Понятие об устойчивости параллельной работы энергосистем. Лекция

31.07.2019

Цель лекции: рассмотрение режимов работы системы при внезапном отключении одной из двух параллельных цепей электропередачи.

Рассмотрим простейших случай, когда электростанция работает через двухцепную линию на шины бесконечной мощности. Условие постоянства напряжения на шинах системы (U = соnst) исключает качания генераторов приемной системы и значительно упрощает анализ динамической устойчивости.

Для выяснения принципиальных положений динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей электропередачи (см. рисунок 12.1), связывающей удаленную станцию с шинами неизменного напряжения.

Рисунок 12.1

Схема замещения в нормальном режиме (до отключения цепи) представлена на рисунке 12.2,а. Индуктивное сопротивление системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 ,

определяет амплитуду характеристики мощности в этих условиях:

Рисунок 12.2

При отключении одной цепи линии электропередачи индуктивное сопротивление системы получает новое значение

Х с1 = Х г + Х т1 + Х л + Х т2 ,

которое больше, чем в нормальном режиме. Амплитуда характеристики мощности при отключении цепи соответственно уменьшается до значения ЕU/Х с1 .

Характеристики мощности в условиях нормального режима и при отключенной цепи показаны на рисунке 12.3.

Рисунок 12.3

Нормальному режиму соответствует кривая I , режиму после отключения – кривая II . Точка а и угол δ 0 при мощности Р 0 определяют режим работы до отключения. Точка b определяет режим работы после отключения при том же значении угла δ = δ 0 , что и в нормальном режиме.

Таким образом, в момент отключения цепи режим работы изменяется и характеризуется не точкой а , а точкой b на новой характеристике, что обусловливает внезапное уменьшение мощности генератора. Мощность турбины остается при этом неизменной и равной Р 0 , так как регуляторы турбин реагируют на изменение частоты вращения агрегата, которая в момент отключения цепи сохраняет свое нормальное значение.

Неравенство мощностей, а следовательно, и моментов на валу турбины и генератора вызывает появление избыточного момента, под влиянием которого агрегат турбина – генератор начинает ускоряться. Связанный с ротором генератора вектор ЭДС начинает вращаться быстрее, чем вращающийся с неизменной синхронной скоростью ω 0 вектор напряжения шин приемной системы .

Изменение относительной скорости вращения приводит к увеличению угла δ, и на характеристики мощности генератора при отключенной цепи рабочая точка перемещается из точки b по направлению к точке с . При этом мощность генератора начинает возрастать. Однако вплоть до точки с мощность турбины все еще превышает мощность генератора и избыточный момент, хотя и уменьшается, но сохраняет свой знак, благодаря чему относительная скорость вращения непрерывно возрастает. В точке с мощность турбины и генератора вновь уравновешивают друг друга и избыточный момент равен нулю. Однако процесс не останавливается в этой точке, так как относительная скорость вращения ротора достигает здесь наибольшего значения и ротор проходит точку с по инерции.


При дальнейшем росте угла δ мощность генератора уже не превышает мощность турбины и избыточный момент изменяет свой знак. Он начинает тормозить агрегат. Относительная скорость вращения v теперь уменьшается и в некоторой точке d становится равной нулю. Это означает, что в точке d вектор ЭДС вращается с той же угловой скоростью, что и вектор напряжения и угол δ между ними больше не возрастает. Однако процесс еще не останавливается, так как вследствие неравенства мощностей турбины и генератора на валу агрегата существует избыточный момент тормозящего характера, под влиянием которого частота вращения продолжает уменьшаться, и рабочая точка, характеризующая процесс на характеристике мощности, перемещается в обратном направлении к точке с . Эту точку ротор вновь проходит по инерции, и около точки b угол достигает своего нового минимального значения, после чего вновь начинает возрастать. После ряда постепенно затухающих колебаний в точке с устанавливается новый установившийся режим с прежним значением передаваемой мощности Р 0 и новым значением угла δ уст. Картина колебаний угла δ во времени показана на рисунке 12.4.

Рисунок 12.4

Возможен и другой исход процесса (см. рисунок 12.5). Торможение ротора, начиная с точки с , уменьшает относительную скорость вращения ЭДС v . Однако угол в этой фазе процесса все еще возрастает, и если он успеет достигнуть критической величины δ кр в точке с на пересечении падающей ветви синусоиды мощности генератора с горизонталью мощности турбины Р 0 прежде, чем относительная скорость v упадет до нуля, в дальнейшем избыточный момент на валу машины становится вновь ускоряющим, скорость v начнет быстро возрастать и генератор выпадает из синхронизма (см. рисунок 12.6).

Рисунок 12.5

Таким образом, если в процессе качаний будет пройдена точка с " , то возврат к установившемуся режиму уже невозможен.

Рисунок 12.6

Можно сделать вывод, что, несмотря на теоретическую возможность существования нового установившегося (и статически устойчивого) режима в точке с , процесс качания машины при переходе к этому режиму может привести к выпадению машины из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной нарушений динамической устойчивости электрических систем являются обычно короткие замыкания, резко уменьшающие амплитуду характеристики мощности.

13 Лекция. Динамическая устойчивость при коротком

замыкании на линии

Цель лекции: анализ колебаний по правилу площадей.

Наиболее распространенным видом возмущений, приводящим к необходимости анализа динамической устойчивости, является короткое замыкание.

Рассмотрим сначала простейший случай работы электростанции через двухцепную линию электропередачи на шины бесконечной мощности (см. рисунок 13.1).

Рисунок 13.1

На рисунке 13.2 приведена упрощенная схема замещения рассматриваемой системы при нормальном режиме, представляющая собой последовательное соединение индуктивных сопротивлений элементов системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 .

Рисунок 13.2

Характеристика мощности в нормальном режиме определяется

Эта зависимость представлена на рисунке 13.4 (кривая I ). Предположим, что в начале одной из цепей линии в точке К произошло несимметричное КЗ. Схема замещения для этого режима представлена на рисунке 13.3 а , где в точке К включено эквивалентное шунтирующее сопротивление КЗ Х к, состоящее из сопротивлений обратной и нулевой последовательностей.

В связи с изменением конфигурации схемы вследствие КЗ при неизменной ЭДС генератора значение передаваемой системе мощности изменяется. Выражение для передаваемой мощности при КЗ можно найти с помощью простых преобразований схемы замещения для аварийного режима. Эта схема представляет собой с лучами Х к, Х а = Х г + Х т1 и Х b = 0,5Х л + Х т2 , причем для однофазного КЗ Х к = Х 2 + Х 0 , для двухфазного КЗ Х к = Х 2 , а для двухфазного замыкания на землю .

После преобразования звезды в треугольник (см. рисунок 13.3 б ), получим

; ; . (13.1)

Индуктивные сопротивления и , подключенные непосредственно к ЭДС Е и напряжению U , не влияют на значение активной мощности генератора в аварийном режиме и могут не учитываться.

Рисунок 13.3

Весь поток активной мощности генератора будет протекать через индуктивное сопротивление , связывающее ЭДС генератора с напряжением приемной системы. В этом случае характеристика мощности генератора имеет вид

где = .

Зависимость от угла имеет синусоидальный характер, но амплитуда ее меньше, чем при нормальном режиме. Обе характеристики приведены на рисунке 13.4.

Рисунок 13.4

Отдаваемая генератором мощность и угол между ЭДС Е и напряжением U в нормальном режиме обозначены соответственно через Р 0 и δ 0 . В момент КЗ в связи с изменением параметров схемы происходит переход с одной характеристики мощности на другую, и так как вследствие инерции ротора угол δ мгновенно измениться не может, то отдаваемая генераторами мощность уменьшается до значения Р (0) , определяемого углом δ 0 на кривой II . Мощность турбины остается неизменной и равной Р 0 .

В результате на валу машины возникает некоторый избыточный момент, обусловленный избытком мощности ΔР (0) = Р 0 – Р (0) . Под влиянием этого момента ротор машины начинает ускоряться, увеличивая угол δ. В дальнейшем процесс протекает качественно так же, как и при внезапном отключении нагруженной линии. После нескольких колебаний с постепенно затухающей амплитудой относительное движение ротора прекратится и его положение будет определяться точкой с , являющейся точкой установившегося режима на новой характеристике мощности. Если бы ротор при первом отклонении прошел угол δ кр, соответствующий мощности Р 0 на подающей ветви характеристики II , то избыточный момент вновь изменил бы свой знак и сделался бы снова ускоряющим. С дальнейшим увеличением угла ускоряющий момент стал бы нарастать и генератор выпал бы из синхронизма.

Приведенные на рисунке 13.4 характеристики дают возможность определить максимальное отклонение угла ротора и установить, сохраняет ли система устойчивость. Действительно, ординаты заштрихованных площадок представляют собой избыток мощности ΔР = Р 0 – Р, создающий избыточный момент того или иного знака. Избыточный момент в относительных единицах может быть принят численно равным избытку мощности, т.е ΔМ = ΔР.

В рассматриваемом случае избыточный момент сначала ускоряет вращение ротора, и работа, совершаемая в период ускорения при перемещении ротора от δ 0 до δ уст, равна:

,

где - заштрихованная на рисунке 13.4 площадка abc .

Таким образом, кинетическая энергия, запасенная ротором в период его ускорения, равна площадке . Эта площадка называется площадью ускорения.

После того как ротор пройдет точку своего установившегося положения на новой характеристике мощности, избыточный момент меняет свой знак и начинает тормозить вращение ротора. Изменение кинетической энергии в период торможения при перемещении ротора от δ уст до δ m равно:

.

Площадка называется площадь торможения.

В период торможения ротор возвращает запасенную им ранее избыточную кинетическую энергию. Когда вся запасенная ротором избыточная энергия будет израсходована, т.е когда работа торможения А торм уравновесит работу ускорения А уск, относительная скорость становится равной нулю, т.к кинетическая энергия пропорциональна квадрату скорости. В этот момент ротор останавливается в своем относительном движении и достигнутый им при этом угол δ m является максимальным углом отклонения ротора машины. Таким образом, для определения угла δ m оказывается достаточным равенство , или то же самое,

Уравнение (13.3) показывает, что при максимальном угле отклонения площадь торможения должна быть равна площади ускорения и, следовательно, задача сводиться к тому, чтобы найти положение точки d , удовлетворяющее этому условию (см. рисунок 13.4), что может быть сделано графически.

Максимально возможная площадь торможения равна площадке . Если бы эта площадь оказалась меньше площади ускорения , то система выпала бы из синхронизма. Отношение возможной площади торможения к площади ускорения называется коэффициентом запаса устойчивости .

Когда возможная площадь торможения получается меньше площади ускорения, иногда возможно добиться устойчивой работы, достаточно быстро отключив поврежденную цепь. Мощность, которую можно передать по второй, оставшейся в работе цепи, обычно больше мощности, передаваемой по двум цепям при КЗ. Уравнение мощности при отключении поврежденной цепи имеет следующий вид:

Эта зависимость показана на рисунке 13.5 в виде кривой III . Кривые I и II представляют собой характеристики при нормальном режиме и при КЗ.

Рисунок 13.5

В момент КЗ передаваемая мощность падает, и ротор начинает ускоряться. Пусть в некоторой точке d происходит отключение поврежденной цепи. В момент выключения работа переходит в точку е на кривой III , и отдаваемая генераторами мощность значительно повышается. Благодаря этому максимально возможная площадь торможения получается значительно больше, чем при длительном неотключенном КЗ, и это увеличение тем больше, чем раньше происходит отключение, т.е. чем меньше угол отключения δ отк. Таким образом, быстрая ликвидация аварий может значительно повысить устойчивость системы.

С помощью рисунка 13.5, пользуясь правилом площадей, можно графически найти предельное значение угла δ отк, при котором нужно произвести отключение поврежденной для того, чтобы добиться устойчивой работы. Значение этого угла определяется равенством площади ускорения и максимальной возможной площади торможения.

Однако для практических целей этого недостаточно. Необходимо знать не угол δ отк, а тот промежуток времени, в течение которого ротор успевает достигнуть этого угла, т.е так называемое предельно допустимое время отключения КЗ, которое определяется методом последовательных интервалов.


Реферат

Пояснительная записка содержит 21 страницы, 6 таблиц, 14 рисунков,3 источников литературы, в которой подробно расписана методика расчёта, которая использовалась в данной работе.

Объект исследования: система электропередачи.

Цель работы: получить навыки расчёта электромеханических переходных процессов в системе электропередачи, рассчитать предельное снижение напряжения на шинах асинхронного двигателя, оценить статическую и динамическую устойчивость системы.

  • Введение
  • Исходные данные
  • 1. Рассчитать предел передаваемой мощности генератора Г-1 в систему при нормальном режиме работы
  • 2. Рассчитать аварийный и послеаварийный режимы работы системы
  • 3. Рассчитать предельное снижение напряжения на шинах асинхронного двигателя
  • Заключение

Введение

Устойчивость энергосистемы - это способность ее возвращаться в исходное состояние при малых или значительных возмущениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное положение ее.

Параллельная работа генераторов электрических станций, входящих в энергосистему, отличается от работы генераторов на одной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллельную работу. Кроме того, отклонения от нормального режима работы системы, которые происходят при отключениях, коротких замыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наиболее тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи переменным током. Различают два вида устойчивости: статическую и динамическую.

Статической устойчивостью называют способность системы самостоятельно восстановить исходный режим при малых и медленно происходящих возмущениях, например при постепенном незначительном увеличении или уменьшении нагрузки.

Динамическая устойчивость энергосистемы характеризует способность системы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыканиях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь должен наступить установившийся послеаварийный режим работы.

Именно такие внезапные нарушения в работе СЭС приводят к тяжелым экономическим последствия для населения и промышленных объектов.

Современная энергетика уделяет очень большое внимание борьбе с авариями на линиях, короткими замыканиями, большой вклад делает еще на стадии проектировании СЭС городов и предприятий.

Исходные данные

Схема для расчёта представлена на рисунке 1.

Рисунок 1 - Схема системы электропередачи

Исходные данные для расчёта первой и второй задачи принимаем по таблице в соответствии с номером варианта.

Технические данные трансформаторов:

Тип транс

форматора

Пределы регулиро

ТДЦ-250000/110

ТДЦ-630000/110

Параметры двухцепной воздушной линии электропередачи

Марка провода

Рисунок 2 - Схема системы для расчёта предельного снижения напряжения на шинах асинхронного двигателя

Исходные данные для расчёта третьей задачи принимаем ниже по таблице в соответствии с номером варианта.

Технические данные асинхронного электродвигателя

Номинальные данные

Пусковые характеристики

n 0 , об/мин

ДАЗО 17-39-8/10

Составляем схему замещения системы, которая представлена на рис.1 и рассчитываем индуктивные сопротивления всех элементов:

Рисунок 3 - Схема замещения системы

индуктивное сопротивлении задано,

индуктивное сопротивление трансформаторов:

индуктивное сопротивление ЛЭП:

Все сопротивления схемы замещения приводятся к номинальному напряжению генератора. Сопротивление трансформаторов:

сопротивление ЛЭП:

Определяем суммарное сопротивление системы:

Рассчитываем номинальную реактивную мощность генератора:

Определяем приближённое значение синхронной ЭДС генератора:

Определяем значение коэффициента запаса статической устойчивости:

По данным расчёта строим векторную диаграмму.

Рисунок 4 - Векторная диаграмма

Результаты расчёта заносим в таблицу 3.

Таблица 3

Рисунок 5 - Угловая характеристика мощности

Система является статически устойчивой, так как коэффициент запаса больше 20%. И предел передаваемой мощности генератора в систему достигается при угле д = 90 0 .

Рассчитываем режимы по очереди.

2.1 Расчёт аварийного и послеаварийного режима при однофазном коротком замыкании в точке К-1

2.1.1 Нормальный режим

2.1.2 Аварийный режим

Составляем схему замещения системы при однофазном КЗ

Рисунок 6 - Схема замещения для аварийного режима при однофазном КЗ

Суммарное сопротивление КЗ Х? при однофазном коротком замыкании равно сумме сопротивлению обратной последовательности и сопротивлению нулевой последовательности.

Преобразуем схему замещения системы при однофазном КЗ из соединения "звезда" в соединение "треугольник" со сторонами Х 1 , Х 2, Х 3.

Сопротивление Х 2 и Х 3 могут быть отброшены, т.к. поток мощности отдаваемый генератором в сеть не проходит через эти сопротивления.

Рисунок 7 - Преобразованная схема замещения

Определим суммарное сопротивлении системы:

Где X ? =X 2?+ X 0? - шунт несимметричного КЗ, который включается между началом и концом схемы прямой и обратной последовательности.

Определяем индуктивное сопротивление нулевой последовательности Х 0? :

Определим индуктивное сопротивление обратной последовательности X 2?

Определяем сопротивления шунта КЗ X ? :

X ? =X 2?+ X 0? = 3 +0,097 = 3,097 Ом

Х d?II = 20,2 + 0,1 + 3,5 +0,04 + = 47Ом.

Определяем предел передаваемой мощности генератора в систему:

Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Результаты расчёта заносим в таблицу 4.

Таблица 4

2.1.3 Послеаварийный режим

Составляем схему замещения системы для послеаварийного режима.

Рисунок 8 - Схема замещения для послеаварийного режима при однофазном КЗ

Послеаварийный режим определяется отключением одной цепи ЛЭП, после чего сопротивление изменяется:

Определяем суммарное сопротивлении системы:

Определяем предел передаваемой мощности генератора в систему:

Рассчитываем значение углов:

Т откл = +

Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии ВГБЭ-35 - 110 с временем отключения = 0,07 с. Также должно быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,08 с.

0,07 + 0,08 = 0,15 с,

Находим время отключения КЗ:

Т откл = 0,07 + 0,15 = 0,22 с.

0,29 ? 0,22, что удовлетворяет условию? Т откл

Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Таблица 5

Результаты расчёта заносим в таблицу 5.

Рисунок 9 - График угловых характеристик мощностей и площади ускорения и торможения при однофазном КЗ

2.2 Расчёт аварийного и послеаварийного режима при трёхфазном коротком замыкание в точке К-2

2.2.1 Нормальный режим

Расчёт нормального режима проведён в задаче 1.

2.2.2 Аварийный режим

Составляем схему замещения системы при трёхфазном КЗ

Рисунок 10 - Схема замещения системы при трёхфазном КЗ

При трёхфазном КЗ в точке К-2 взаимное сопротивление схемы становится бесконечно большим, т.к. сопротивление шунта КЗ Х? (3) = 0. При этом характеристика мощности аварийного режима совпадает с осью абсцисс.

2.2.3 Послеаварийный режим

Схема замещения при трехфазном коротком замыкании и и расчет послеаварийного режима аналогичем послеаварийному режиму, приведенному в п.2.1.3

Рассчитываем значение углов:

Находим предельный угол отключения КЗ д откл:

Рассчитываем предельное время отключения КЗ:

Выбираем соответствующие уставки срабатывания устройств РЗА:

Т откл = +

Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии

ВГТ - 110 с временем отключения = 0,055 с. Также должны быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,05 с.

Время действия релейной защиты определяется:

0,005 + 0,05 = 0,055 с,

Находим время отключения КЗ:

Т откл = 0,055 + 0,055 = 0,11 с.

0,17 ? 0,11, что удовлетворяет условию? Т откл

Строим в одной координатной плоскости угловые характеристики мощности в нормальном, аварийном и послеаварийном режимах, на графике указываем значение мощности турбины Р 0 . С учётом рассчитанного значения предельного угла отключения КЗ д откл на графике строим площади ускорения и торможения.

Рисунок 11 - График угловых характеристик мощностей и площади ускорения и торможения при трёхфазном КЗ

Для определения динамической устойчивости системы при однофазном КЗ необходимо рассмотреть площади ускорение F уск и торможения F торм. Условием для динамической устойчивости системы является неравенство: F уск? F торм. Невооруженным глазом видно по графику угловой характеристики, что площадь ускорения на порядок больше площади торможения, значит система не является динамически устойчивой. Следовательно, накопленная кинетическая энергия не успевает превратиться в потенциальную, в результате скорость вращения ротора и угол д будут расти и генератор выпадет из синхронизма. Для определения статической устойчивости системы необходимо найти коэффициент запаса. Вычислив коэффициент запаса, можно сделать вывод, что система является статически устойчивой, так как.

Рассчитываем параметры элементов электропередачи и параметры нагрузки, приведённые к базисному напряжению U б = 6 кВ и базисной мощности:

S б = S АД ном = ,

Сопротивление линии:

Индуктивное сопротивление рассеяния магнитной цепи двигателя:

Определяем активную мощность потребляемая в исходном режиме двигателя:

Находим активное сопротивление ротора двигателя в исходном режиме (упрощенная схема замещения асинхронного двигателя):

0,0392 +0,05 = ,

произведём замену на х и получим:

0,05х 2 - х + 0,0392 = 0;

Д = в 2 - 4ас = 1 2 - 4 0,05 0,0392 = 0,99216;

Выбираем наибольший из корней уравнения и получаем:

Определяем реактивную мощность, потребляемую в исходном режиме двигателем:

Определяем напряжение на шинах системы в исходном режиме:

Определяем напряжение на шинах системы, при котором происходит затормаживание двигателя:

Определяем запас статической устойчивости двигателя по напряжению:

Для построения механической характеристики М = f (S) по уравнению

М = , необходимо произвести следующий расчёт:

Определяем номинальную частоту вращения ротора:

n ном = n 0 (1 - S ном) = 741 (1-0,01) = 734 об/мин.

Находим критическое скольжение:

S кр = S ном (5° +) = 0,01 (2,1 +) = 0,039.

Определяем номинальный и максимальный (критический) моменты двигателя:

М ном = = Н м,

М max = 5° М ном = 2,1 6505,3 = 13661, 4 Н м.

Для построения механической характеристики воспользуемся формулой Клосса:

Задавшись различными значениями скольжения S, найдём соответствующие им значения момента М. Результаты расчёта занесем в таблицу 6.

Таблица 6

По данным таблицы 6 строим график М = f (S):

Рисунок 12 - График механической характеристики асинхронного двигателя

Система является статически устойчивой, так как коэффициент запаса двигателя по напряжению больше 20%

Заключение

После выполнения данной курсовой работы были отработаны и закреплены теоретические знания, приобретенные в течение семестра по расчету различных видов КЗ; проверки системы на статическую и динамическую устойчивать; построения угловых характеристик мощности и механической характеристики асинхронных.

Научился выполнять анализ системы на устойчивость, рассчитывать режимы работы системы до, после, и во время различных видов КЗ.

Можно сделать вывод, что расчет электромеханических переходных процессов занимает одну из значимых позиций по расчету и проектировании различных простых и сложных систем энергоснабжения.

Список используемой литературы

1. Куликов Ю.А. Переходные процессы в электрических системах: Учеб. пособие. - Новосибирск: НГТУ, М.: Мир: ООО "Издательство АСТ", 2008. -

2. Боровиков В.Н. и др. Электроэнергетические системы и сети - Москва: Метроиздат., 2010. - 356 с.

3. Аполлонов А.А. Расчет и проектирование релейной защиты и автоматики - С. - Петербург, 2009г. - 159 с.

Подобные документы

    Расчет и анализ установившихся режимов схемы электроэнергетической системы (ЭЭС). Оценка статической устойчивости ЭЭС. Определение запаса статической устойчивости послеаварийного режима системы. Отключение сетевого элемента при коротком замыкании.

    курсовая работа , добавлен 11.09.2015

    Анализ статической устойчивости электроэнергетической системы по действительному пределу передаваемой мощности с учетом нагрузки и без АРВ на генераторах. Оценка динамической устойчивости электропередачи при двухфазном и трехфазном коротком замыкании.

    курсовая работа , добавлен 13.08.2012

    Анализ особенностей электромеханических переходных процессов и критериев устойчивости электрических систем. Расчет предела передаваемой мощности и сопротивлений всех элементов системы с точным приведением к одной ступени напряжения на шинах нагрузки.

    курсовая работа , добавлен 05.09.2011

    Учет явлений переходных процессов на примере развития электромашиностроения. Определение параметров схемы замещения, расчёт исходного установившегося режима. Расчёт устойчивости узла нагрузки, статической и динамической устойчивости (по правилу площадей).

    курсовая работа , добавлен 28.08.2009

    Определение запаса статической устойчивости по пределу передаваемой мощности при передаче от генератора в систему мощности по заданной схеме электропередачи. Расчет статической и динамической устойчивости. Статическая устойчивость асинхронной нагрузки.

    курсовая работа , добавлен 12.06.2011

    Параметры элементов электропередачи. Схема замещения нормального режима (прямая последовательность). Аварийное отключение при двухфазном коротком замыкании. Преобразованная замещающая схема обратной последовательности. Расчет послеаварийного режима.

    курсовая работа , добавлен 13.12.2012

    Составление эквивалентной электрической схемы. Расчёт аналитического режима электропередачи. Построение угловой характеристики активной мощности электропередачи, оценка запаса устойчивости. Составление параметров регулирования при замыкании системы.

    курсовая работа , добавлен 12.12.2012

    Определение основных параметров электростанций, составление комплексной схемы замещения и расчет ее параметров. Критическое напряжение и запас устойчивости узла нагрузки по напряжению в аварийных режимах энергосистемы с АРВ и без АРВ на шинах генераторов.

    курсовая работа , добавлен 07.08.2011

    Расчет установившихся режимов электрической системы. Определение критического напряжения и запаса устойчивости узла нагрузки по напряжению в аварийных режимах энергосистемы с АРВ и без АРВ на генераторах. Комплексная схема замещения, расчет параметров.

    курсовая работа , добавлен 09.03.2016

    Определение тока холостого хода, сопротивлений статора и ротора асинхронного двигателя. Расчет и построение механических и электромеханических характеристик электропривода, обеспечивающего законы регулирования частоты и напряжения обмотки статора.

Состояние системы в любой момент времени или на некотором интервале времени, называется режимом системы. Режим характеризуется показателями, количественно определяющими условия работы системы. Эти показатели называются параметрами режима . К ним относятся значения мощности, напряжения, частоты, углов сдвига векторов ЭДС, напряжений, токов.

Режим электрической системы может быть установившимся или переходным .

В любых переходных процессах происходят закономерные последовательные изменения параметров режима, вызванные какими-либо причинами. Эти причины называются возмущающими воздействиями . Они создают начальные отклонения параметров режима – возмущения режима .

В нормальных условиях эксплуатации всегда имеют место малые изменения нагрузки. Поэтому строго неизменного режима в системе не существует и, говоря об установившемся режиме, всегда имеют в виду режим малых возмущений.

Малые возмущения не должны вызывать нарушения устойчивости системы, то есть не должны приводить к прогрессивно возрастающему изменению параметров исходного режима системы.

Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.

В определенных условиях установившийся режим может быть неустойчивым. Это происходит при работе системы в предельных режимах (слишком большая или малая передаваемая мощность, снижение напряжения в узлах нагрузки и т.д.). В этих случаях малые возмущения приводят к прогрессивно возрастающему измене­нию параметров режима, которые вначале происходят очень медленно, проявляясь в виде самопроизвольного изменения, называемого иногда сползанием (текучестью) параметров нормального режима системы.

При исследовании статической устойчивости заранее предполагается, что установить абсолютные значения изменений параметров режима при их отклонениях от установившихся значений невозможно. Причина и место их возникновения не фиксированы. Это некие свободные возмущения , имеющие вероятностный характер.

Задача исследования статической устойчивости сводится, следовательно, только к определению характера изменения параметров режима без определения величины возмущений. При этом анализ ограничивается малой областью e, заданной в области установившегося значения параметров.

Статическую устойчивость электрической системы можно оценивать разными способами:

1. С помощью практических критериев, основанных на упрощающих допу­щениях. При этом ответ получается только в форме «да – нет», «уйдет – не уйдет» режим из начального его состояния при малом возмущении системы.

2. С помощью метода малых колебаний, основанного на исследовании уравнений движения. В этом случае физическая природа происходящих явлений выясняется более полно: устанавливается не только устойчивость режима, но и характер движения (апериодическое или колебательное, нарастающее или затухающее).



Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.

Большие возмущения могут возникать и в нормальных режимах: отключении и включении генераторов, линий, пуске мощных двигателей и т.д.

По отношению к большим возмущениям вводится понятие динамической устойчивости.

Динамическая устойчивость – это способность системы восстанавливать исходное состояние после большого возмущения.

Введенные выше понятия “ малых ” и “ больших ” возмущений условны. Малое возмущение в данном случае понимается как возмущение, влияние которого на характер поведения системы проявляется практически независимо от места появления возмущающего воздействия и его величины. В связи с этим в диапазоне режимов, близких к исходному, система рассматривается как линейная.

Большое возмущение – это возмущение, влияние которого на характер поведения системы зависит от времени существования, величины и места появления воз­мущающего воздействия.

В связи с этим при исследовании динамической устойчивости система во всем диапазоне исследования должна рассматриваться как нелинейная.

Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы.

Эти расчеты проводятся на ЭВМ, которые работают по программам, контролирующим точность вычислений путём уменьшения шага интегрирования до тех пор, пока модуль разности между вычисленными значениями функции не окажется меньше некоторого заданного положительного числа e.

В зависимости от цели расчетов на практике часто пользуются упрощенными методами, не претендующими на высокую точность. Эти методы применяются, когда можно ограничиться общей характеристикой процесса. Среди упрощенных методов наибольшее распространение получил метод последовательных интервалов, суть которого заключается в приближенном вычислении интеграла.

Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. При этом методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сра­внении площадей ускорения и торможения, то есть сравнения кинетиче­­ской энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.

Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.

При анализе У. э. с. различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует У. э. с. при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование У. э. с. иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины.



Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.

Результирующая устойчивость характеризует У. э. с. при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.

Статическая У. э. с. может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).

Метод площадей. Рассмотрим в качестве примера переход из нормального в аварийный и послеаварийный режимы простейшей системы, которая содержит генератор, работающий через трансформатор и двухцепную ЛЭП на шины бесконечной мощности (рис. 5.1). Смена состояний рассматриваемой системы представлена на рисунке через угловые характеристики активной мощности. Рабочая точка в нормальном установившемся режиме соответствует координатам (Р 0 , δ 0), отражающим равенство мощности, развиваемой первичным двигателем генератора, и мощности Р=Р m sin δ 0 , передаваемой генератором в сеть со сдвигом на угол δ 0 между эдс Е " и напряжением U. При появлении КЗ происходит сброс передаваемой мощности с Р доав (δ 0) до Р ав (δ 0) (на рисунке рабочий режим переходит из точки а в точку b), вследствие чего появляется избыточная мощность ∆Р ав =Р 0 – Р b , которая вызывает ускорение ротора генератора. Под действием этой избыточной мощности рабочая точка режима перемещается по угловой характеристике Р ав в направлении увеличения угла δ. На рис. 5.1 доаварийная, аварийная и послеаварийная мощности обозначены соответственно Р І ,Р ІІ ,Р ІІІ . . Если отключению повреждённой цепи соответствует угол δ откл, то ротор генератора во время ускорения запасает кинетическую энергию которая соответствует заштрихованной на рис. 5.1 площадке F авсd называемой площадью ускорения . Отключение повреждённого участка цепи электропередачи к возрастанию передаваемой в сеть мощности с Р с до Р е (на угловой характеристике Р Послеав). Так как Р е >Р с, то появляется тормозной момент на роторе генератора, соответствующий мощности ∆Рп. ав (δ)= Р п. ав – Р 0 , где δ >δ откл. Однако угол δ продолжает увеличиваться до тех пор, пока не будет израсходована запасённая во время ускорения кинетическая энергия ротора генератора. Рис. 5. 1. Угловые характеристики мощности для нормального, аварийного и послеаварийного режимов работы системы. Предельное значение энергии для изменения угла δ, равного δ откл – δ кр, определяется выражением Заштрихованная на рисунке площадь F def , называемая площадью торможения, соответствует кинетической и энергии, которая может быть израсходована вращающимся ротором во время торможения. Если рабочая точка режима возвратится в точку а , то говорят, что система динамически устойчива. Это возможно, если энергия ускорения меньше (равна) энергии торможения: А уск <А торм, Вытекающее из сравнения площади F abcd ускорения и площади торможения F def . Предельный угол отключения и предельное время отключения. Математически выражение равенства площадей ускорения и торможения записывается следующим образом: Из равенства (5.1) можно найти предельное по условию сохранения динамической устойчивости значения угла отключения повреждённого участка цепи ЛЭП: Предельное время отключения КЗ t откл.пред. соответствует полученному выше уравнению по предельному углу отключения. Для произвольного момента времени связь этих величин отражается уравнением движения Р т – Р эл =Т j (dω/dt)=T j α, Р т – Р эл =T j (d 2 δ/dt 2), где ω – угловая частота вращения ротора; α – угловое ускорение вращающихся масс. Аналитическое решение его возможно только для частного случая, а именно полного разрыва связи генератора с шинами приёмной системы, когда Р=Р ав (δ)=0, что происходит при трёхфазном КЗ на одной из цепе ЛЭП. При этом уравнение движения упрощается и принимает вид T j (d 2 δ/dt 2)=P 0 . Решение этого уравнения методом последовательного интегрирования при постоянных с 1 =(d δ/ dt) t=0 и с 2 = δ 0 позволяет получить выражение δ=Р 0 /(2Т j t 2)+ δ 0 , (5.3) откуда можно найти значение предельного времени отключения трёхфазного КЗ:

Устойчивость энергосистемы - это способность ее возвращаться в исходное состояние при малых или значительных возму-щениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное поло-жение ее.

Параллельная работа генераторов электрических станций, вхо-дящих в энергосистему, отличается от работы генераторов на од-ной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллель-ную работу. Кроме того, отклонения от нормального режима рабо-ты системы, которые происходят при отключениях, коротких за-мыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наи-более тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи пере-менным током. Различают два вида устойчивости: статическую и динамическую.

Статической устойчивостью называют способность системы са-мостоятельно восстановить исходный режим при малых и медлен-но происходящих возмущениях, например при постепенном незна-чительном увеличении или уменьшении нагрузки.

Динамическая устойчивость энергосистемы характеризует способность систе-мы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыка-ниях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь дол-жен наступить установившийся послеаварийный режим работы.

Способы повышения устойчивости

Основным способом повышения устойчивости является увели-чение предела передаваемой мощвости. Этого можно достичь повышением э.д.с. генераторов, на-пряжения на шинах нагрузки или уменьшением индуктивного со-противления линии. Основными средствами повышения устойчи вости являются следующие:

Применение быстродействующих автоматических регулято-ров напряжения, увеличивающих э. д. с. генераторов при возрастании нагрузки. Для повышения динамической устойчивости при к. з. особенно большое значение имеет форсировка возбуждения, при которой контакты специального реле шунтируют реостаты возбуждения; в результате в обмотку возбудителя подается наи-больший возможный ток («потолочное» возбуждение). В совре-менных генераторах «потолочный» ток возбуждения составляет 1,8-2.0 его номинального значения;

Повышение напряжений действующих линий, например со 110 на 150 или иа 220 кВ;

Уменьшение индуктивного сопротивления линий, достигаемое расщеплением проводов мощных линий на два или три, или при-менением продольной емкостной компенсации с последовательным включением в линию батареи конденсаторов;

Применение быстродействующих выключателей, защит и авто-матического повторного включения линий.