Принцип работы и назначение диодов. Диоды и их разновидности

30.07.2019

Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.

Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.

Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.

Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.

Особенности функционирования

Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.

Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.

На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.

Способы определения полярности

Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:

  • Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
  • Проверка посредством мультиметра, включённого в режим прозвонки;
  • Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.

Рассмотрим каждый из перечисленных подходов отдельно.

Визуальный осмотр

Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.

Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.

По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.

Применение измерительного прибора

Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.

После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.

В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.

Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.

Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.

Включение в схему

В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону - основное свойство диода.

Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы - пассивными).

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.

Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора - как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.

Работа диода

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный - с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, - прямым током I пр , а поданное на него напряжение, из-за которого диод оказался в открытым, - прямым напряжением U пр .

Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током I обр , а напряжение, создающее его,- обратным напряжением U обр .

В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.

Инструкция

Катод диода является отрицательным электродом, а анод - положительным. Когда напряжение приложено к диоду именно в этой полярности, его сопротивление становится очень малым, и может протекать значительный ток; а когда в обратной полярности, сопротивление становится очень большим, а ток - столь малым, что им можно пренебречь. Но учтите, что полярность напряжения на выходе выпрямителя определяется тем, какой электрод подключен к источнику напряжения. К нагрузке же присоединяется противоположный вывод.

Например, если на выходе однополупериодного выпрямителя нужно получить напряжение, являющееся положительным относительно общего провода, присоедините анод диода к вторичной обмотке трансформатора, а катод - к нагрузке. Оставшиеся неподключенными выводы, как обмотки, так и нагрузки, должны быть подключены к общему проводу.

Двухполупериодный выпрямитель потребует для своего изготовления двух диодов и трансформатора с отводом от середины вторичной обмотки. Соедините отвод с общим проводом, а к каждому из крайних выводов вторичной обмотки присоедините по аноду диода. их соедините вместе. Плюсовой контакт нагрузки присоедините к точке соединения катодов диодов, а минусовой - к общему проводу. Если поменять полярность включения обоих диодов, то придется поменять и полярность включения нагрузки.

Мостовой выпрямитель состоит из четырех диодов. Возьмите два диода и соедините анод одного из них с катодом другого, а оставшиеся выводы пока никуда не подключайте. Это будет первая точка подачи переменного напряжения. Проделайте то же самое с оставшейся парой диодов, и получится вторая точка подачи переменного напряжения. Соедините между собой оставшиеся катоды, и получится точка съема положительного выпрямленного напряжения. Соедините между собой оставшиеся аноды, и получится точка съема отрицательного выпрямленного напряжения. Мостовой выпрямитель, обладая всеми преимуществами обычного двухполупериодного, не требует наличия у вторичной обмотки отвода.

Если нагрузка чувствительна к пульсациям, подключите параллельно ей, соблюдая полярность, конденсатор фильтра. Учтите, что при этом напряжение на выходе возрастет (до 1,41 раз). Не превышайте следующие параметры диода: максимальный прямой ток (т.е., максимальный ток, который может протекать через диод, когда он открыт) и максимальное обратное напряжение (т.е., напряжение, приложенное к диоду, когда он закрыт). Не касайтесь выводов деталей, находящихся под высоким напряжением (таковые могут иметься и во вторичных цепях), а в схемах, не развязанных от сети - выводов вообще любых деталей. При наличии фильтров, перед прикосновением к деталям после обесточивания разряжайте конденсаторы.

Диод – это электронный компонент, обладающий односторонней проводимостью.
Идеальный диод является проводником в одном направлении и изолятором - в другом направлении.

Основные характеристики диода

Максимально допустимый прямой ток и максимально допустимое напряжение – это такие значения тока и напряжения, которые диод может выдержать в течение длительного времени. Если превысить ток и/или напряжение, приложенные к диоду, он может выйти из строя.

В наборы Мастер Кит входят два типа диодов:
- диод малой мощности 1N4148. Максимально допустимый ток через этот диод составляет 0,15А, напряжение – до 75В
- диод средней мощности типа 1N4001…1N4007. Максимально допустимый ток через этот диод составляет 1А, напряжение (в зависимости от последней цифры) – от 50 до 1000В.

Взаимозаменяемость диодов

Если под рукой нет нужного диода, его можно заменить аналогичным. Конечно, нужно следить за тем, чтобы предельно допустимые ток и напряжения нового диода были выше таковых параметров схемы. Кроме того, новый диод должен иметь такой же или похожий тип корпуса (иначе диод может физически не поместиться на печатную плату).

Например, в схеме рекомендуется установить диод типа 1N4005. Его параметры: максимально допустимый ток – 1А, максимально допустимое обратное напряжение – 600В. Допустим, у вас нет диода 1N4005, но есть диод 1N4001 в таком же типе корпуса с параметрами, соответственно, 1А/50В. Но если в вашей схеме рабочие напряжения не превышают 12В, вы смело можете произвести замену рекомендованного диода 1N4005 на 1N4001.
Такая же ситуация бывает и на складе Мастер Кит, когда мы производим замену временно отсутствующего компонента на аналогичный.

Установка диода на печатную плату

Диод имеет полярность, то есть должен устанавливаться на печатную плату строго в определённом положении. Если установить диод неправильно, он не только не заработает, но и может выйти из строя.

На диоде обязательно имеется маркировка полярности. В диодах, входящих в набор Мастер Кит, полосой на корпусе маркируется вывод катода.

На печатной плате также имеется маркировка полярности диода – полоса. При установке диода на плату нужно совмещать «ключи»: полосу на компоненте и на печатной плате.

Светодиоды

Светодиод – это разновидность обычного диода, но этот диод обладает важным свойством: он излучает свет при пропускании через него тока в прямом направлении. В зависимости от типа, светодиоды могут иметь разную яркость и цвет свечения: красный, зелёный, синий, жёлтый. Существуют светодиоды невидимого спектра излучения: инфракрасные (широко применяемые в системах дистанционного управления), ультрафиолетовые.

Как и обычный диод, светодиод корректно работает (излучает свет) только при условии правильной полярности приложенного к нему напряжения. Поэтому очень важно при установке светодиода на плату соблюдать «ключи».

У светодиодов, входящих в наборы Мастер Кит, вывод анода (он же «+») – длиннее.

На печатной плате также имеется маркировка полярности.

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка — . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника — эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой — это заряженный конденсатор , шланг — это провод, катушка индуктивности — это колесо с лопастями


которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент — . И в этой статье мы познакомимся с ним поближе.

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-).

Некоторые диоды выглядят почти также как и резисторы:



А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:


Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия — анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса



2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод «откроется» и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод — плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).


Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»


Для объяснения параметров диода, нам также потребуется его


1) Обратное максимальное напряжение U обр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток I обр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток I пр — это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота F d , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца . Главный параметр стабилитрона — это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (I min , I max) . Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:


На схемах обозначаются вот так:

Светодиоды

Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (U обр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.



Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.



Очень большим спросом пользуются светодиодные ленты, состоящие из множества светодиодов. Смотрятся очень красиво.


На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления


Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах


Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое , которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — I ос,ср. — среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор — (U у ), которое подается на управляющий электрод и при котором тиристор полностью открывается.


а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров — динисторы и симисторы . У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты — одна из разновидностей диодных сборок.


На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.