Последовательная и параллельная обработка информации.

02.08.2019

Параллельная обработка данных

Информатика, кибернетика и программирование

Автоматическое обнаружение параллелизма. Степень и уровни параллелизма. Виды параллелизма. Производительность параллельных ВС зависит от многих факторов и в значительной степени от архитектуры и структуры системы рисовать структуру параллельной системы и объяснять: от степени и уровня параллелизма в системе; от организации передачи данных между параллельно работающими процессорами; от системы коммутации; от взаимодействия процессоров и памяти; от соотношения между аппаратной и программной реализацией макрооперации.

Лекция 1

Параллельная обработка данных

План

1. Ярусно-параллельная форма алгоритма.

2. Автоматическое обнаружение параллелизма.

3. Степень и уровни параллелизма.

4. Виды параллелизма.

Параллелизм – это возможность одновременного выполнения нескольких арифметических, логических или служебных операций. Причем операции могут быть как крупноблочные, так и мелкоблочные.

Производительность параллельных ВС зависит от многих факторов и в значительной степени от архитектуры и структуры системы (рисовать структуру параллельной системы и объяснять):

От степени и уровня параллелизма в системе;

От организации передачи данных между параллельно работающими процессорами;

От системы коммутации;

От взаимодействия процессоров и памяти;

От соотношения между аппаратной и программной реализацией макрооперации.

В основу параллельной обработки могут быть положены различные принципы:

Пространственный параллелизм;

Временной параллелизм:

  1. Конвейеризация.
  2. Векторизация.
  3. Матричный.
  4. Систолический.
  5. Организация структуры обработки потока данных.
  6. Организация системы на основе структуры гиперкуб.
  7. Динамическая перестройка структуры ВС.

Описание любого алгоритма является иерархическим, основанным на свойстве вложенности. При программировании выделяют уровни вложенности: задания, задачи, подзадачи (процессы), макрооперации, операции. Вложенность определяет глубину распараллеливания и является одним из важных свойств алгоритмов при анализе моделей параллельных вычислений.

1. Ярусно-параллельная форма алгоритма

Наиболее общей формой представления алгоритмов является информационно-управляющий граф алгоритма, который отражает зависимость по данным между операторами алгоритма и безусловные и условные переходы в программе. Такой граф в неявной форме содержит все виды параллелизма для выбранного метода решения задачи. Более определенной формой представления параллелизма задач является аппарат ярусно-параллельной формы (ЯПФ).

Алгоритм в ярусно-параллельной форме представляется в виде ярусов, причем в нулевой ярус входят операторы (ветви) независящие друг от друга.

На графе можно обозначить переходы , означающие передачу результатов вычисления примитивной операции из одного яруса к операции из следующего яруса. Ярусы делятся по переходам. Могут быть «пустые» переходы и «пустые» примитивные операции . Пустая операция соответствует сохранению результата, полученного на предыдущем ярусе. В последовательной цепочке операций пустая операция может быть размещена в любом ярусе.

При построении ЯПФ опираются на базовый набор примитивных операций (БНО). Ярусно-параллельная форма характеризуется следующими параметрами :

1. Длина графа (количество ярусов) – L .

2. Ширина i -го яруса - b i .

3. Ширина графа ярусно-параллельной формы – B = max (b i ).

4. Средняя ширина графа ЯПФ – В ср – .

5. Коэффициент заполнения i -го яруса – k i – .

6. Коэффициент разброса операций в графе - Q j i – , j БНО , где - количество j -го типа операций в i -м ярусе.

7. Минимальное необходимое количество вычислителей (из БНО) для реализации алгоритма, представленного данным графом в ЯПФ.

8. Минимальное время решения алгоритма (сумма времен срабатывания вычислителей с максимальным объемом вычислений по каждому ярусу) – Т min .

9. Связность алгоритма (количество промежуточных результатов, которое необходимо хранить в процессе реализации алгоритма) – С .

2. Автоматическое обнаружение параллелизма

Возможны два пути построения параллельного алгоритма: непосредственно из постановки задачи или путем преобразования последовательного алгоритма.

Методы построения параллельного алгоритма из последовательного основаны на выделении в последовательном алгоритме типовых часто встречающихся конструкций, которые по определенным правилам заменяются параллельными. (Что позволяет в определенной мере поднять степень параллелизма, утраченную алгоритмом при программировании на последовательном языке. )

Характер изменения степени параллелизма при подготовке машинной программы показан на рис. 2.2.

потенциальный параллелизм

Метод

решения

Исходный текст

Машинная программа

Рис. 2.2. Изменение потенциального параллелизма при разработке программы:

1 – система параллельного программирования;

2 – последовательное программирование и

векторизующий компилятор

Несмотря на меньший уровень параллелизма, достигаемый при построении параллельного алгоритма путем преобразования из последовательного, такой метод находит широкое применение, так как обеспечивает возможность использовать дорогостоящие прикладные программы, разработанные и отлаженные для последовательных СОД.

В последовательной программе различают явную и скрытую параллельную обработку.

При анализе программы строится граф потока данных. Чтобы обнаружить явную параллельность процессов, анализируются множества входных (считываемых) переменных R и выходных (записываемых) переменных W каждого процесса.

Явная параллельная обработка может быть обнаружена среди процессов i и j (i ≠ j ), удовлетворяющих следующим условиям:

входные данные одного процесса не должны модифицироваться (записываться) другим процессом

никакие два процесса не должны модифицировать общие переменные

а) R i W j =;

б) W i R j =;

в) W i W j =;

Скрытая параллельная обработка требует некоторой процедуры преобразования последовательной программы, чтобы сделать возможным ее параллельное выполнение. Преобразование может быть следующим:

а) уменьшение высоты деревьев арифметических выражений (рис.2.3). Для арифметических выражений с n переменными или константами уменьшение высоты дерева позволяет достигнуть ускорения обработки порядка O (n / log 2 n ) при использовании O (n ) процессоров;

б) преобразование линейных рекуррентных соотношений;

((a + b) + c) + d

(a + b)+ (c + d )

Рис. 2.3. Уменьшение высоты дерева

в) замена операторов;

г) преобразование блоков условных переходов и циклов к каноническому виду;

д) распределение циклов.

Параллельные архитектуры достигают высокой производительности, если преобразование параллелизма учитывает особенности архитектуры ВС, на которой предполагается выполнение алгоритма.

При преобразовании параллелизма программы учитывают: 1) схему размещения данных в памяти; 2) адресацию памяти (индексирование); 3) выбор маршрута данных (способ соединения процессоров и ЗУ).

Рис.2.4. Хранение

матрицы со сдвигом

В качестве примера учета схемы размещения в памяти возьмем память с диагональной адресацией. Для обеспечения параллельной обработки матриц элементы их строк и столбцов должны быть распределены между запоминающими устройствами процессоров таким образом, чтобы можно было их одновременно считывать и обрабатывать. При этом матрица храниться со сдвигом (рис.2.4).

Любой алгоритм содержит последовательные (скалярные) участки. Доказано, что длина этих скалярных участков является определяющим фактором при реализации алгоритма на параллельной ВС.

3. Степень и уровни параллелизма

Степень параллелизма (D ) – это порядок числа параллельно работающих устройств в системе при реализации алгоритма задач, при условии, что количество процессоров (обрабатывающих устройств) не ограничено. (Есть иное определение степени параллелизма – это число процессоров многопроцессорной системы, параллельно участвующих в выполнении программы в каждый момент времени t.)

1) Низкая степень: от 2 до 10 процессоров.

2) Средняя степень: от 10 до 100 процессоров.

3) Высокая степень: от 100 до 10 4 процессоров.

4) Сверхвысокая степень: от 10 4 до 10 6 процессоров.

Рис. 2.5. Профиль параллелизма

Графическое представление параметра D (t ) как функции времени называют профилем параллелизма программы . Изменения в уровне загрузки процессоров за время наблюдения зависят от многих факторов (алгоритма, доступных ресурсов, степени оптимизации, обеспечиваемой компилятором и т.д.). На рис. 2.5 показан типичный профиль параллелизма.

В прикладных программах имеется широкий диапазон потенциального параллелизма. В вычислительно интенсивных программах в каждом цикле параллельно могут выполнятся от 500 до 3500 арифметических операций, если для этого имеется существующая вычислительная среда. Однако даже правильно спроектированный суперскалярный процессор способен поддерживать от 2 до 5,8 команды за цикл. Такое падение связано в первую очередь с коммуникационными и системными издержками.

От степени параллелизма существенно зависят: архитектура ВС, особенно система коммутации, организация взаимодействия параллельно работающих процессоров и методы обмена данных между процессорами и памятью. Более сильное влияние на производительность вычислительных средств, чем степень параллелизма, оказывает уровень параллелизма.

Рассматривают алгоритмический и схемный уровни параллелизма.

Выделяют следующие алгоритмические уровни параллелизма :

1. Уровень заданий:

а) между заданиями;

б) между фазами заданий.

2. Программный уровень:

а) между частями программы (части одной задачи выполняются на множестве вычислителей);

б) в пределах циклов.

(Если отдельные итерации в цикле на зависят друг от друга. Например: For I:=1 to N do A(I):=B(I) + C(I))

3. Командный уровень:

а) между фазами выполнения команд.

4. Арифметический и разрядный уровень:

а) между элементами векторной операции;

б) внутри логических схем АЛУ.

Каждый из уровней характеризуется определенными свойствами, исходя из которых, разработаны специальные структуры вычислительных средств. Командный уровень реализуется в любых современных ЭВМ, включая и персональные ЭВМ.

Схемный уровень параллелизма – это аппаратный уровень, на котором осуществляется распараллеливание обработки данных или организация параллельных вычислений.

Параллельная обработка может быть реализована на следующих схемных уровнях:

1. На уровне логических вентилей и элементов памяти. Это низший уровень – уровень транзисторов. Здесь из логических вентилей строят параллельные логические схемы (ЛС ) (например: параллельный сумматор).

2. Уровень логических схем и простых автоматов с памятью. Из логических схем строят параллельный элементарный автомат (ЭА ).

3. Уровень регистров и интегральных схем памяти. На элементарных автоматах получают параллельные схемы микропроцессоров (МП ).

4. Уровень элементарных микропроцессоров. Из микропроцессоров строят параллельные макропроцессоры для выполнения среднеблочных операций (МАП ).

5 . Уровень макропроцессоров, реализующих крупные операции. Здесь реализуется параллелизм макроопераций. На макропроцессорах строят параллельные многопроцессорные системы (МПС ).

6. Уровень вычислительных машин, процессоров и программ. Высший уровень параллелизма – из многопроцессорных систем получают параллельные вычислительные системы (ВС ).

4. Виды параллелизма

4.1. Естественный параллелизм и

параллелизм множества объектов

В информационном графе могут быть выделены «вертикальные» независимые подграфы, которые не используют взаимно каких-либо промежуточных результатов, полученных при реализации примитивных операций другого подграфа. Такой вид параллелизма получил название естественного параллелизма независимых задач.

Задача обладает естественным параллелизмом , если в её исходной постановке она сводится к операции над многомерными векторами, многомерными матрицами или над решётчатыми функциями (рис.2.6). Здесь не используются промежуточные результаты задач. Каждая задача программируется независимо от других. Этот вид параллелизма не требует объединения ЭВМ в комплексы. Однако увеличение числа независимых задач в СОД повышает пропускную способность системы. Например: обработка транзакций к БД на многопроцессорных серверах.

1 задача

2 задача

Рис. 2.6. Информационный граф задания, характеризующегося естественным параллелизмом

Орi

Орi

Орi

Орi

Орi+1

Орi+1

Орi+1

Орi+1

у 1

у 2

у 3

у 4

Рис. 2.7. Информационный граф

задачи, характеризующейся

параллелизмом множества объектов

Параллелизм множества объектов представляет собой частный случай естественного параллелизма. Его смысл в том, что задача состоит в обработке информации о различных, но однотипных объектах, обрабатываемых по одной и той же или почти по одной и той же программе (рис.2.7).

Здесь сравнительно малый вес занимают так называемые интегральные операции . Исходными операндами интегральных операций являются векторы или функции, или множества объектов, а результатом число. Например, вычисление скалярного произведения для n-мерных векторов

включает два типа операций: попарное произведение компонент векторов и затем "интегральную операцию" (операция над n-мерным вектором) суммирование между собой всех компонент этого вектора.

При параллелизме множества объектов чаще, чем в общем случае, встречаются ситуации, когда отдельные участки вычислений должны выполняться различно для разных объектов.

Например, при нахождении значений некоторых функций, ограниченных определенной областью. Значения внутри области для всех точек вычисляются по одной формуле, а на граничных точках – по другой.

Параллелизм множества объектов характеризуется следующими параметрами :

1. Суммарная длина программы L – суммируются длины всех операторов по всем ветвям.

2. Средняя длина программы L ср – вычисляется исходя из ранга задачи.

Основной количественной характеристикой распараллеливаемой задачи является ранг задачи r (®) это количество параметров, по которым должна вестись параллельная обработка (например, количество компонент вектора, количество точек, в которых задана функция).

3. Величина расхождения задачи D

Если программа обработки информации по всем r объектам в точности одинакова, то D =1 и чем сильнее между собой отличаются программы разных объектов, тем больше D .

4.2. Параллелизм независимых ветвей

Суть параллелизма независимых ветвей состоит в том, что в программе решения задачи могут быть выделены независимые части, называемые ветвями. При наличии в ВС соответствующих аппаратных средств ветви могут выполняться параллельно (рис.2.8).

Ветвь программы Y не зависит от ветви X , если:

Рис. 2.8. Информационный граф задачи, характеризующейся

параллелизмом независимых ветвей

между ними нет функциональных связей , т.е. ни одна из входных переменных ветви Y не является выходной переменной ветви X либо какой-нибудь ветви, зависящей от X;

  1. между ними нет связи по рабочим полям памяти ;
  2. они должны выполняться по разным программам ;
  3. независимы по управлению , т.е. условие выполнения ветви Y не должно зависеть от признаков, вырабатываемых при выполнении ветви X или ветви, от нее зависящей.

4.3. Параллелизм смежных операций или

локальный параллелизм

Параллелизм смежных операций имеет место тогда, когда входные данные для текущих операций получены на более ранних этапах вычисления и построение вычислительных средств позволяет совместить выполнение нескольких операций, не связанных между собой выходными данными и результатами.

Локальный параллелизм характеризуется следующими параметрами :

1. Показатель связности смежных операций – это вероятность того, что результат некоторой операции будет использован в следующей за ней операции. Чем меньше связность операции, тем больше для нее глубина параллелизма смежных операций. Обычно величина имеет значения 0,10,5.

2. Вероятность того, что, начиная от данной операции, имеется цепочка длиной не менее l l

3. Вероятность того, что, начиная от любой операции в программе, имеется цепочка из ровно l операций, которые можно выполнить одновременно l

4. Глубина параллелизма смежных операций L ПСО – это математическое ожидание длины цепочки операций, которые можно выполнять одновременно

Локальная оптимизация программ состоит в том, что просматриваются несколько команд, которые должны выполняться подряд, и изменяется порядок следования некоторых из них, возможно, изменяются номера регистров и ячеек памяти, чтобы обеспечить максимально возможный параллелизм смежных операций.

В большинстве случаев показатель связности смежных операций зависит не столько от задачи, сколько от качества выполнения локальной оптимизации.

________________________________________________________________________________________________

Курс «Организация ЭВМ»

10 -

(курсовой проект)

Министерство образования и науки Российской Федерации

ФГБОУ ВПО «Брянская государственная инженерно-технологическая

академия»

Кафедра информационных технологий

Последовательная и параллельная обработка информации

Расчётно-графическая работа № 1

по дисциплине

«Технологии обработки информации»

Вариант № 16

РГР-02068025.230400.084

Брянск 2015

Введение 3

Параллельная обработка информации 4

Системы с разделением памяти 6

Параллельная SQL-обработка 7

Последовательная обработка информации 9

Простые пакетные системы 10

Список литературы 13

Введение

В данной расчетно-графической рассматривается последовательная и параллельная обработка информации. Приведены примеры для каждой из них.

Последовательная обработка информации – это поочередное прохождение информации от входа до выхода через ряд преобразований (этапов), так что в каждый отрезок времени (специфический для данного блока) преобразование осуществляется лишь в одном функциональном блоке, а информация к нему поступает только от предыдущего блока.

Параллельная обработка информации – модель обработки информации, согласно которой информация проходит ряд преобразований в определенных функциональных блоках – так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких блоках.

Параллельная обработка информации

Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и параллельность.

Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! Так, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и сделать это за то же время, что машина прежде находилась на конвейере.

Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки. В ядре Pentium 4 на разных стадиях выполнения может одновременно находиться до 126 микроопераций. Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.

Функционирование многих приложений, работающих в однопроцессорных компьютерных системах, может заметно улучшиться при использовании средств параллельной обработки информации. Далее представлены основные концепции параллельной обработки и архитектуры многопроцессорных компьютеров.

Когда несколько приложений запрашивают обработку своих заданий на однопроцессорном компьютере, весь объем работы приходится выполнять его единственному процессору. Целью параллельной обработки обычно является повышение производительности приложений. Когда приложение выдает запрос на выполнение задания для многопроцессорного компьютера, компьютер разбивает это задание на логические подзадачи, а затем обрабатывает их с помощью нескольких процессоров параллельно, что уменьшает время выполнения задания. Число подзадач, получаемых в результате разбиения одного большого задания, называется степенью параллельности. Уменьшение времени обработки информации, необходимого для выполнения задачи, прямо пропорционально степени параллельности. Быстродействие систем с параллельной обработкой стараются повышать так, чтобы обеспечить максимальную производительность каждого процессора системы.

1.2 Параллельная обработка данных

1.2.1 Принципиальная возможность параллельной обработки

Практически все разработанные к настоящему времени алгоритмы являются последовательными. Например, при вычислении выражения a + b × c , сначала необходимо выполнить умножение и только потом выполнить сложение. Если в электронно-вычислительных машин присутствуют узлы сложения и умножения, которые могут работать одновременно, то в данном случае узел сложения будет простаивать в ожидании завершения работы узла умножения. Можно доказать утверждение, состоящее в том, что возможно построить машину, которая заданный алгоритм будет обрабатывать параллельно.

Можно построить m процессоров, которые при одновременной работе выдают нужный результат за один-единственный такт работы вычислителя.

Такие "многопроцессорные" машины теоретически можно построить для каждого конкретного алгоритма и, казалось бы, "обойти" последовательный характер алгоритмов. Однако не все так просто – конкретных алгоритмов бесконечно много, поэтому развитые выше абстрактные рассуждения имеют не столь прямое отношение к практической значимости. Их развитие убедило в самой возможности распараллеливания, явилось основой концепции неограниченного параллелизма, дало возможность рассматривать с общих позиций реализацию так называемых вычислительных сред – многопроцессорных систем, динамически настраиваемых под конкретный алгоритм.

1.2.2 Абстрактные модели параллельных вычислений

Модель параллельных вычислений обеспечивает высокоуровневый подход к определению характеристик и сравнению времени выполнения различных программ, при этом абстрагируются от аппаратного обеспечения и деталей выполнения. Первой важной моделью параллельных вычислений явилась машина с параллельным случайным доступом (PRAM – Parallel Random Access Machine), которая обеспечивает абстракцию машины с разделяемой памятью (PRAM является расширением модели последовательной машины с произвольным доступом RAM – Random Access Machine). Модель BSP (Bulk Synchronous Parallel, массовая синхронная параллельная) объединяет абстракции как разделенной, так и распределенной памяти. Считается, что все процессоры выполняют команды синхронно; в случае выполнения одной и той же команды PRAM является абстрактной SIMD-машиной, (SIMD – Single Instruction stream/Multiple Data stream – одиночный поток команд наряду со множественным потоком данных), однако процессоры могут выполнять и различные команды. Основными командами являются считывание из памяти, запись в память и обычные логические и арифметические операции.

Модель PRAM идеализирована в том смысле, что каждый процессор в любой момент времени может иметь доступ к любой ячейке памяти (Операции записи, выполняемые одним процессором, видны всем остальным процессорам в том порядке, в каком они выполнялись, но операции записи, выполняемые разными процессорами, могут быть видны в произвольном порядке). Например, каждый процессор в PRAM может считывать данные из ячейки памяти или записывать данные в эту же ячейку. На реальных параллельных машинах такого, конечно, не бывает, поскольку модули памяти на физическом уровне упорядочивают доступ к одной и той же ячейке памяти. Более того, время доступа к памяти на реальных машинах неодинаково из-за наличия кэшей и возможной иерархической организации модулей памяти.

Базовая модель PRAM поддерживает конкурентные (в данном контексте параллельные) считывание и запись. Известны подмодели PRAM, учитывающие правила, позволяющие избежать конфликтных ситуаций при одновременном обращении нескольких процессоров к общей памяти.

Моделировать схемы из функциональных элементов с помощью параллельных машин с произвольным доступом (PRAM) позволяет теорема Брента. В качестве функциональных элементов могут выступать как 4 основных (осуществляющих логические операции NOT, AND, OR, XOR – отрицание, логическое И, логическое ИЛИ и исключающее ИЛИ соответственно), более сложные NAND и NOR (И-НЕ и ИЛИ-НЕ), так и любой сложности.

В дальнейшем предполагается, что задержка (т.е. время срабатывания – время, через которое предусмотренные значения сигналов появляются на выходе элемента после установления значений на входах) одинакова для всех функциональных элементов.

Рассматривается схема из функциональных элементов, соединенных без образования циклов (предполагаем, что функциональные элементы имеют любое количество входов, но ровно один выход – элемент с несколькими выходами можно заменить несколькими элементами с единственным выходом). Число входов определяет входную степень элемента, а число входов, к которым подключен выход элемента – его выходной степенью. Обычно предполагается, что входные степени всех используемых элементов ограничены сверху, выходные же степени могут быть любыми. Под размером схемы понимается количество элементов в ней, наибольшее число элементов на путях от входов схемы к выходу элемента называется глубиной этого элемента (глубина схемы равна наибольшей из глубин составляющих ее элементов).

Рисунок 1. Моделирование схемы размера 15, глубины 5 с двумя процессорами с помощью параллельной машины с произвольным доступом (PRAM – машина)

На рисунке 1 приведен результат моделирования схемы размером (общее количество процессоров) n=15 при глубине схемы (максимальное число элементов на каждом из уровней глубины) d=5 с числом процессоров p=2 (одновременно моделируемые элементы объединены в группы прямоугольными областями, причем для каждой группы указан шаг, на котором моделируются ее элементы; моделирование происходит последовательно сверху вниз в порядке возрастания глубины, на каждой глубине по р штук за раз). Согласно теоремы Брента моделирование такой схемы займет не более ceil(15/2+1)=9 шагов.

На протяжении всей истории развития вычислительной техники делались попытки найти какую-то общую классификацию, под которую подпадали бы все возможные направления развития компьютерных архитектур. Ни одна из таких классификаций не могла охватить все разнообразие разрабатываемых архитектурных решений и не выдерживала испытания временем. Тем не менее в научный оборот попали и широко используются ряд терминов, которые полезно знать не только разработчикам, но и пользователям компьютеров.

Любая вычислительная система (будь то супер-ЭВМ или персональный компьютер) достигает своей наивысшей производительности благодаря использованию высокоскоростных элементов и параллельному выполнению большого числа операций. Именно возможность параллельной работы различных устройств системы (работы с перекрытием) является основой ускорения основных операций.

Параллельные ЭВМ часто подразделяются по классификации Флинна на машины типа SIMD (Single Instruction Multiple Data - с одним потоком команд при множественном потоке данных) и MIMD (Multiple Instruction Multiple Data - с множественным потоком команд при множественном потоке данных). Как и любая другая, приведенная выше классификация несовершенна: существуют машины прямо в нее не попадающие, имеются также важные признаки, которые в этой классификации не учтены. В частности, к машинам типа SIMD часто относят векторные процессоры, хотя их высокая производительность зависит от другой формы параллелизма - конвейерной организации машины. Многопроцессорные векторные системы, типа Cray Y-MP, состоят из нескольких векторных процессоров и поэтому могут быть названы MSIMD (Multiple SIMD).

Классификация Флинна не делает различия по другим важным для вычислительных моделей характеристикам, например, по уровню "зернистости" параллельных вычислений и методам синхронизации.

Можно выделить четыре основных типа архитектуры систем параллельной обработки:

1) Конвейерная и векторная обработка.

Основу конвейерной обработки составляет раздельное выполнение некоторой операции в несколько этапов (за несколько ступеней) с передачей данных одного этапа следующему. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько операций. Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых операндов соответствует максимальной производительности конвейера. Если происходит задержка, то параллельно будет выполняться меньше операций и суммарная производительность снизится. Векторные операции обеспечивают идеальную возможность полной загрузки вычислительного конвейера.



При выполнении векторной команды одна и та же операция применяется ко всем элементам вектора (или чаще всего к соответствующим элементам пары векторов). Для настройки конвейера на выполнение конкретной операции может потребоваться некоторое установочное время, однако затем операнды могут поступать в конвейер с максимальной скоростью, допускаемой возможностями памяти. При этом не возникает пауз ни в связи с выборкой новой команды, ни в связи с определением ветви вычислений при условном переходе. Таким образом, главный принцип вычислений на векторной машине состоит в выполнении некоторой элементарной операции или комбинации из нескольких элементарных операций, которые должны повторно применяться к некоторому блоку данных. Таким операциям в исходной программе соответствуют небольшие компактные циклы.

2) Машины типа SIMD. Машины типа SIMD состоят из большого числа идентичных процессорных элементов, имеющих собственную память. Все процессорные элементы в такой машине выполняют одну и ту же программу. Очевидно, что такая машина, составленная из большого числа процессоров, может обеспечить очень высокую производительность только на тех задачах, при решении которых все процессоры могут делать одну и ту же работу. Модель вычислений для машины SIMD очень похожа на модель вычислений для векторного процессора: одиночная операция выполняется над большим блоком данных.

В отличие от ограниченного конвейерного функционирования векторного процессора, матричный процессор (синоним для большинства SIMD-машин) может быть значительно более гибким. Обрабатывающие элементы таких процессоров - это универсальные программируемые ЭВМ, так что задача, решаемая параллельно, может быть достаточно сложной и содержать ветвления. Обычное проявление этой вычислительной модели в исходной программе примерно такое же, как и в случае векторных операций: циклы на элементах массива, в которых значения, вырабатываемые на одной итерации цикла, не используются на другой итерации цикла.

Модели вычислений на векторных и матричных ЭВМ настолько схожи, что эти ЭВМ часто обсуждаются как эквивалентные.

3) Машины типа MIMD. Термин "мультипроцессор" покрывает большинство машин типа MIMD и (подобно тому, как термин "матричный процессор" применяется к машинам типа SIMD) часто используется в качестве синонима для машин типа MIMD. В мультипроцессорной системе каждый процессорный элемент (ПЭ) выполняет свою программу достаточно независимо от других процессорных элементов. Процессорные элементы, конечно, должны как-то связываться друг с другом, что делает необходимым более подробную классификацию машин типа MIMD. В мультипроцессорах с общей памятью (сильносвязанных мультипроцессорах) имеется память данных и команд, доступная всем ПЭ. С общей памятью ПЭ связываются с помощью общей шины или сети обмена. В противоположность этому варианту в слабосвязанных многопроцессорных системах (машинах с локальной памятью) вся память делится между процессорными элементами и каждый блок памяти доступен только связанному с ним процессору. Сеть обмена связывает процессорные элементы друг с другом.

Базовой моделью вычислений на MIMD-мультипроцессоре является совокупность независимых процессов, эпизодически обращающихся к разделяемым данным. Существует большое количество вариантов этой модели. На одном конце спектра - модель распределенных вычислений, в которой программа делится на довольно большое число параллельных задач, состоящих из множества подпрограмм. На другом конце спектра - модель потоковых вычислений, в которых каждая операция в программе может рассматриваться как отдельный процесс. Такая операция ждет своих входных данных (операндов), которые должны быть переданы ей другими процессами. По их получении операция выполняется, и полученное значение передается тем процессам, которые в нем нуждаются. В потоковых моделях вычислений с большим и средним уровнем гранулярности, процессы содержат большое число операций и выполняются в потоковой манере.

4) Многопроцессорные машины с SIMD-процессорами.

Многие современные супер-ЭВМ представляют собой многопроцессорные системы, в которых в качестве процессоров используются векторные процессоры или процессоры типа SIMD. Такие машины относятся к машинам класса MSIMD.

Языки программирования и соответствующие компиляторы для машин типа MSIMD обычно обеспечивают языковые конструкции, которые позволяют программисту описывать "крупнозернистый" параллелизм. В пределах каждой задачи компилятор автоматически векторизует подходящие циклы. Машины типа MSIMD, как можно себе представить, дают возможность использовать лучший из этих двух принципов декомпозиции: векторные операции ("мелкозернистый" параллелизм) для тех частей программы, которые подходят для этого, и гибкие возможности MIMD-архитектуры для других частей программы.

Многопроцессорные системы за годы развития вычислительной техники претерпели ряд этапов своего развития. Исторически первой стала осваиваться технология SIMD. Однако в настоящее время наметился устойчивый интерес к архитектурам MIMD. Этот интерес главным образом определяется двумя факторами:

  1. Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей.
  2. Архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах.

Одной из отличительных особенностей многопроцессорной вычислительной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью. Модель обмена настолько важна для многопроцессорной системы, что многие характеристики производительности и другие оценки выражаются отношением времени обработки к времени обмена, соответствующим решаемым задачам. Существуют две основные модели межпроцессорного обмена: одна основана на передаче сообщений, другая - на использовании общей памяти. В многопроцессорной системе с общей памятью один процессор осуществляет запись в конкретную ячейку, а другой процессор производит считывание из этой ячейки памяти. Чтобы обеспечить согласованность данных и синхронизацию процессов, обмен часто реализуется по принципу взаимно исключающего доступа к общей памяти методом "почтового ящика".

В архитектурах с локальной памятью непосредственное разделение памяти невозможно. Вместо этого процессоры получают доступ к совместно используемым данным посредством передачи сообщений по сети обмена. Эффективность схемы коммуникаций зависит от протоколов обмена, основных сетей обмена и пропускной способности памяти и каналов обмена.

Часто, и притом необосновано, в машинах с общей памятью и векторных машинах затраты на обмен не учитываются, так как проблемы обмена в значительной степени скрыты от программиста. Однако накладные расходы на обмен в этих машинах имеются и определяются конфликтами шин, памяти и процессоров. Чем больше процессоров добавляется в систему, тем больше процессов соперничают при использовании одних и тех же данных и шины, что приводит к состоянию насыщения. Модель системы с общей памятью очень удобна для программирования и иногда рассматривается как высокоуровневое средство оценки влияния обмена на работу системы, даже если основная система в действительности реализована с применением локальной памяти и принципа передачи сообщений.

В сетях с коммутацией каналов и в сетях с коммутацией пакетов по мере возрастания требований к обмену следует учитывать возможность перегрузки сети. Здесь межпроцессорный обмен связывает сетевые ресурсы: каналы, процессоры, буферы сообщений. Объем передаваемой информации может быть сокращен за счет тщательной функциональной декомпозиции задачи и тщательного диспетчирования выполняемых функций.

Таким образом, существующие MIMD-машины распадаются на два основных класса в зависимости от количества объединяемых процессоров, которое определяет и способ организации памяти и методику их межсоединений.

К первой группе относятся машины с общей (разделяемой) основной памятью, объединяющие до нескольких десятков (обычно менее 32) процессоров. Сравнительно небольшое количество процессоров в таких машинах позволяет иметь одну централизованную общую память и объединить процессоры и память с помощью одной шины. При наличии у процессоров кэш-памяти достаточного объема высокопроизводительная шина и общая память могут удовлетворить обращения к памяти, поступающие от нескольких процессоров. Поскольку имеется единственная память с одним и тем же временем доступа, эти машины иногда называются UMA (Uniform Memory Access). Такой способ организации со сравнительно небольшой разделяемой памятью в настоящее время является наиболее популярным. Структура подобной системы представлена на рис. 10.1.

Рис. 10.1. Типовая архитектура мультипроцессорной системы с общей памятью.

Вторую группу машин составляют крупномасштабные системы с распределенной памятью. Для того чтобы поддерживать большое количество процессоров приходится распределять основную память между ними, в противном случае полосы пропускания памяти просто может не хватить для удовлетворения запросов, поступающих от очень большого числа процессоров. Естественно при таком подходе также требуется реализовать связь процессоров между собой. На рис. 10.2 показана структура такой системы.

С ростом числа процессоров просто невозможно обойти необходимость реализации модели распределенной памяти с высокоскоростной сетью для связи процессоров. С быстрым ростом производительности процессоров и связанным с этим ужесточением требования увеличения полосы пропускания памяти, масштаб систем (т.е. число процессоров в системе), для которых требуется организация распределенной памяти, уменьшается, также как и уменьшается число процессоров, которые удается поддерживать на одной разделяемой шине и общей памяти.

Распределение памяти между отдельными узлами системы имеет два главных преимущества. Во-первых, это эффективный с точки зрения стоимости способ увеличения полосы пропускания памяти, поскольку большинство обращений могут выполняться параллельно к локальной памяти в каждом узле. Во-вторых, это уменьшает задержку обращения (время доступа) к локальной памяти. Эти два преимущества еще больше сокращают количество процессоров, для которых архитектура с распределенной памятью имеет смысл.

Обычно устройства ввода/вывода, также как и память, распределяются по узлам и в действительности узлы могут состоять из небольшого числа (2-8) процессоров, соединенных между собой другим способом. Хотя такая кластеризация нескольких процессоров с памятью и сетевой интерфейс могут быть достаточно полезными с точки зрения эффективности в стоимостном выражении, это не очень существенно для понимания того, как такая машина работает, поэтому мы пока остановимся на системах с одним процессором на узел. Основная разница в архитектуре, которую следует выделить в машинах с распределенной памятью заключается в том, как осуществляется связь и какова логическая модель памяти.

Рис. 10.2. Типовая архитектура машины с распределенной памятью.

суперкомпьютер - это очень мощная ЭВМ с производительностью свыше 10 MFLOPS . Сегодня этот результат перекрывают уже не только рабочие станции, но, по пиковой производительности , и ПК. В начале 1990-х годов границу проводили уже около отметки в 300 MFLOPS . В 2001 году специалисты двух ведущих "суперкомпьютерных" стран, США и Японии, договорились о подъеме планки до 5 GFLOPS .

Таким образом, основные признаки, характеризующие супер-ЭВМ , следующие:

  • самая высокая производительность;
  • самый современный технологический уровень (например, GaAs -технология);
  • специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами);
  • цена, обычно свыше 1-2 млн. долларов.

Какой из факторов является решающим в достижении современных фантастических показателей производительности? Обратимся к историческим фактам. На одном из самых первых компьютеров EDSAC (1949 г.), имевшем время такта 2 мкс, можно было выполнить в среднем 100 арифметических операций в секунду. А пиковая производительность суперкомпьютера CRAY C90 с временем такта порядка 4 нс - около 1 миллиарда арифметических операций в секунду. Таким образом, производительность компьютеров за этот период возросла примерно в 10 миллионов раз, а время такта уменьшилось лишь в 500 раз. Следовательно, увеличение производительности происходило и за счет других факторов, важнейшим среди которых является использование новых архитектурных решений, в частности - принципа параллельной обработки данных .

Имеет две разновидности: конвейерность и параллельность.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции , причем так, чтобы каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Выигрыш в скорости обработки данных получается за счет совмещения прежде разнесенных во времени операций.

Параллельная обработка данных предполагает наличие нескольких функционально независимых устройств.

Закон Амдала

Закон Амдала

S<= 1/

где S - ускорение, f - доля операций, которые нужно выполнить последовательно, p - число процессоров.

Следствие из закона Амдала : для того чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее чем в q раз и не менее чем (1-1/q) -ую часть программы. Следовательно, если нужно ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение на не менее чем 99,99 % кода!

История появления параллелизма в архитектуре ЭВМ

Все современные процессоры используют тот или иной вид

  • 1974 г. - ALLIAC: матричные процессоры (УУ + матрица из 64 процессоров).
  • 1976 г. - CRAY1: векторно-конвейерные процессоры. Введение векторных команд, работающих с целыми массивами независимых данных.