Помехи в линиях связи. Помехи и искажения в канале связи

16.08.2019

На вход РПУ вместе с сигналом попадают аддитивные помехи. Такого рода помехами являются:

Атмосферные и космические шумы;

Помехи от промышленных установок;

Станционные помехи от других передатчиков;

Собственные шумы тракта РПУ, приведенные ко входу.

Можно все аддитивные помехи разбить на три группы:

Флуктуационные (шумовые);

Сосредоточенные по спектру (станционные);

Сосредоточенные по времени (импульсные).

Шумы тракта РПУ можно представить стационарным гауссовским процессом с нулевым средним и односторонней спектральной плотностью (энергетическим спектром)

k - постоянная Больцмана k =1,38·10 -23 [ Дж /К ] ,T 0 - температура окружающей среды по шкале Кельвина (T 0 =273°+ t°C).

F ш - коэффициент шума приемника.

Коэффициент шума F ш показывает во сколько раз реальный приемник ухудшает отношение сигнал /шум по мощности по сравнению с идеальным (нешумящим) приемником, уровень шума у которого обусловлен активным сопротивлением источника сигнала.

Средняя мощность белого шума в эквивалентной шумовой полосе Df э тракта РПУ

, (2.51)

где K 0 - значение АЧХ на центральной частоте.

Отметим, что гауссовский шум является самым мощным разрушителем информации на основании максимума его энтропии.

Узкополосный гауссовский шум n(t) как и модулированный сигнал можно записать в комплексной форме ,где вещественный сигнал

определен как

где N(t) – огибающая; q ш (t) - фаза шумового процесса;

; ; (2.54)

N с (t) и N s (t) - низкочастотные квадратурные составляющие.

. Импульсные помехи , воздействуя на резонансные цепи РПУ, могут создавать длительными переходными процессами в них серьезное мешающее воздействие приему сигналов.

Для импульсных помех необходимо знать интенсивность их потока и распределение уровня их амплитуд. Если известно, что на интервале времени 1с имеет место в среднем ν импульсных помех, то появление k помех на интервале Т с вероятностью P(k ) описывается законом Пуассона

(2.55)

Пусть при передаче телеграфных сообщений длительность элемента равна ∆t .Вероятность поражения элемента сообщения импульсной помехой . Следовательно, если на интервале Т имеется элементов, то среднее количество независимых интервалов, которое будет поражено импульсными помехами в выражении (2.55). Это выражение определяет вероятность числа элементов, пораженных импульсной помехой в сеансе связи длительностью Т.

Станционные помехи - средние уровни помех распределены по логарифмически - нормальному закону.

Контрольные вопросы к разделу 2.

1. Диапазон мгновенных значений непрерывного сообщения.



2. Модель ДИБП.

3. Выражение для динамического диапазона речевого сигнала.

4. Выражение для ряда Котельникова и условия при дискретизации непрерывных сообщений.

5. Условие некоррелированности отсчетов при дискретизации непрерывных сообщений по Котельникову.

6. Условие восстановления сигнала u(t) с финитным спектром по его отсчетам.

7. Закон, среднее значение и дисперсия аддитивной погрешности равномерного скалярного квантования процесса.

8. ОСШК АЦП гауссовского речевого сигнала при скалярном равномерном квантовании.

9. Необходимые требования к базисным функциям обобщенного ряда аппроксимации колебания с ограниченной энергией.

10. Чем отличается амплитудный спектр при аппроксимации колебания тригонометрическим рядом Фурье и комплексным рядом Фурье?

11. Чему равно расстояние между векторами колебаний, представленных рядом Фурье?

12. Выражения комплексного амплитудного спектра периодичес-кого сигнала и спектральной плотности непериодических сигналов.

13. Свойства пары преобразования Фурье.

14. Определение АКФ, ВКФ непериодического и периодического детерминированных сигналов.

15. Определение СПМ непериодического детерминированного и случайного сигналов, стационарных процессов.

16. СПМ синхронного модулирующего сигнала БВН. Что дает равная вероятность символов НЧ сигнала БВН?

17. Вещественный модулированный ВЧ сигнал в полярной форме записи. Комплексная огибающая (в полярной, квадратурной форме) модулированного сигнала.

18. Квадратурная форма записи ВЧ модулированного сигнала.

19. Что означает процесс модуляции сигнала?

20. АМ и ЧМ модуляция, спектры при гармоническом сообщении.

21. СПА и СПМ модулированного колебания.

22. Виды помех. Формы записи узкополосного гауссовского шума.

23. Закон Пуассона для импульсных помех.

Параграф 2.2: Искажения и помехи в каналах связи.

Раздел 2: Каналы электросвязи

Параграф 2.1: Определœение классификации каналов связи.

Каналом передачи информации принято называть совокупность технических средств, предназначенных для передачи сообщений. Под техническими средствами при этом принято понимать как технические устройства, осуществляющие обработку сообщений сигналов, так и линии связи, физическая среда, в которой располагается сигнал между функциями связи.

Классификация каналов связи возможна по следующим признакам:

1. по назначению

2. по характеру линии связи

3. по диапазону используемых ими частот

4. по характеру сигнала на входе и выходе канала

По назначению каналы делят:

­ телœефонные

­ телœеграфные

­ передача данных

­ телœевизионные

­ фототелœеграфные

­ звукового вещания

Учитывая зависимость оттого, распространяется сигнал между пунктами связи в свободном пространстве или по направленным линиям различают:

­ канал радиосвязи

­ канал проводной связи (воздушные, кабельные, волоконно-оптические линии связи)

На воздушных проводных линиях используются частоты не свыше 150кГц, т.к. на более высоких частотах возрастают помехи и увеличиваются затухания. Коаксиальные кабели, являющиеся основой сетей магистральной дальней связи пропускают диапазон частот до сотен МГц. Радиосвязь осуществляется с помощью электромагнитных волн, распространяется в частично ограниченном(к примеру: землей и ионосферой) пространстве. Сегодня в радиосвязи применяют частоты примерно от 3*103 – 3*1012Гц. Этот диапазон принято в соответствии с десятичной классификации подразделять следующим образом:

Наименование волн Длина волн Наименование частот Частоты
Декакилометровые (сверх длинные; СВД) 100…10 км ОНЧ 3…30 кГц
Километровые (длинные; ДВ) 10…1 км НЧ 30…300 кГц
Гектаметровые (средние; СВ) 1000…100 м СЧ 300…3000 кГц
Декаметровые (короткие; КВ) 100…10 м ВЧ 3…30 МГц
Метровые (ультракороткие; УКВ) 10…1 м ОВЧ 30…300 МГц
Дециметровые 100…10 см УВЧ 300…3000 МГц
Сантиметровые 10…1 см СВЧ 3…30 ГГц
Миллиметровые 10…1 мм КВЧ 30…300 ГГц
Децимиллиметровые 1…0,1 мм ГПЧ 300…3000 ГГц

В таблице, в скобках, указаны не стандартные, но используемые на практике названия диапазонов волн. Диапазон децимиллиметровых волн уже вплотную подходит к диапазону инфракрасных волн. Сегодня, благодаря созданию и широкому внедрению квантовых генераторов или лазеров, освоен и диапазон световых волн (оптический диапазон). Практически, в оптико-волоконных линиях связи используются частоты порядка 1014 Гц (длины волн:1,55; 1,35; 0,85 микронов). Важно заметить, что для современного этапа развития техники связи характеризуется тенденция к переходу на более высокие частоты. Это вызвано крайне важно стью повышать скорость передачи информации, меньше интенсивность помех, высокочастотный диапазон, возможность применения помехоустойчивых широкополосных методов модуляции. Применение систем связи с расширенным спектром дает дополнительные возможности по защите информации. По характеру сигналов на входе и выходе канала различают:

­ дискретные каналы

­ непрерывные каналы

­ полунепрерывные каналы

Всякий дискретный и полу непрерывный канал обязательно содержит внутри себя непрерывный канал – линию связи. Дискретность и непрерывность канала не связана с характером передаваемых сообщений. Можно передавать дискретные сообщения по непрерывному каналу и наоборот.

Передача сообщений и соответствующих им электрических сигналов через реальные каналы связи сопровождается их изменениями. Эти изменения обусловлены несовершенством реальных каналов. Их можно подразделить:

­ детерминированные

­ случайные

Детерминированные изменения сигнала в непрерывном канале определяется построением канала и сводится к изменению масштаба (ослаблению или усилению), задержки (изменение формы сигнала). В дискретном канале детерминированные изменения приводят лишь к задержке, т.к. там входные и выходные сигналы имеют фиксированную импульсную форму. Случайные изменения сигнала в непрерывном так и в дискретном каналах обусловлены помехой, действующей в непрерывном канале. Помеха – случайный процесс, налагающийся на передаваемые сигналы, а также, случайные изменения параметров канала, к примеру, коэффициент передачи. В непрерывном канале, помеха приводит к случайным изменениям формы, масштаба и задержки сигнала. В дискретном канале – к ошибкам. С точки зрения передачи информации, важно подразделœение изменения сигнала на обратимые, т.е не приводящие к потере информации и необратимые. Детерминированным обратным преобразованием входного сигнала является преобразование вида:

.

Выходной канал Y(t) отличается от входного X(t) масштабом k и задержкой t. Масштаб должна быть легко восстановлен с помощью соответствующего усиления или ослабления сигнала. Задержка сигнала приводит к задержке приема сообщений. В случае если X(t) в последнем выражении узкополосный сигнал, его удобно представить в квазигармонической форме:

где - медленно меняющиеся функции времени. При малой задержке t, можно считать, что , и выходной сигнал канала Y(t) можно записать в виде:

Фазовый сдвиг в канале.

При узкополосном сигнале малая задержка сводится к некоторому сдвигу фаз. Необратимыми изменениями сигнала являются изменения его формы, вызываемые влиянием линœейных и нелинœейных искажений и помех. При введении этих понятий полагаем, что канал имеет эквивалентную схему замещения в виде четырехполюсника с постоянными параметрами.

Линœейными искажениями называются изменения сигнала, которые возникают в инœерционном (содержит реактивные элементы) линœейном четырехполюснике с постоянными параметрами. Во временной области линœейные искажения объясняются отличием формы импульсной реакции от . Условием отсутствия искажений является равенство , ĸᴏᴛᴏᴩᴏᴇ точно возможно только в безынерционном четырехполюснике. При выполнении этого условия, сигнал на выходе канала связан с входным сигналом X(t) в соответствии с интегралом Дюамеля случайным соотношением:

Откуда, в соответствии с фильтрующим свойством d функции , что соответствует случаю наличия в канале лишь обратимых искажений. В частотной области линœейные искажения объясняются нарушением тех соотношений амплитуд и фаз гармонических составляющих, которые существуют в передаваемом сигнале. Нарушения соотношений амплитуд называют частотными, а фаз – фазовыми искажениями. Для их отсутствия нужно, чтобы для всœех гармонических составляющих сигнала были одинаковы: , .

Поскольку , для выполнения равенства крайне важно, чтобы была линœейной функцией частоты, ᴛ.ᴇ. , где . Неравномерность амплитудно-частотной характеристики и нелинœейность фазы частотной характеристики приводит к возникновению искажений формы передаваемых импульсов. Импульсы расплываются во времени вследствие чего, возникает их взаимная (межсимвольная) интерференция (наложение).

Нелинœейными называются искажения сигнала, которые возникают в нелинœейном безынерционном четырехполюснике с постоянными параметрами из-за нелинœейности их амплитудных характеристик.

Амплитудной характеристикой принято называть зависимость сигнала на выходе четырехполюсника от сигнала на его входе . Коэффициент передачи четырехполюсника в случаи, когда такая зависимость нелинœейная, зависит от уровня поступающего на его вход сигнала.

В результате нелинœейных искажений, спектры сигналов расширяются, в них появляются дополнительные гармонические составляющие, вследствие чего, форма сигналов также изменяется.

Для рассмотрения помех в непрерывных каналах выходной сигнал Y(t) можно представить в виде:

Аддитивная помеха обусловлена возникновением в канале случайной ЭДС. Основные причины, вызывающие аддитивные помехи:

1. тепловые шумы в радиоэлектронных элементах

2. наводки, обусловленные природными или промышленными процессами.

Аддитивные помехи делят:

­ сосредоточенные

­ флуктуационные

Сосредоточенные характеризуются сосредоточенностью энергии в полосœе частот (узкополосные или сосредоточенные по спектру) или на отрезке времени (импульсные помехи). Узкополосная помеха имеет спектр, составляющий наибольшую часть полосы пропускания каналов. Чаще всœего эти помехи обусловлены действием посторонних источников, к примеру, сосœедних станций в радиосвязи. Импульсные помехи – случайные последовательности относительно коротких импульсов, создаваемые промышленными установками и атмосферными источниками.

Флуктуационная помеха занимает промежуточное положение между сосредоточенными по спектру импульсными помехами. Она характеризуется размытостью энергии по частоте и по времени, в связи с этим подавить ее невозможно. Борьба с флуктуационной помехой реализуется путем использования оптимальных методов приема сигналов. Основная причина возникновения – тепловой шум, математической моделью которого является белый шум.

Мультипликативная помеха обуславливается случайными изменениями коэффициента передачи канала, они возникают из-за изменения характеристик среды, в которой располагаются сигналы; коэффициента усиления электронных схем при изменении питающих напряжения; из-за замирания сигналов в результате взаимного наложения и различных затуханий при многолучевом распространение радиоволн.

Помимо мультипликативных и аддитивные помех существуют помехи, влияние которых на сигнал зависит от самого сигнала нелинœейным образом. К числу таких помех относится, к примеру, существующие для оптических каналов связи помехи квантовый шум, вызванный дискретной природой излучения светового сигнала. Интенсивность этой помехи коррелированна с интенсивностью самого сигнала.

Параграф 2.2: Искажения и помехи в каналах связи. - понятие и виды. Классификация и особенности категории "Параграф 2.2: Искажения и помехи в каналах связи." 2017, 2018.

Понятие помехи

Лекция 3. Дискретный канал с помехами

Цель лекции: ознакомление c понятием помех

а) понятие помех;

б) виды помех;

в) искажения;

г) борьба с помехами.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F - полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

Атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

Индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

Помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

Космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.


По физическим свойствам помех различают:

Флуктуационные помехи;

Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

Аддитивные помехи;

Мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ - ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами - основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

Уменьшение помех на путях проникновения в приемник;

Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

В процессе прохождения по реальным каналам связи сигналы подвергаются искажениям, поэтому получаемые сообщения воспроизводятся с некоторыми ошибками. Эти ошибки обусловлены характеристиками тракта передачи, а также помехами, воздействующими на сигнал. Изменение характеристик тракта, как правило, имеет регулярный характер, и поэтому их можно в большинстве случаев устранить посредством соответствующей коррекции. Помехи же, воздействующие на сигнал, имеют случайный характер, то есть они заранее неизвестны, и поэтому их влияние нельзя полностью устранить.

Помехой принято называть любое случайное воздействие на сигнал, которое снижает достоверность воспроизведения передаваемых сообщений. Существующие помехи весьма разнообразны по своей природе и физическому воздействию.

В радиоканалах различают:

· Атмосферные помехи, обусловлены грозовыми электрическими процессами. Наиболее вредное воздействие эти помехи оказывают в области длинных и средних волн. Первым обнаружили их негативное влияние изобретатель радио А. С. Попов;

· Индустриальные помехи, возникающие из-за резких изменений тока в цепях электроустройств. Это помехи это помехи от электротранспорта, систем зажигания двигателей, медицинских установок, электродвигателей;

· Помехи от посторонних радиостанций, возникающие вследствие плохой фильтрации гармоник сигнала, недостаточной стабильности частот, нарушения регламента рабочий частот, нелинейности каналов, что приводит к образованию новых колебаний;

· Космические помехи, обусловленные электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектов.

В каналах проводной связи основными видами помех являются импульсные шумы и прерывание связи. Импульсные шумы возникают при автоматической коммутации и вследствие перекрестных наводок. Прерывание связи называется явление, при котором сигнал либо резко затухает, либо совсем пропадает, например, из-за нарушения контактов при соединении.

Все казанные помехи относятся к внешним помехам, однако имеются и внутренние помехи, возникающие в аппаратуре, например в усилителях и преобразованиях частот. Внутренние помехи обусловлены, главным образом, наличием тепловых шумов - хаотического движения носителей заряда (электронов) в проводниках. Эти помехи принципиально неустранимы.

В общем случае влияние помех на полезный сигнал можно представить в виде оператора

В зависимости от характера взаимодействия с сигналом помехи подразделяются на аддитивные и мультипликативные.

Аддитивной называется помеха, которая при образовании выходного сигнала представляется в виде слагаемого:

Мультипликативной называется помеха, которая при образовании выходного сигнала представляется в виде множителя входного сигнала:

где K(t) - некоторый случайный процесс.

Примером мультипликативной помехи являются замирания, заключающиеся в случайном изменении уровню и соответственно мощности сигнала из-за непостоянства условий распространения радиоволн. В проводных каналах мультипликативной помехой может быть прерывание связи, при котором сигнал в линии резко затухает.

К аддитивным помехам можно отнести все рассмотренные виды внешних и внутренних помех.

В реальных каналах имеются и аддитивные, и мультипликативные помехи, поэтому в них

Схема действия помех в линии связи показана на рисунке 1.3.


Рис. 1.4

В заключение отметим, что между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют как единое целое, хотя и противоположные по своему действию. Например, излучение передатчика радиостанции, являясь полезным для приемника того абонента, которому оно предназначено, одновременно может служить помехой для приемников тех абонентов, которым оно не предназначено.

Помехи в каналах связи

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора , включенного параллельно приемнику сигнала и имеющего входной импеданс (рис. 4.29). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех такого вида включено последовательно с . Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему .

· токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; - напряжение помехи, наводимой из второго канала связи в первый; - напряжение помехи, наводимой из первого канала связи во второй;

· потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно соответствующего канала: и . Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи

где - изображение напряжения помехи, наводимой из второго канала в первый;

Изображение сигнала второго канала связи;

р - комплексная переменная;

Из рис. 4.29 следует, что