляемой мощности приходится на центральный процессор и видеокарты. В Internet имеется масса различных калькуляторов потребления компьютера. Довольно достоверные результаты выдает . Наша тестовая система на базе процессора Intel Xeon 3050, мат.платы Intel DP35DP, четырех модулей памяти DDR2, видеокарты NVIDIA GeForce 6600GT и трех винчестеров Seagate ST3320620AS, согласно расчетам калькулятора, требует блока питания с мощностью 244 Вт. Замеренное реальное потребление системы под нагрузкой достигло величины 205 Вт. Цифры схожие, да и наличие некоторого запаса по мощности не помешает, ведь конфигурация ПК со временем может меняться, например, добавится еще один винчестер, или видеокарта будет заменена на более производительную. Будет неприятно менять и блок питания при каждой такой замене. Современные 4-ядерные процессоры на базе 65-нм ядер Intel и AMD требуют до 100-140Вт мощности (без разгона), а 45-нм Intel Core 2 Extreme QX9650 довольствуется 75-80Вт при полной нагрузке. Куда более прожорливы старшие видеокарты NVIDIA и ATI, а тандем из двух видеокарт GeForce 8800 Ultra либо ATI Radeon HD 3870 X2 может потребовать до 350-450 Вт на одну только графическую подсистему. В таких конфигурациях логично и необходимо использовать соответствующие блоки питания, с мощностью 500-600Вт. Остальные компоненты потребляют немного, один винчестер едва дотягивает до отметки 15-25Вт во время старта и позиционирования головок, модуль памяти в среднем требует 4-10Вт, периферийные платы – 5-25Вт. Системы охлаждения за исключением комплексов с использованием термоэлектрических элементов также потребляют немного: 10-40Вт.

Методика и стенд для тестирования

Теперь немного понятно, что для полноценного тестирования блока питания недостаточно просто измерить вольтметром напряжение на выходах. Это лишь может показать отсутствие явных и серьезных проблем в работе блока питания, но не более того. Основная проблема обеспечения качественного питания обычно заключается в неспособности блока питания выдавать нужный ток для каждой компоненты компьютера, либо чрезмерном отклонении напряжений от номинала. Всевозможные вариации тестирования «методом вольтметра» могут лишь показать, что компьютер способен работать на конкретно взятой нагрузке, в конкретный момент времени, но абсолютно не показывает, насколько большую мощность в реальности может выдать блок питания, и не показывает, что случится с блоком питания, если нагрузка превысит допустимую мощность.

Для проведения тестирования и выяснения технических характеристик каждой блок питания подключается к специальному стенду, который позволяет одновременно измерять уровни напряжения и тока на всех выходных каналах в автоматическом режиме. Перед тестированием на стенде все блоки питания разбираются, фотографируются, проверяется качество пайки и монтажа, осматриваются компоненты на платах на предмет дефектов. В случае наличия, оные описываются в статье, со ссылкой на тот факт, что один конкретно взятый блок может оказаться бракованным, как и любое другое сложное электронное оборудование. Также всегда приводится фотография наклейки блока питания, с допустимыми величинами мощности по всем каналам. Если плотность монтажа позволяет, проводится обзор примененной элементной базы и особенности схематических решений. Часто встречается ситуация, когда компании сами не разрабатывают, а только продают блоки питания сторонней разработки OEM-компаний. Это обычно можно определить по коду сертификата UL, он редко скрывается и наносится на наклейке с основными параметрами, и выглядит как “E123456”. Примером использования данного принципа является OCZ, Tagan, ThermalTake и другие. Определить принадлежность кода к названию производителя можно на сайте UL Online Certifications Directory , задав поиск по коду с наклейки в графе UL File Number.

Для коробочных изделий обозревается комплектация и дополнительные аксессуары. На этом же этапе данные о мощности блока и каналов с наклейки блока питания заносятся в программу управления стендом, и подключаются все необходимые разъемы, в соответствии с распределением каналов. Проверяется работа схем защиты от короткого замыкания (каждая линия последовательно подключается на земляную шину), а также защита от перегрузки по каналам. Блок измерения входных параметров сети на данный момент находится в разработке, поэтому замеры КПД, коэффициента мощности и работа БП при различном диапазоне входных напряжений временно не проводятся. После проведения базовой проверки функционирования блока питания проводится снятие графиков кросс-нагрузочной характеристики (КНХ). Обычно для стабилизации напряжений +12В и +5В в блоках питания используется групповая схема включения, которая выравнивает среднеарифметическую величину между этими двумя напряжениями. Такое устройство легко видно при обзоре внутреннего строения блока питания, для группового стабилизатора используется один дроссель большего и один меньшего диаметра для канала +3.3В, который стабилизируется отдельно. Эти дроссели обычно расположены возле места подключения проводов выходных каналов блока питания.

Недостаток такой схемы включения – напряжения +12В и +5В сильно зависят друг от друга. При сильной нагрузке на +12В напряжение на ненагруженном канале +5В начинает завышаться. Равнозначна и обратная ситуация, действует своеобразный принцип «качелей». В современных же компьютерах вся мощная нагрузка приходится именно на +12В, четырехъядерный CPU и несколько видеокарт могут легко создать нагрузку около 30А, при почти нулевой нагрузке по +5 и +3.3В.

Более предпочтителен подход с использованием раздельных дросселей для стабилизации каждого из напряжений независимо. Однако это требует дополнительного места на печатной плате, да и сами дроссели денег стоят, поэтому подобное решение используется только в довольно дорогих блоках питания. Кроме этого, в блоках могут применяться дополнительные цепи для стабилизации напряжений, а эффективность их работы и призвано наглядным образом показать на графике КНХ.

В качестве нагрузки, а также для упрощения и автоматизации тестирования был разработан и изготовлен стенд на базе RISC-микроконтроллера ATMEL AT91SAM7A3. Для нагрузки используется шесть независимых идентичных каналов. Характеристики каждого из них приведены ниже в таблице.

Физически электроника и платы стенда с помощью стоек смонтированы на алюминиевом радиаторе с размерами 750х122х38 мм. Непосредственно сами силовые ключи установлены на стенку радиатора. Для охлаждения радиатора используются мощные вентиляторы Nidec Beta V и Delta DFB1212SHE типоразмера 120х38, а крыльчатка каждого вращается со скоростью свыше 4000 оборотов\минуту.

Возможности стенда довольно широки и включают на данный момент:

  • Включение\отключение БП при помощи управления сигналом PSON
  • Непрерывное слежение за состоянием сигнала PWOK
  • Измерение токов и напряжений по каждому из основных каналов
  • Установка заданной нагрузки по любому из каналов
  • Калибровка стенда для получения точных измерений

Сам стенд имеет индикацию состояния всех линий блока питания, а именно: PWON, PSON, +3.3V, +5V, +12V1, +12V2, +12V3, +12V4, +5standy (дежурное), -12, -5 (для старых БП). Также имеется несколько других контрольных светодиодов. Для подключения тестируемого блока питания к стенду имеется один 24-контактный разъем ATX, четыре 8-контактных разъема питания PCI-Express, один 8-контактный разъем для процессорного кабеля и восемь 4-контактных периферийных разъемов.

Для управления работой стенда, его настройки и контроля используется специальное программное обеспечение, работающее под управлением ОС Windows, которое постоянно обменивается данными с микроконтроллером стенда. Связь осуществляется при помощи интерфейса USB, который имеется на любом современном ПК.

В ручном режиме каждый канал стенда может независимо настраиваться, а контроль напряжений и токов проводится непрерывно, что позволяет быстро выяснить пороги стабильной работы блока. Программа позволяет также генерировать импульсы с различной величиной тока, для проверки устойчивости блока к импульсным нагрузкам (например, одновременный старт нескольких винчестеров, либо работа видеокарт в SLI/CF).

В автоматическом режиме программа строит 6 графиков (для каждого канала отдельный график). По оси Х суммарная величина потребляемой стендом мощности по каналу +12В, а по Y – суммарная мощность от каналов +3.3 и +5В. Может быть задан любой предел по мощности нагрузки, в рамках допустимой мощности стенда. Каждая точка графика на пересечении осей обозначает величину напряжения по каналу при суммарной нагрузке на каналы +3.3, +5 и +12В. То есть, на графике напряжения +3.3В все поле графика – это величина напряжения при всех возможных комбинациях нагрузок. Зная заявленные в стандарте и описанные нами ранее в статье допустимые отклонения по каждому напряжению – мы можем достоверно утверждать, на сколько процентов блок питания снизил, либо превысил напряжение относительно идеальных 3.300В, 5.000В и 12.000В. Но приводить в статье этот огромный массив цифр не имеет практического смысла, и все величины отклонений удобнее отобразить на графике цветовыми маркерами. Легенда с отклонениями прилагается на каждом графике и позволяет легко определять, где вложился блок питания в требования стандарта, а где нет. Пониженное напряжение отображается оттенками синего, повышенное относительно номинала – красными. Уровни за пределами стандарта (+\-5%) отображены темно-синим и темно-красными цветами. Шаг между каждой из точек составляет 0.2-0.5 А в зависимости от заданных условий тестирования. Типичный блок питания с мощностью 500Вт в автоматическом режиме тестируется около часа, при этом производится около 10000 измерений, и такое же количество ступеней управления нагрузкой. Провести вручную аналогичный тест заняло бы массу времени. Для блоков с типичной мощностью КНХ может сниматься в соответствии с нагрузочными моделями, описанными для типичных нагрузок в стандартах ATX PSDG 2.2 и EPS PSDG 2.91.

После проведения замеров, графики компонуются в один анимированный GIF-файл и публикуются в статье. Итоговый вид приблизительно таков:

Грубо говоря – чем больше зеленого цвета на графике – тем меньше отклонение напряжений от идеала. Напомним, что основное потребление современных ПК приходится на +12В канал, поэтому важно минимально возможное отклонение именно в горизонтальной плоскости графика.

Кроме КНХ замеряются уровни пульсаций на каждом из основных каналов. Для этого используется 4-канальный осциллограф Tektronix 2246-1Y, с максимальной частотой 100 МГц, чего с большим запасом достаточно для обнаружения и измерения всех возможных пульсаций блока питания. Пульсации замеряются при 100% нагрузке на блок питания, именно в этих условиях их величины максимальны. Чем ниже пульсации – тем меньше наводок и помех создает блок питания в питаемых им устройствах. Это особенно важно для чувствительных звуковых карт, тюнеров и подобных устройств. В дальнейшем замер пульсаций также будет автоматизирован.

Итоги и дальнейшие пути усовершенствования

На текущий момент использованная методика и стенд позволяют с хорошей точностью определить основные нагрузочные возможности, уровень пульсаций и соответствие допускам стандарта по всем основным питающим каналам блока питания. Однако всегда есть возможность внести улучшения, поэтому в скором времени планируется реализация блока для автоматического замера эффективности преобразования (КПД) блока питания, замеры фактора мощности, оптические датчики для замеров скорости вращения вентиляторов блока и температурные измерения в условиях, приближенных к реальным средам использования. Данная статья будет периодически обновляться, с учетом вносимых изменений. Также все пожелания и дополнения читателей будут внимательно рассмотрены и приняты во внимание.

Версия 1.01b от 2.02.2008. Начальная версия.

  • ATX12V Power Supply Design Guide, version 2.2
  • SSI EPS Power Supply Design Guide, version 2.91
  • eXtreme Power Supply Calculator Pro - калькулятор потребляемой мощности для различных конфигураций
  • Plus80.org - сайт программы сертификации Plus 80

Выражаю благодарности за помощь в создании стенда

J-34 , izerg , MAXakaWIZARD , cyclone .

«Р ежим питания нарушать нельзя» – говорил персонаж известного мультфильма. И был прав: от качества еды зависит здоровье, причем не только человека. Наши электронные друзья нуждаются в хорошей «пище» ничуть не меньше нас.

Довольно ощутимый процент неисправностей компьютеров связан с проблемами по питанию. При покупке ПК нас обычно интересует, насколько быстрый у него процессор, сколько памяти, но почти никогда мы не пытаемся узнать, хороший ли в нем блок питания. Стоит ли потом удивляться, что мощное и производительное железо работает кое-как? Сегодня поговорим, как проверить блок питания стационарного компьютера на работоспособность и исправность.

Немного теории

З адача блока питания (БП) персонального компьютера – преобразовывать высокое переменное напряжение бытовой электросети в низкое постоянное, которое потребляют устройства. Согласно стандарту ATX, на выходе у него формируется несколько уровней напряжения: +5 V , +3,3 V , +12 V , -12 V , +5 V SB (standby – дежурное питание).

От линий +5 V и + 3,3 V питаются USB-порты, модули оперативной памяти, основная масса микросхем, часть вентиляторов системы охлаждения, платы расширения в слотах PCI, PCI-E и т. д. От 12-вольтовой линии – процессор, видеокарта, двигатели жестких дисков, оптические приводы, вентиляторы. От +5 V SB – логическая схема запуска материнской платы, USB, сетевой контроллер (для возможности включения компьютера с помощью Wake-on-LAN). От -12 V – COM-порт.

Также БП вырабатывает сигнал Power_Good (или Power_OK), который информирует материнскую плату о том, что питающие напряжения стабилизированы и можно начинать работу. Высокий уровень Power_Good составляет 3-5,5 V.

Значения выходных напряжений у блоков питания любой мощности одинаковы. Различие – в уровнях токов на каждой линии. Произведение токов и напряжений – и есть показатель мощности питателя, который указывают в его характеристиках.

Если хотите проверить, соответствует ли ваш блок питания номиналу, можете посчитать это самостоятельно, сравнив данные, указанные в его паспорте (на наклейке с одной из боковых сторон) и полученные при измерениях.

Вот пример того, как может выглядеть паспорт:

Работает – не работает

Н аверное, вы хоть раз сталкивались с ситуацией, когда при нажатии кнопки включения на системном блоке ничего не происходит. . Одна из причин подобного – отсутствие питающих напряжений.

Блок питания может не включаться в двух случаях: при неисправности его самого и при выходе из строя подсоединенных устройств. Если не знаете, как подключенные устройства (нагрузка) могут влиять на питатель, поясню: при коротком замыкании в нагрузке многократно увеличивается потребление тока. Когда это превышает возможности БП, он отключается – уходит в защиту, поскольку иначе попросту сгорит.

Внешне то и другое выглядит одинаково, но определить, в какой части проблема, довольно просто: нужно попытаться включить блок питания отдельно от материнской платы. Поскольку для этого не предусмотрено никаких кнопок, сделаем так:

  • Отключим компьютер от электросети, снимем крышку системного блока и отсоединим от платы колодку ATX – самый многожильный кабель с широким разъемом.

  • Отсоединим от БП остальные устройства и подключим к нему заведомо исправную нагрузку – без нее современные блоки питания, как правило, не включаются. В качестве нагрузки можно использовать обычную лампу накаливания или какой-нибудь энергоемкий девайс, например, привод оптических дисков. Последний вариант – на ваш страх и риск, так как нельзя гарантировать, что устройство не выйдет из строя.
  • Возьмем разогнутую металлическую скрепку или тонкий пинцет и замкнем на колодке ATX (которая идет от БП) контакты, отвечающие за включение. Один из контактов называется PS_ON и соответствует единственному зеленому проводу. Второй – COM или GND (земля), соответствует любому черному проводу. Эти же контакты замыкаются при нажатии кнопки включения на системнике.

Вот, как это показано на схеме:

Если после замыкания PS_ON на землю в блоке питания закрутится вентилятор, а также заработает устройство, подключенное в качестве нагрузки, питатель можно считать работоспособным.

А что на выходе?

Р аботоспособность не всегда означает исправность. БП вполне может включаться, но не вырабатывать нужных напряжений, не выдавать на плату сигнал Power_Good (или выдавать слишком рано), просаживаться (снижать выходные напряжения) под нагрузкой и т. п. Чтобы это проверить, понадобится специальный прибор – вольтметр (а лучше мультиметр) с функцией измерения постоянного напряжения.

Например, такой:

Или любой другой. Модификаций этого прибора очень много. Они свободно продаются в магазинах радио- и электротоваров. Для наших целей вполне подойдет самый простой и дешевый.

С помощью мультиметра мы будем измерять напруги на разъемах работающего блока питания и сравнивать показатели с номинальными.

В норме значения выходных напряжений при любой нагрузке (не превышающей допустимую для вашего БП) не должны отклоняться больше, чем на 5%.

Порядок измерений

  • Включаем компьютер. Системник должен быть собран в обычной комплектации, т. е. в нем должно присутствовать всё оборудование, которое вы используете постоянно. Дадим блоку питания немного прогреться – примерно 20-30 минут просто поработаем на ПК. Это повысит достоверность показателей.
  • Далее запускаем игру или тестовое приложение, чтобы нагрузить систему по полной. Это позволит проверить, способен ли питатель обеспечить энергией устройства, когда они работают с максимальным потреблением. В качестве нагрузки можете использовать стрессовый тест Power Supply из программы .

  • Включаем мультиметр. Устанавливаем переключатель на значение 20 V постоянного напряжения (шкала постоянных напруг обозначена буквой V, рядом с которой нарисованы прямая и пунктирная линии).

  • Красный щуп мультиметра подсоединяем к любому разъему напротив цветного повода (красного, желтого, оранжевого). Черный – напротив черного. Или закрепляем его на любой металлической детали на плате, которая не находится под напряжением (измерение напруг следует проводить относительно нуля).

  • Снимаем показатели с дисплея прибора. По желтому проводу подается 12 V, значит, на дисплее должно быть значение, равное 12 V ± 5%. По красному – 5 V, нормальным будет показатель 5 V ± 5%. По оранжевому, соответственно – 3,3 V± 5%.

Более низкие напряжения на одной или нескольких линиях говорят о том, что БП не вытягивает нагрузку. Такое бывает, когда его фактическая мощность не соответствует потребностям системы из-за износа компонентов или не слишком высокого качества изготовления. А может, из-за того, что он изначально был неправильно подобран или перестал справляться со своей задачей после апгрейда компьютера.

Для правильного определения необходимой мощности БП удобно использовать специальные сервисы-калькуляторы. Например, . Здесь пользователю следует выбрать из списков всё оборудование, установленное на ПК, и нажать «Calculate ». Программа не только рассчитает требуемую мощность питателя, но и предложит 2-3 подходящие модели.

В результате всех преобразований входного переменного напряжения (выпрямления, сглаживания, повторной конвертации в переменное с более высокой частотой, понижения, еще одного выпрямления и сглаживания) выходное должно иметь постоянный уровень, то есть его вольтаж не должен изменяться во времени. Если смотреть осциллографом, оно должно иметь вид прямой линии: чем прямее – тем лучше.

В реальности идеально ровная прямая на выходе БП – что-то из области фантастики. Нормальным показателем считается отсутствие колебаний амплитуды более 50 mV по линиям 5 V и 3,3 V, а также 120 mV по линии 12 V. Если они больше, как, например, на этой осциллограмме, возникают вышеописанные проблемы.

Причинами возникновения шумов и пульсаций обычно бывают упрощенная схема или некачественные элементы выходного сглаживающего фильтра, что обычно встречается в дешевых блоках питания. А также в старых, выработавших свой ресурс.

К сожалению, выявить дефект без осциллографа крайне затруднительно. А этот девайс, в отличие от мультиметра, стоит довольно дорого и не так часто нужен в хозяйстве, поэтому вы вряд ли решитесь его купить. Косвенно о наличии пульсаций можно судить по качанию стрелки или беганью цифр на дисплее мультиметра при измерении постоянных напряжений, но это будет заметно, только если прибор достаточно чувствительный.

А еще мы можем измерить ток

Р аз у нас есть мультиметр, в дополнение к остальному мы можем определить токи, которые вырабатывает питатель. Ведь именно они имеют решающее значение при расчете мощности, указываемой в характеристиках.

Недостаток тока тоже сказывается на работе компьютера крайне неблагоприятно. «Недокормленная» система нещадно тормозит, а блок питания при этом греется, как утюг, поскольку работает на пределе возможностей. Долго это продолжаться не может, и рано или поздно такой БП выйдет из строя.

Трудность измерения тока заключается в том, что амперметр (в нашем случае – мультиметр в режиме амперметра) необходимо включать в разрыв цепи, а не подсоединять к разъемам. Чтобы это сделать, придется разрезать или отпаять провод на проверяемой линии.

Для тех, кто решился на эксперимент с замерами токов (а без серьезных оснований этого делать, пожалуй, не стоит), привожу инструкцию.

  • Выключите компьютер. Разделите пополам проводник на исследуемой линии. Если жалко портить провода, можете проделать это на переходнике, который одним концом подсоединяется к разъему блока питания, а вторым – к устройству.
  • Переведите мультиметр в режим измерения постоянных токов (их шкала на приборе обозначена буквой А с прямой и пунктирной линиями). Установите переключатель на значение, превышающее номинальный ток на линии (последний, как вы помните, указан на наклейке БП).

  • Подключите мультиметр в разрыв провода. Красный щуп расположите ближе к источнику, чтобы ток протекал в направлении от него к черному. Включите компьютер и зафиксируйте показатель.
П осле всех проверок у вас будет если не полное, то весьма неплохое представление, на что способен блок питания вашего компьютера. Если всё отлично, я могу за вас только порадоваться. А если нет… Эксплуатация неисправного или некачественного питателя часто заканчивается выходом из строя и его самого, и других устройств ПК. Будет весьма неприятно, если этим другим окажется дорогостоящая видеокарта, поэтому старайтесь не экономить на столь важной детали и решайте все возникшие с ней проблемы как только заметите.

Ещё на сайте:

Питаться, чтобы «жить»: как проверить блок питания компьютера обновлено: Март 8, 2017 автором: Johnny Mnemonic

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы .

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на , через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших , будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно - схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 - это используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или . Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.