Принцип работы и строение индукционного генератора. Как работает генератор переменного тока? Применение в сетях

27.06.2019

Переменный ток промышленной частоты вырабатывается на электростанциях специально предназначенными для этих целей электромашинными синхронными генераторами. Принцип действия этих агрегатов основан на явлении электромагнитной индукции. Производимая паровой или гидравлической турбиной механическая энергия преобразовывается в электроэнергию переменного тока.

Вращающейся частью привода или ротором является электрический магнит, который и передает вырабатываемое магнитное поле на статор. Это – внешняя часть устройства, состоящая из трех катушек с проводами.

Передача напряжения осуществляется через коллекторные щетки и кольца. Медные роторные кольца вращаются одновременно с коленвалом и ротором, в результате чего к ним прижимаются щетки. Те, в свою очередь, остаются на месте, позволяя электротоку передаваться от неподвижных элементов генератора его вращающейся части.

Произведенное таким образом магнитное поле, вращаясь поперек статора, производит электропотоки, которые и осуществляют зарядку аккумулятора.

Популярные модели сварочных генераторов переменного тока :

Генератор переменного тока

В настоящее время имеется много различных типов индукционных генераторов . Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС - электро движущая сила (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

Принцип действия генератора переменного тока следующая. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором (правда, без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Рис.1. Структурная схема генератора переменного тока.

Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

ПЕРЕМЕННОГО ТОКА

Вал генера­тора приводится во вращение от шкива, установ­ленного на коленчатом валу двигателя, клиновид­ным ремнем. Передаточное число клиноременной передачи 1,7-2,0. При движении автомобиля час­тота вращения коленчатого вала при холостом ходе у современных двигателей составляет 500-600 об/мин, максимальная частота 4000-5000 об/мин. Таким образом, кратность изменения частоты вра­щения двигателя, а, следовательно, и вала генера­тора может достигать 8 - 10. Напряжение генера­тора зависит от частоты вращения его вала. Чем выше частота, тем больше напряжение генератора. Однако все приборы электрооборудования автомо­биля, особенно лампы и контрольно-измерительные

приборы, рассчитаны на питание от постоянного напряжения 12 или 24 В. Поддержание постоянства напряжения генератора независимо от изменения частоты вращения и нагрузки генератора (включе­ния потребителей) выполняет специальный прибор, называемый регулятором напряжения.

При снижении частоты вращения коленчатого вала двигателя ниже 500-700 -об /мин напряжение генератора становится меньше напряжения акку­муляторной батареи. Если батарею не отключить от генератора, она начнет разряжаться на генера­тор, что может привести к перегреву изоляции обмоток генератора и разряду аккумуляторной ба­тареи. При увеличении частоты вращения коленча­того вала двигателя необходимо вновь включить ге­нератор в систему электрооборудования. Включе­ние генератора в систему электрооборудования, когда его напряжение выше напряжения аккумуля­торной батареи, и отключение генератора от сети, когда его напряжение ниже напряжения аккумуля­торной батареи, выполняет специальный прибор, на­зываемый реле обратного тока.

Генератор рассчитан на отдачу определенной максимальной для данного генератора величины тока, однако при неисправности в системе электро­оборудования (разряженная аккумуляторная бата­рея, короткое замыкание и т. д.) генератор может отдавать ток больший, чем тот, на который он рас­считан. Длительная работа генератора в таком ре­жиме приведет к его перегреву и сгоранию изоля­ции обмоток. Для защиты генератора от перегрузки служит специальный прибор, называемый огра­ничителем тока.

Все три прибора - регулятор напряжения, реле обратного тока и ограничитель тока-объединены в одном устройстве, называемом реле-регуля­тором.

В некоторых генераторах, например Г-250, пере­менного тока реле обратного тока и ограничитель тока могут отсутствовать, но в конструкции генератора имеются устройства, выполняющие функ­ции этих приборов.

На рис. 1 показано устройство генератора пе­ременного тока Г-250. Генератор имеет статор 6 с трехфазной обмоткой, выполненной в виде отдельных катушек, насаженных, на зубцы статора. В каждой фазе имеется по шесть катушек, соеди­ненных последовательно. Фазные обмотки статора соединены звездой, и их выходные зажимы под­ключены к выпрямительному блоку 10.

Устройство генератора переменного тока Г-250

Корпус статора набран из отдельных пластин электротехнической стали. Обмотка возбуждения 4 генератора выполнена в виде катушки и по­мещена на стальной втулке клювообразных полю­сов ротора 13. Втулка, клювообразные полюсы ро­тора и контактные кольца 5 жестко закреплены на валу 3 ротора (прессовая посадка на накатку). Магнитное поле, создаваемое обмоткой возбуждения, проходя через торцы клювообразных полюсов, образует северные и южные полюсы на роторе (рис. 2) (Е.В. Михайловский, «Устройство автомобиля», с. 163).

При вращении ротора магнитное поле по­люсов ротора пересекает витки катушек обмотки статора, индуктируя в каждой фазе переменную э.д.с.

Схема выпрямления переменного тока

Ток в обмотке возбуждения подводится через щетки 8 (рис.1) и контактные кольца 5, к кото­рым припаяны концы обмотки возбуждения. Щёт­ки укреплены в щеткодержателе 9.

Статор генератора с помощью стяжных болтов закреплен между крышками 1 и 7, которые имеют кронштейны крепления генератора к двигателю. В крышке 1 со стороны привода вверху имеется резь­бовое отверстие для крепления натяжной планки, с помощью которой регулируется натяжение приводного ремня генератора. Крышки отлиты из алю­миниевого сплава.

С целью уменьшения износа посадочное место под шарикоподшипник в задней крышке 7 и отвер­стия в кронштейнах крышек армированы стальны­ми втулками.

В крышках установлены шариковые подшипники 2 и 12 с двусторонним уплотнением и смазкой, за­ложенной на весь срок службы подшипника.

На выступающий конец вала 3 ротора крепится наружный вентилятор 14 (рис. 1) и шкив 15. В крышках имеются вентиляционные окна, через которые проходит охлаждающий воздух. Направле­ние движения охлаждающего воздуха - от крыш­ки со стороны контактных колец к вентилятору.

В крышке со стороны контактных колец уста­навливается выпрямительный блок 10, собранный из кремниевых вентилей (диодов), допускающих рабочую температуру корпуса плюс 150°С.

Типы выпрямительных блоков

Выпрямительный блок ВБГ-1. (рис. 4) состоит из трех моноблоков, соединенных в схему двухполупериодного трехфазного выпрямителя

Каждые два вентиля выпрямителя размещены в моноблоке, выполняющем одновременно роль ра­диатора и токопроводящего зажила средней точки схемы 3. В корпусе моноблока-радиатора 4 имеются два гнезда, в которых собраны р-п-переходы выпрямительных вентилей. В одном гнезде р-п-переход имеет на корпусе р-зону, а в другом - п-зону. Противоположные зоны переходов имеют гибкие выводы 9, которые соединяют моноблок с соедини­тельными шинами 2. Отрицательная шина выпря­мительного блока соединена с корпусом генера­тора. В более поздних конструкциях выпрямительных блоков БПВ-4-45 (рис. 4,б) на ток 45 А применя­ют кремниевые вентили типа ВА-20, которые за­прессованы в теплоотводы 12 отрицательной и по­ложительной полярности по три вентиля в каждый. Теплоотводы изолированы один от другого пласт­массовыми втулками-изоляторами 13. Обратный ток вентилей не превышает 3 мА, а собранного блока -10 мА. Для генераторов с максимальной мощностью до 1200 B т (Г-228) применяют кремниевые выпрямительные блоки ВБГ-7-Г на ток 80 А (рис. 4, в) или БПВ-7-100. В блоках БПВ-7Т и БПВ-7-100 применены вентили ВА-20 по два параллельно в каждом плече, по шесть вентилей в каждом теплоотводе. Блок БПВ-7-100 на ток 100 A и его электрическая схема показаны на рис. 4, г.

Для снижения уровня радиопомех в блоках, ВБР-7-Г и, БПВ-7-100 установлен параллельно зажимам «+», и «-» генератора конденсатор ёмкостью 4,7 мкФ. Общий вид вентиля BA -20 показан на рис. 5. Номинальный ток вентиля 20 А. Для упро­щения схемы, электрических соединений вентили выпускаются в двух исполнениях - с прямой и обратной полярностью корпусам (рис. 5, б). В вентилях прямой полярности «+» выпрямленного будет на корпусе, в вентилях обратной полярнос­ти будет «-» выпрямленного тока.

Вентили прямой и обратной полярности различаются цветом маркировки, наносимой краской на донышке корпуса. Вентили прямой полярности: («+» на корпус) помечают красной краской, а вентили обратной полярности («-» на корпус) - черной.

Кремниевый вентиль ВА-20

Электрическая схема соединения обмоток гене­ратора и выпрямителей показана на рис 3, а. При вращении ротора генератора в каждой фазе индуктируется переменное напряжение изменение кото­рого за один период показано на рис. 3, б. После выпрямления кривые фазного напряжения примут вид изображенный на рис. 3,в. Выпрямленное напряжение будет почти постоянным, (линия 1 на рис. 3, в), причем частота пульсаций выпрямленного напряжения будет в шесть раз больше, чем частота в фазных обмотках (Ю.И. Боровских, «Устройство автомобилей», с. 183).

С увеличением, частоты вращения повышается частота тока, индуктированного в фазных отмотках генератора переменного тока , и возрастает индуктивное сопротивление обмоток. Поэтому при большой частоте, вращения ротора, когда генератор может отдавать максимальную мощность, не возни­кает опасности его перегрузки, поскольку сила тока генератора ограничивается повышенным индуктив­ным сопротивлением его обмоток. Это явление в генераторах переменного тока называется свойством самоограничения. Автомобильные генераторы Г-250, Г-270, Г-221 и другие сконструированы таким образом, что не нуждаются в ограничителе тока.

Свойство вентилей пропускать ток только в одном направлении (от генератора к аккумуляторной батарее) исключает необходимость установки в реле-регуляторе реле обратного тока. Таким образом, реле-регуляторе работающем с автомобильным генератором переменного тока , может применяться только регулятор напряжения. Это значительно упрощает конструкцию и снижает разме­ры, вес и стоимость реле-регулятора. Пути тока через вентили выпрямителя при прохождении обмотками первой фазы северного и южного полюсов ротора показаны на рис. 3, а стрелками. Как видно из схемы, при наличии в обмотках первой фазы переменного по направлению тока ток в цепи нагрузки (Rн) будет постоянным. Аналогично происходит процесс и в других фазах.

II. Т.О. ГЕНЕРАТОРА

Отказами и неисправностями генератора являются: обрыв или короткое замыкание в обмотке статора генератора или в обмотке возбуждения, нарушение контакта щеток с кольцами и искрение щеток, износ подшипников генератора, поломка или ослабление пружины щеткодержателей, пробой диодов в выпрямителе, ослабление натяжения (чрезмерное натяжение) приводного ремня.

Неисправности генератора обнаруживаются по показаниям амперметра или сигнальной лампы. Амперметр при неисправном генераторе будет показывать разряд, а сигнальная лампа будет гореть при работающем двигателе. Нарушение контакта щеток с кольцами возникает от загрязнения, обгорания или их износа, выкрашивания или износа щеток, а также ослабления или поломки нажимных пружин щеток. Загрязнение кольца следует протереть чистой тряпкой, обгоревшие кольца прочистить стеклянной бумагой, изношенную щетку заменить новой и притереть ее по кольцу.

III. ДИАГНОСТИКА ГЕНЕРАТОРА

Диагностирование генераторов сводится к проверке ограничивающего напряжения и работоспособности генератора. Для выполнения этой операции необходимо включить вольтметр параллельно потребителям тока. Ограничивающее напряжение проверяют при включенных потребителях тока (подфарниках и габаритных фонарях) и повышенной частоте вращения коленчатого вала двигателя. Оно должно быть в диапазоне 13,5-14,2 В. Работоспособность генератора оценивают по напряжению при включении всех потребителей на частоте вращения, соответствующей полной отдаче генератора, которое должно быть не ниже 12 В. Однако подобная методика проверки не может выявить характерные, хотя и редко встречающиеся неисправности генератора, такие, как обрыв или замыкание обмоток статора на массу, обрыв или пробой диодов выпрямителя, ввиду значительных резервов работоспособности генератора.

Эти неисправности легко выявляются по характерному виду осциллограмм, связанному в первую очередь с увеличением диапазона колебания напряжения. При исправной работе генератора диапазон колебаний напряжения в сети не превышает 1-1,2 В, который обусловливается периодическим включением в цепь нагрузки первичной обмотки катушки зажигания. Это легко читается по осциллограмме осциллографа мотортестера (Элкон S -300, Элкон S -100А, К-461, К-488).

При одном пробитом (закороченном) диоде в результате его выпрямляющих свойств диапазон колебания напряжения возрастает до 2,5-3 В. при общем снижении частоты его колебаний. Средний уровень напряжения, показываемый вольтметром, при этом не меняется, однако выбросы напряжения приводят к снижению долговечности аккумуляторной батареи и других элементов электрооборудования (В.Л. Роговцев, «Устройство и эксплуатация автотранспортных средств», с.391).

Таким образом, одновременное применение осциллографа и вольтметра позволяет быстро и объективно проводить диагностирование генераторов и реле-регуляторов переменного тока . Повышение напряжения генератора более расчетного на 10-12% снижает срок службы аккумуляторной батарей в 2-3 раза.

Неисправный генератор заменяют или ремонтируют в условиях электроцеха, ограничивающее напряжение реле-регулятора регулируют натяжением пружины якорька, а при отсутствии таковой возможности реле-регулятор также заменяют. Бесконтактно-транзисторные реле-регуляторы регулируют только в условиях электроцеха.

29 ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА

Научные направления, исследования в которых оказались так же плодотворны, как в области токов высокой частоты, немногочисленны. Уникальные свойства этих токов и поразительная природа явлений, которые они продемонстрировали, незамедлительно завладели всеобщим вниманием. интерес к исследованиям в этой области проявили ученые, перспективой их промышленного применения заинтересовались инженеры, а врачи увидели в них долгожданное средство эффективного лечения телесных заболеваний. С того момента, когда были опубликованы мои первые научно-исследовательские работы в 1891 году, написаны сотни томов на эту тему, сделано бесчисленное множество выводов в связи с этим новым явлением. Тем не менее это научно-техническое направление находится в периоде становления, и будущее хранит в своих недрах нечто несравнимо более значительное.

Я с самого начала осознавал настоятельную необходимость создания эффективных приборов, отвечающих быстрорастущим требованиям, и в течение восьми лет, последовательно выполняя высказанные ранее обещания, разработал не менее пятидесяти типов преобразователей, или электрических генераторов, переменного тока, безупречных во всех отношениях и доведенных до такой степени совершенства, что и сейчас ни в один из них не смог бы внести каких-либо существенных улучшений. Если бы я руководствовался практическими соображениями, возможно, открыл бы великолепное и приносящее доход дело, оказывая попутно значительные услуги человечеству. Но сила обстоятельств и невиданные ранее перспективы еще более значительных достижений направили мои усилия в другое русло. И теперь всё идет к тому, что в скором времени на рынке будут продаваться приборы, которые, как это ни странно, были созданы двадцать лет тому назад!

Эти генераторы специально предназначены для того, чтобы работать в осветительных сетях постоянного и переменного тока, создавать затухающие и незатухающие колебания с частотой, амплитудой и напряжением, устанавливаемыми в широком диапазоне. Они компактны, автономны, в течение долгого времени не нуждаются в обслуживании и будут считаться очень удобными и полезными в различных областях, например, для беспроволочного телеграфа и телефона; для преобразования электрической энергии; для образования химических соединений путем слияния и присоединения; для синтеза газов; для производства озона; для освещения, сварки, санитарной профилактики и дезинфекции муниципальных, лечебных и жилых помещений, а также для многих других целей в научных лабораториях и на промышленных предприятиях. Хотя эти преобразователи никогда ранее не были описаны, общие принципы их устройства изложены в полном объеме в моих публикациях и в патентах, более подробно в датированых 22 сентября 1896 года, и поэтому, думается, несколько прилагаемых фотографий и сопутствующее краткое пояснение дадут исчерпывающую информацию, если таковая потребуется.

Основными частями такого генератора являются конденсатор, катушка самоиндукции для накопления высокого потенциала, прерыватель и трансформатор, который питается от периодических разрядов конденсатора. Устройство включает в себя как минимум три, а обычно четыре, пять или шесть элементов настройки; регулирование эффективности осуществляется несколькими способами, чаще всего с помощью простого юстировочного винта. При благоприятных условиях можно получить КПД до 85 %, то есть можно сказать, что энергия, поступающая от источника питания, может быть регенерирована во вторичном контуре трансформатора. Если главное достоинство аппарата такого типа явно обусловлено замечательными возможностями конденсатора, то определенные специфические качества являются следствием образования последовательного контура при условии соблюдения точных гармонических соотношений и минимизации потерь на трение, а также иных потерь, что и является одной из основных целей этого проекта.

Говоря обобщенно, приборы можно разделить на два класса: один, в котором прерыватель имеет твердые контакты, и другой, в котором замыкание и размыкание осуществляются с помощью ртути. Иллюстрации с 1 по 8 включительно демонстрируют первый тип, а остальные - второй. Первые способны достигать более высокой эффективности с учетом того, что потери от замыкания и размыкания снижены до минимума, и переходное сопротивление, вызывающее затухание колебаний, мало. Вторые предпочтительнее использовать в тех случаях, когда требуется большая мощность на выходе и большое число размыканий в секунду. двигатель и прерыватель потребляют, конечно, определенное количество энергии, доля которой, однако, будет тем меньше, чем больше мощность установки.

На иллюстрации 1 представлен один из первых типов генераторов, построенный для экспериментальных целей. Конденсатор помещен в ящик прямоугольной формы из красного дерева, на который монтируется катушка самоиндукции, витки которой, подчеркиваю, разделены на две секции, соединяемые параллельно или последовательно в зависимости от напряжения питания в 110 или 220 вольт. Из ящика выступают четыре медных стержня с укрепленной на них пластиной с пружинными контактами и регулировочными винтами; над ящиком помещены два массивных вывода, соединенных с первичной обмоткой трансформатора. Два стержня предназначены для соединения с конденсатором, а два других используются для подсоединения к клеммам выключателя перед катушкой самоиндукции и конденсатором. Первичная обмотка трансформатора состоит из нескольких витков медной ленты, к концам которой припаяны короткие штыри, точно соответствующие предназначенным для них выводам. Вторичная обмотка состоит из двух частей, намотанных таким образом, чтобы максимально снизить собственную емкость и в то же время дать возможность катушке выдерживать очень высокое напряжение между ее выводами в центре, которые соединены с клеммами на двух выступающих резиновых стойках. Порядок соединений в цепи может несколько варьироваться, но обычно они таковы, как схематично представлены в майском номере «Electrical Experimenter» на странице 89, где идет речь о моем трансформаторе, предназначенном для работы в генераторах переменного тока, фотоснимок которого помещен на странице 16 того же номера журнала. Принцип действия устройства заключается в следующем. Когда выключатель включен, ток от источника питания устремляется через катушку самоиндукции, намагничивая железный сердечник внутри нее и разъединяя контакты прерывателя. наведенный ток заряжает конденсатор до высокого напряжения, и после замыкания контактов аккумулированная энергия сбрасывается через первичную обмотку, вызывая продолжительную серию колебаний, которые возбуждают настроенную вторичную обмотку.

Ил. 1. Генератор, созданный для экспериментальных целей

Устройство оказалось чрезвычайно полезным в проведении всевозможных лабораторных экспериментов. Например, при исследовании явлений импеданса трансформатор был снят, а к выводам подключена согнутая медная пластина. Пластина часто заменялась большим кольцевым витком, чтобы продемонстрировать явления индукции на расстоянии, то есть способность возбуждать резонансные контуры, используемые в различных исследованиях и измерениях. Трансформатор, пригодный для любого применения, можно легко изготовить и присоединить к любым входам, тем самым достигалась большая экономия времени и труда. Вопреки предположениям состояние контактов прерывателя не доставляло больших неприятностей, несмотря на то, что сила тока, проходившего через них, была большой, то есть при наличии резонанса сильный ток возникал только в том случае, когда контур был замкнут, и исключалась возможность образования разрушительной дуги. Первоначально я применял платиновые и иридиевые контакты, позднее заменил материал метеоритным веществом и в конце концов остановился на вольфраме. Последний принес наибольшее удовлетворение, поскольку допускал непрерывную работу в течение многих часов и дней.

На иллюстрации 2 представлен малый генератор, спроектированный для некоторых специальных целей. В основу разработки легла идея получения больших энергий за очень короткий промежуток времени после сравнительно длительной паузы. Для этой цели использовались катушка с большой самоиндукцией и прерыватель быстрого действия. Благодаря такому построению конденсатор заряжался до высокого потенциала. Во вторичной обмотке были получены быстропеременный ток и искровые разряды большой величины, пригодные для сварки тонких проводов, для засвечивания ламп накаливания, для запала взрывчатых смесей и других подобных применений. Этот прибор был также приспособлен для питания от батарей, и эта модификация оказалась весьма эффективной в качестве запальника для газовых двигателей, на которую мне был предоставлен патент за номером 609250 от 16 августа 1898 года. Иллюстрация 3 представляет большой генератор первого класса, предназначенный для экспериментов в области беспроводной передачи, получения рентгеновских лучей и других научных исследований. Он состоит из ящика и двух помещенных внутри него конденсаторов, имеющих такую емкость, какую могут выдержать заряжающая катушка и трансформатор. Автоматический прерыватель, ручной выключатель и соединительные клеммы смонтированы на передней панели катушки самоиндукции так же, как и одна из контактных пружин. Корпус конденсатора имеет три вывода, из которых два крайних служат только для соединения, в то время как средний снабжен контактной пластинкой с винтом для регулирования интервала, во время которого контур замкнут. Вибрирующую пружину, единственная функция которой состоит в том, чтобы вызывать периодические размыкания, можно настраивать, изменяя степень ее сжатия, а также расстояние от железного сердечника, находящегося в центре заряжающей катушки, с помощью четырех регулировочных винтов, которые видны на верхней панели, что обеспечивает любой желаемый режим механической настройки. Первичная обмотка трансформатора выполнена из медной полосы, и в соответствующих точках сделаны выводы для произвольного варьирования числа витков. Так же, как в осцилляторе, представленном на иллюстрации 1, катушка самоиндукции имеет двухсекционную обмотку, чтобы прибор мог работать от сети напряжением в 110 и 220 вольт; было также предусмотрено несколько вторичных обмоток, соответствующих волнам различной длины в первичной обмотке. Мощность на выходе составляла приблизительно 500 ватт при затухающих колебаниях около 50.000 периодов в секунду. Незатухающие колебания появлялись на короткие промежутки времени при сжимании вибрационной пружины, которая плотно прижималась к железному сердечнику, и при разъединении контактов с помощью регулирующего винта, который выполнял и функцию ключа. С помощью этого генератора я произвел ряд важных наблюдений, и именно одна из таких машин была представлена на лекции в Нью-Йоркской академии наук в 1897 году.

Ил. 2. Малый генератор колебаний Теслы, разработанный как запальник для газовых двигателей

Ил. 3. Большой генератор колебаний Теслы, предназначенный для проведения экспериментов по беспроводной передаче

Ил. 7 . Большой трансформатор Теслы

Ил. 8. Преобразователь с роторным прерывателем, используемый для экспериментов в области беспроводной передачи

Иллюстрация 4 демонстрирует тип трансформатора, во всех отношениях идентичный тому, что был представлен в уже упоминавшемся майском номере "Electrical Experimenter" за 1919 год. Он состоит из тех же самых основных деталей, размещенных аналогичным образом, но он специально сконструирован для источников питания от 220 до 500 вольт и выше. Настройка осуществляется путем установки контактной пружины и перемещения железного сердечника вверх и вниз внутри индукционной катушки с помощью двух регулировочных винтов. Для предотвращения повреждений от короткого замыкания в линию питания включены плавкие предохранители. Во время фотосъемки прибор работал, генерируя незатухающие колебания, от осветительной сети в 220 вольт.

Иллюстрация 5 представляет более позднюю модификацию трансформатора, предназначавшегося главным образом для замены катушек Румкорфа. В этом случае применяется первичная обмотка со значительно большим числом витков, а вторичная находится в непосредственной близости от нее. токи, образующиеся в последней, напряжением от 10.000 до 30.000 вольт используются обычно для зарядки конденсаторов и питания автономной высокочастотной катушки. Механизм управления устроен несколько иначе, но обе детали - и сердечник, и контактная пружина - регулируются, как и прежде.

Иллюстрация 6 демонстрирует небольшой прибор из серии такого рода устройств, предназначенный, в частности, для производства озона или дезинфекции. Для своих габаритов он в высшей степени эффективен и может быть подключен к сети напряжением в 110 или 220 вольт постоянного или переменного тока , первое предпочтительнее.

Ил. 9. Трансформатор и ртутный прерыватель

Ил. 10. Большой преобразователь Теслы с герметичной камерой и ртутным контроллером

На иллюстрации 7 показан более крупный трансформатор этой серии. Конструкция и компоновка составных частей остались прежними, но в корпусе имеются два конденсатора, один из которых входит в цепь катушки, как и в предыдущих моделях, в то время как другой подключен параллельно к первичной обмотке. Таким образом, в последней образуются токи большой силы и, следовательно, усиливаются эффекты во вторичной цепи. Введение дополнительного резонансного контура дает также другие преимущества, но настройка оказывается более трудным делом, и поэтому желательно использовать прибор такого рода для получения токов заданной постоянной частоты.

Ил. 11. Генератор Теслы с герметично закрытым ртутным прерывателем , сконструированным для генераторов низкого напряжения

Ил. 13. Другой вид преобразователя переменного тока с герметично запаянным ртутным прерывателем

Ил. 14. Схема и компоновка деталей модели, представленной на иллюстрации 13

Иллюстрация 8 показывает трансформатор с роторным прерывателем. В корпусе имеются два конденсатора одинаковой емкости, которые могут соединяться последовательно или параллельно. Заряжающие индуктивности имеют форму двух длинных бобин, на которых помещаются два вывода вторичного контура. Для приведения в действие специально сконструированного прерывателя применяется небольшой мотор постоянного тока, число оборотов которого может варьироваться в широких пределах. По другим характеристикам этот генератор подобен модели, представленной на иллюстрации 3, и из вышесказанного легко можно понять, как он работает. Этот трансформатор использовался мной в опытах по беспроводной передаче и часто для освещения лаборатории моими вакуумными трубками, а также экспонировался во время упомянутой выше лекции, которую я читал перед Нью-Йоркской академией наук.

Теперь перейдем к машинам второго класса, одной из которых является преобразователь переменного тока, показанный на иллюстрации 9. в его схему входят конденсатор и заряжающая индукционная катушка, которые помещены в одну камеру, трансформатор и ртутный прерыватель. Конструкция последнего была впервые описана в моем патенте № 609251 от 16 августа 1898 года. он состоит из приводимого в движение электродвигателем полого барабана с небольшим количеством ртути внутри него, которая отбрасывается центробежной силой на стенки полости и увлекает за собой контактный диск, периодически замыкающий и размыкающий конденсаторную цепь. С помощью регулировочных винтов над барабаном можно по желанию менять глубину погружения лопастей, следовательно, продолжительность каждого контакта, и таким образом регулировать характеристики прерывателя. Этот вид прерывателя удовлетворял всем требованиям, так как исправно работал с токами силой от 20 до 25 ампер. Число прерываний в секунду составляло обычно от 500 до 1000, но возможна и более высокая частота. всё устройство имеет габариты 10 дюймов х 8 дюймов х 10 дюймов, и выходная мощность составляет приблизительно 1 / 2 кВт.

В описанном здесь преобразователе прерыватель подвержен воздействию атмосферы и происходит постепенное окисление ртути. От этого недостатка избавлен прибор, представленный на иллюстрации 10. Он имеет перфорированный металлический корпус, внутри которого размещаются конденсатор и заряжающая индукционная катушка, а над ним находятся мотор прерывателя и трансформатор.

Ил. 15 и 16. Преобразователь Теслы с герметично закрытым ртутным прерывателем , работа которого регулируется силой тяжести; узлы электродвигателя и прерывателя

Тип ртутного прерывателя, который будет описан, действует по принципу реактивной струи, которая, пульсируя, создает контакт с вращающимся диском внутри барабана. Неподвижные детали закреплены внутри камеры на штанге, проходящей по всей длине полого барабана, и ртутный затвор используется для герметичного закрытия камеры, внутри которой находится прерыватель. Прохождение тока внутрь барабана осуществляется посредством двух скользящих колец, расположенных сверху, которые соединены последовательно с конденсатором и первичной обмоткой. Исключение кислорода является бесспорным усовершенствованием, которое устраняет окисление металла и связанные с этим трудности и постоянно поддерживает рабочий режим.

На иллюстрации 11 показан генератор с герметически закрытым ртутным прерывателем . В этом устройстве неподвижные части прерывателя внутри барабана укреплены на трубке, сквозь которую пропущен изолированный провод, присоединенный к одному выводу выключателя, в то время как другой вывод подключен к резервуару. Это делало ненужными скользящие кольца и упрощало конструкцию. Прибор сконструирован для генераторов с низким напряжением и частотой, что требует сравнительно небольшого тока в первичной обмотке, использовался для возбуждения резонансных контуров.

Иллюстрация 12 представляет усовершенствованную модель генератора колебаний, описание которой дано к иллюстрации 10. В этой модели была ликвидирована несущая штанга внутри полого барабана, и устройство, нагнетающее ртуть, удерживается на месте под действием силы тяжести. Более подробное описание будет приведено в связи с другой иллюстрацией. И емкость конденсатора, и количество витков первичного контура можно менять, чтобы иметь возможность генерировать колебания в нескольких частотных режимах.

Иллюстрация 13 являет собой фотографическое изображение еще одного типа генератора переменного тока с герметически закрытым ртутным прерывателем , а иллюстрация 14 представляет собой схему цепей и компоновку частей, которые воспроизведены из моего патента № 609245 от 16 августа 1898 года, где описывается именно это устройство. Конденсатор, индукционная катушка, трансформатор и прерыватель размещены, как и прежде, но последний имеет конструктивные отличия, что станет ясным после рассмотрения этой схемы. Полый барабан а соединен с осью с, которая смонтирована с вертикальным подшипником и проходит через постоянный электромагнит возбужденияd двигателя. Внутри барабана на подшипниках качения укреплено тело h из магнитного вещества, защищенного колпаком b в центре пластинчатого железного кольца, с полюсными наконечниками оо, на которых имеются подключенные к току спирали р. Кольцо поддерживается четырьмя стойками, и в намагниченном состоянии оно удерживает тело h в одном положении во время вращения барабана. Последний изготовлен из стали, а колпак лучше сделать из нейзильбера, черненного кислотой или никелированного. Телоh имеет короткую трубку k, согнутую, как показано, для улавливания жидкости в процессе ее вращения и выбрасывания на зубья диска, прикрепленного к барабану. Диск имеет изоляцию, а контакт между ним и внешним контуром осуществляется посредством ртутной воронки. При быстром вращении барабана струя жидкого металла выбрасывается на диск, замыкая и размыкая таким способом контакт приблизительно 1.000 раз в секунду. Прибор работает бесшумно и благодаря отсутствию окисляющей среды остается неизменно чистым и в отличном состоянии. Возможно тем не менее добиться гораздо большего числа колебаний в секунду для того, чтобы сделать токи пригодными для беспроводной телефонии, и других подобных целей.

Модифицированный тип генератора колебаний представлен на иллюстрациях 15 и 16, первая является фотографическим изображением, а вторая - схемой, показывающей компоновку внутренних частей регулятора. В данном случае вал b . несущий пустотелый контейнер а, опираясь на подшипники качения, соединен со шпинделем j . к которому прикреплен груз k. изолированный от последнего, но механически с ним соединенный, согнутый кронштейн L служит опорой свободновращающемуся диску прерывателя с зубцами. Диск подсоединен к внешнему контуру посредством ртутной воронки и изолированного штепселя, выступающего из верхней части вала. Благодаря наклонному положению электродвигателя груз k удерживает диск прерывателя на месте силой тяжести, и, поскольку вал вращается, контур, состоящий из конденсатора и первичной катушки, быстро замыкается и размыкается.

Ил. 17. Преобразователь Теслы с прерывающим устройством в виде струи ртути

Иллюстрация 17 демонстрирует идентичный прибор, в котором прерыватель представляет собой струю ртути, бьющую в изолированное зубчатое колесо, которое находится на изолированном штыре в центре колпака барабана, как это видно на снимке. Соединение с конденсатором осуществляется посредством щеток, находящихся на этой же крышке.

Иллюстрация 18 - тип преобразователя с ртутным прерывателем с применением диска, модифицированного в некоторых деталях, которые необходимо внимательно рассмотреть.

Здесь представлено лишь несколько преобразователей переменного тока, работа над которыми завершена, и они составляют малую часть высокочастотной аппаратуры, подробное описание которой я надеюсь представить позже, когда буду свободен от неотложных обязательств.

Ил. 18. Преобразователь Теслы с ртутным прерывателем с применением диска

Генератор переменного тока

Описание :

Генератор переменного тока. Устройство и принцип работы.

История

Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока . Ранние машины были разработаны такими пионерами, как Майкл Фарадей и Ипполит Пикси .

Фарадей разработал «вращающийся треугольник», действие которого было многополярным - каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году . Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году . Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший частоты между 100 и 300 герц . В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года, были введены многофазные альтернаторы.

Принцип действия генератора основан на действии электромагнитной индукции - возникновении электрического напряжения в обмотке статора , находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита - ротора при прохождении по его обмотке постоянного тока . Переменное напряжение преобразуется в постоянное полупроводниковым выпрямителем .

Автомобильный генератор

Автомобильный генератор переменного тока. Приводной ремень снят.

Генератор переменного тока используется на современных автомобилях для заряда батареи аккумуляторов и для энергоснабжения автомобильной электрической системы. В генераторах переменного тока не используется коммутатор, это даёт большое преимущество над генераторами постоянного тока: они проще, легче и дешевле. Автомобильные генераторы переменного тока используют набор выпрямителей (диодный мост) для преобразования переменного тока в постоянный ток. Для производства постоянного тока с низкими пульсациями, автомобильные генераторы переменного тока имеют трёхфазную обмотку и трёхфазный выпрямитель .

Современные автомобильные генераторы переменного тока имеют встроенный в них регулятор напряжения . Ранее устанавливались регуляторы напряжения только аналогового вида. На данный момент реле регуляторы перешли на цифровой канал так называемая CAN шина .

Морские генераторы переменного тока

Морские генераторы переменного тока в яхтах с соответствующей адаптацией к солёно-водной окружающей среде.

Бесщёточные генераторы переменного тока

Бесщеточный генератор состоит из двух генераторов на одном валу. Маленькие бесщеточные генераторы могут выглядеть как одна единица, но две части легко идентифицируются на больших генераторах. Большая часть из двух является основным генератором и меньшая является возбудителем. Возбудитель имеет стационарные катушки поля и вращающегося якоря (мощность катушек). Основной генератор использует противоположные конфигурации с вращающимся полем и стационарные катушки. Мостовой выпрямитель (вращающийся выпрямитель) монтируется на пластину, прикрепленную к ротору. Ни щетки, ни контактные кольца не используются, что сокращает число изнашивающихся частей.

Индукционный генератор

В отличие от остальных генераторов, в основе работы индукционного генератора лежит не вращающееся магнитное поле, а пульсирующее, иначе говоря поле изменяется не в функции перемещения, а в функции времени, что в конечном счёте (наведение ЭДС) даёт такой же результат.

Конструкция индукционных генераторов предполагает размещение и постоянного поля и катушек для наведения ЭДС на статоре, ротор же остаётся свободным от обмоток, но обязательно имеет зубцовую форму, так как вся работа генератора основана на зубцовых гармониках ротора.

Генераторы для малой энергетики

Для мощностей до 100 кВт широкое применение нашли одно и трехфазные генераторы с возбуждением от постоянных магнитов. Применение высокоэнергетических постоянных магнитов состава неодим-железо-бор позволило упростить конструкцию и значительно уменьшить размеры и вес генераторов, что является критически важным для малой ветроэнергетики.

Конструкция генератора переменного тока

В самом общем случае, наиболее часто применяемый трехфазный генератор переменного тока состоит из явнополюсного ротора с одной парой полюсов (маломощные оборотистые генераторы) или 2 парами их, расположенными крестообразно (наиболее распространенные генераторы мощностями до нескольких сот киловатт. Такая конструкция не только позволяет более рационально использовать материал, но и для промышленной частоты переменного тока 50 Гц дает рабочую частоту вращения ротора 1500 оборотов в минуту, что хорошо согласуется с тяговыми оборотами дизельных двигателей этой мощности), а также статора с 3 (в первом случае) или 6 (во втором) силовыми обмотками и полюсами. Напряжение с силовых обмоток и есть то, которое подается потребителю.

Ротор может быть выполнен на постоянных магнитах только для весьма маломощных генераторов, во всех остальных случаях он имеет намотку т.н. обмотки возбуждения, то есть представляет из себя электромагнит постоянного тока, запитываемый во вращающемся роторе через щёточно-коллекторный узел с простыми кольцевыми контактами, более устойчивыми к износу нежели разрезной ламельный коллектор машин постоянного тока.

В сколько-либо мощном генераторе переменного тока с обмоткой возбуждения на роторе, неизбежно встает вопрос - какой величины ток возбуждения подавать на катушку? Ведь от этого зависит выходное напряжение такого генератора. И это напряжение должно поддерживаться в определенных рамках, например, 380 Вольт, вне зависимости от тока в цепи потребителей, значительная величина которого способна также значительно уменьшать выходное напряжение генератора. Кроме этого, нагрузка по фазам вообще может быть очень неравномерной.

Этот вопрос решается в современных генераторах, как правило введением в выходные цепи фаз генератора электромагнитных трансформаторов тока, соединенных вторичными обмотками треугольником или звездой, и дающими на выходе переменное трехфазное напряжение амплитудой единицы - десятки вольт, строго пропорциональное и согласованное по фазе с величиной тока нагрузки фаз генератора - чем больше потребляемый в данный момент по данной фазе ток, тем больше напряжение на выходе соответствующей фазы соответствующего токового трансформатора. Этим и достигается стабилизирующий и авторегулирующий эффект. Все три регулирующие фазы с вторичных обмоток токовых трансформаторов далее заводятся на обычный 3-фазный выпрямитель из 6 полупроводниковых диодов, и на выходе его получается постоянный ток нужной величины, и подаваемый на обмотку возбуждения ротора через щёточно-коллекторный узел. Схема может быть дополнена реостатным узлом для некоторой свободы регулирования тока возбуждения.

В устаревших или маломощных генераторах вместо токовых трансформаторов применялась система из мощных реостатов, с вычленением рабочего тока возбуждения за счет изменения падения напряжения на резисторе при изменении тока через него. Эти схемы были менее точны и гораздо менее экономичны.

В обоих случаях существует проблема появления начального напряжения на силовых обмотках генератора в момент начала его работы - действительно, если возбуждения ещё нет, то и току во вторичных обмотках токовых трансформаторов взяться неоткуда. Проблема, однако, решается тем что железо ярма ротора обладает некоторой способностью к остаточному намагничиванию, эта остаточная намагниченность оказывается достаточной для возбуждения в силовых обмотках напряжения в несколько вольт, достаточного для самовозбуждения генератора и выхода его на рабочие характеристики.

В генераторах с самовозбуждением - серьезную опасность представляет случайная подача внешнего напряжения промышленной электрической сети на силовые обмотки статора. Хотя это не приводит к каким-то негативным последствиям для самих обмоток генератора, мощное переменное магнитное поле от внешней сети эффективно размагничивает статор, в результате чего генератор теряет способность к самовозбуждению. В этом случае требуется начальная подача напряжения возбуждения от какого-то внешнего источника, например, автомобильного аккумулятора, иногда такая процедура полностью излечивает статор, но в некоторых случаях необходимость подачи внешнего возбуждения остается навсегда.

Главный генератор переменного тока

Главный генератор состоит из вращающегося магнитного поля, как было указано ранее, и неподвижной арматуры (генераторные обмотки)

Гибридные автомобили

См. также

Ссылки

  • Alternators . Integrated Publishing (TPub.com).
  • Wooden Low-RPM Alternator . ForceField, Fort Collins, Colorado, USA.

Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.

При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:

    химической;

    световой;

    тепловой и других.

Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.

По виду вырабатываемой электроэнергии генераторы бывают:

1. постоянного тока;

2. переменного.

Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.

В конструкции любого генератора реализуется , когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.

При вращении рамки изменяется величина магнитного потока.

Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.

Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.


За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.

Принцип работы простейшего генератора постоянного тока

При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.

Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.

Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:

    у нее используют не один виток, а несколько - в зависимости от величины запланированного напряжения;

    число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.

У генератора постоянного тока обмотки ротора располагают в пазах . Это позволяет сокращать потери наводимого электромагнитного поля.

Конструктивные особенности генераторов постоянного тока

Основными элементами устройства являются:

    внешняя силовая рама;

    магнитные полюса;

    статор;

    вращающийся ротор;

    коммутационный узел со щётками.


Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.

Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.

Статор , называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора оснащен магнитными полюсами, образующими его магнитное силовое поле.

Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.

Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.

Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.


Основные типы конструкций генераторов постоянного тока

По типу питания обмотки возбуждения различают устройства:

1. с самовозбуждением;

2. работающие на основе независимого включения.

Первые изделия могут:

    использовать постоянные магниты;

    или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…

Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:

    последовательно;

    шунтами или параллельным возбуждением.

Один из вариантов подобного подключения показан на схеме.


Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.


Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.

Процесс образования якорной реакции

Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.

Способами ее снижения являются:

    компенсации магнитных полей за счет подключения дополнительных полюсов;

    настройка сдвига положения коллекторных щеток.

Преимущества генераторов постоянного тока

К ним относят:

    отсутствие потерь на гистерезис и образование вихревых токов;

    работа в экстремальных условиях;

    пониженный вес и маленькие габариты.

Принцип работы простейшего генератора переменного тока

Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:

    магнитное поле;

    вращающаяся рамка;

    коллекторный узел со щетками для отвода тока.

Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.

За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.


Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.

Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:

    коллекторного узла вращающегося ротора;

    конфигурации обмоток на роторе.

Конструктивные особенности промышленных генераторов переменного тока

Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.

Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.

Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.


В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.

Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.

Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.

Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.

Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.

На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.

Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.

При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.

Особенности синхронных генераторов

Принцип действия

Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.


В статоре вмонтирована трехфазная обмотка, а на роторе - электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.

Ротор приводится во вращение от источника механической энергии - приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.

В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.

При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.

Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.

Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.

Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.

Схемы возбуждения синхронных генераторов

Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:

1. контактном методе;

2. бесконтактном способе.

В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».


Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.

При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».


Разновидностями бесконтактной схемы являются:

1. система самовозбуждения от собственной обмотки статора;

2. автоматизированная схема.

При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем - полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.

У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.

Автоматическая схема создания самовозбуждения включает использование:

    трансформатора напряжения ТН;

    автоматизированного регулятора возбуждения АВР;

    трансформатора тока ТТ;

    выпрямительного трансформатора ВТ;

    тиристорного преобразователя ТП;

    блока защиты БЗ.

Особенности асинхронных генераторов

Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.

При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.

Конструкцию ротора у асинхронных генераторов изготавливают:

    короткозамкнутой;

    фазной;

    полой.

Асинхронные генераторы могут иметь:

1. независимое возбуждение;

2. самовозбуждение.

В первом случае используется внешний источник переменного напряжения, а во втором - полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.

Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.

Мироздание предоставило человечеству триллион способов получить электричество, каждый этап развития характеризуется собственными технологиями. Допустим, исторически первым считают генератор постоянного заряда Ван де Граафа. Неверная точка зрения. Люди пользовались прежде другими разновидностями. Сегодня рассмотрим устройство, принцип работы генератора переменного тока. Приступим.

Работа генераторов электрического тока

Принцип призван создать потенциал относительно Земли, считаемую нулем. Неправильно, но все в мире относительно. Хотя земная поверхность несет заряд, играет роль разница потенциалов меж клеммами генератора и почвой. Стоящий на грунте предмет обволакивается полем планеты, считаем постулат верным. Первым изобретен генератор постоянного тока. Скорее напряжения. Вольтаж получался фантастический, тока приборчик давал мало. Принцип действия прост:

Принцип действия генератора

  1. Лента трется, локально формируется заряд.
  2. Путем конвейерного механизма участок достигает токоснимателя.
  3. Проводимостью клеммы вида шара плотность уравнивается.

В результате сфера приобретает заряд, плотностью равный локальному ленты. Понятно, такие генераторы не слишком удобны, в 1831 году Майкл Фарадей создает нечто новое. Пользуясь намагниченной лошадиной подковой, вращающимся медным диском получил электричество по-иному: явлением магнитной индукции. Ток выходил переменный. Следовательно, поле перестало быть статическим, став электромагнитным. Поясним:

  • В природе часто встречаются заряды электричества положительного или отрицательного знака, никто не сумел разыскать отдельно полюсы магнита.
  • Переменное электрическое поле вызывает соответствующий отклик эфира. Выражен продуцированием переменной магнитной составляющей в плоскости перпендикулярной исходной.

Процесс продолжается беспрерывно, называется электромагнитной волной. Осваивает свободное пространство прямолинейно, пока энергия затухает. Что касается проводов, электричество распространяется сравнительно просто. Но! Пока кабель снабжен оплеткой. Экран пропал, зануление (заземление) отсутствует — волна начинает излучаться. Эффект эксплуатируют беспроводные отвертки-индикаторы, помогают установить (локализовать) источники помех промышленной частоты 50 Гц. И если системный блок компьютера не заземлен, при помощи вещички можно легко исправить недочет.

Помогает проверить вредоносное излучение дисплеев. Частота 50 Гц легко излучается проводами. Аспект увеличивает расходы электростанций (потери), вредит здоровью граждан. Как возникает энергия в генераторе Фарадея? Объясняли школьные учителя: при вращении рамки в поле магнита индукция через площадь меняется, наводится электрический ток.

Механическая энергия движения преобразуется в электрическую. Догадались, человечество эксплуатирует:

  1. Падение с плотины вниз масс воды.
  2. Энергию пара тепловых, атомных электростанций.

Два главнейших механизма получения энергии. Электричество становится движение лопасти турбины генератора. Природа родила устройства, сжигающие дизельное топливо, керосин, принцип действия мало отличается. Разница ограничена мобильностью, скоростью вращения лопасти.

Выработка электрической энергии городов

Посмотрим устройство генератора тока ГЭС. Для накопления потенциальной энергии движимой руслом реки водами воздвигается плотина. Уровень вверх по течению быстро начинает подниматься. Чтобы избежать прорыва (любого типа), часть многотонной массы стравливается (кое-где ставят специальные шлюзы пропускать рыбу на нерест). Полезная часть течения проходит сквозь направляющий аппарат. Знакомые с устройством реактивных двигателей, поняли речь. Направляющим аппаратом называется конфигурация створок, изменением положения регулируется количество проходящей среды (водя).

Говорили в обзорах, регламентированы жесткие требования на частоту вырабатываемого электричества. Ученые просчитали: можно достичь при нынешнем уровне развития, применяя массивные лопасти, на которых не сказываются малые удары волн. Учитывается средняя масса проходящей воды, мелкие скачки скрадываются несусветной массой винта. Очевидно, имея весомые габариты, скорость вращения бессильна составить 50 Гц (3000 об/мин). Лопасть делает 1-2 об/мин.

Винт вращает ротор генератора. Движущаяся ось, усаженная обмотками возбуждения. Катушки, сквозь которые пропускается постоянный ток для создания устойчивого магнитного поля. Излучения не происходит, значение напряженности постоянное (см. выше). Наблюдаются неявные флуктуации, результат не отражается на сути процесса: валу образован несколькими вращающимися магнитами.

Возникает тонкий момент: как получить частоту 50 Гц. Быстро пришли к выводу: выпрямлять переменный ток, после ставить инвертор обратного преобразования невыгодно. Вдоль статора расположили множество проволочных катушек (рамка из опытов Фарадея), в которых будет наводиться индукция. Путем правильной коммутации с генератора удается снять нужные 230 вольт (на деле стоят еще понижающие трансформаторы) с частотой 50 Гц. Генераторы дают три фазы, сдвинутые на 120 градусов. Возникает новый вопрос – обеспечить стабильность. Подавать дозированное количество воды, пока лопасть набирает скорость? Практически невозможно, поступают следующим образом:

  1. Помимо токосъемных катушек статоре содержит возбуждающие.
  2. Туда подается напряжение частоты, позволяющей лопасти набрать нужную скорость.
  3. Получается фактически громадный синхронный двигатель.

Начальный разгон нагоняется потоком воды, вспомогательное напряжение придерживает винт, пытающийся превысить заданную скорость. Вода фактически толкает махину, напряжение возбуждения послужит регуляции (понятно, на статор подается переменный ток). Требуется получить больше мощности, направляющий аппарат плотины чуть приоткрывается. Масса воды становится более солидной, непременно сорвала бы обороты. Приходится увеличивать ток возбуждения статора, контролирующее поле становится сильнее, ситуация остается в нормальных пределах.

Двигатель внутреннего сгорания Катерпиллер, вращающий генератор

Мощность генератора возрастает. А напряжение, поддерживается уровень? По закону электромагнитной ЭДС Фарадея напряжение определено скоростью изменения магнитного поля, числом витков. Получается, конструктивно выбирая площадь катушек, длину кабеля, задаем выходное напряжение генератора. Разумеется, каждый должен иметь свою скорость вращения лопасти. Выдерживается током возбуждения ротора. При возрастании мощности увеличивается ЭДС. Рост тока возбуждения повышает скорость изменения магнитной напряженности поля.

Нужен способ поддержания прежних параметров. Зачастую становятся развязывающие трансформаторы с переменным коэффициентом передачи. Потребитель меняет ток, напряжение остается постоянным. Обеспечиваются заданные стандартами параметры. Устройство генератора переменного тока основано на возбуждении обмоток статора, остальное сводится к методикам регуляции параметров.

Регулировка параметром генераторов переменного тока

В простейшем случае мощность не поддается изменению. В бытовых (мелких генераторах) схема отслеживает напряжение, меняется значение тока возбуждения. Редко ситуация на руку потребителю. Расходуется солярка. Получается, тратится прежняя энергия, часть рассеивается пространством. Не страшно, когда возвращаем Земле часть скорости реки, жечь топливо задаром редкий скупец захочет.

Читатели поняли: обороты сорвутся, если не уменьшить подачу воды, газа, пара – в общем, движущей силы. Отслеживает отдельная цепь регуляции, снабженная регулировочными механизмами. Частному дому лучше создать систему аккумуляторную, сегодня имеется возможность 12 вольтами постоянного тока питать освещение, ноутбуки, многие другие приборы. Сеть возможно оборудовать отводом для периодического заряда батарей. Методик, как помним, две:

  1. С постоянным током. Напряжение варьируется, каждый час заряжается одна десятая емкости. Длительность процесса – 600 минут.
  2. С постоянным напряжением. Ток падает по экспоненте, вначале составит сравнительно большие величины. Главный недостаток методики.

Принцип действия генератора переменного тока позволит вести подзарядку аккумуляторов, руководствуясь необходимостью. Понятно, потребуется цепь гальванической развязки перед каскадом батарей. Можно догадаться из прочитанного, ГЭС применяют устройства с подстраиваемым коэффициентом трансформации. Методики реализации затеи могут быть разными:

  1. Широкое распространение получили трансформаторы с коммутируемыми обмотками. Число витков может меняться путем переключения контакторами цепей.
  2. Более плавный коэффициент обеспечивает скользящий контакт. Здесь витки одной катушки зачищены, токосъемник бегает взад-вперед, меняя число рабочих витков. Понятно, большой ток пропустить сложно, будет возникать искра, в случае ГЭС станет дугой. Скорее устройство регулирования сравнительно малых мощностей.

Из сказанного следует: ток возбуждения ротора ГЭС логично менять скачками в такт переключению обмоток регулирующего трансформатора. Потом происходит плавная подстройка, параметры напряжения приходят в норму. Рассказали в общих чертах, как работает генератор переменного тока. Стоит отметить: конструкцией многообразие не исчерпано. Описанный вид устройств составляет костяк семейства под названием синхронные генераторы переменного тока. Обеспечивают города, по большей части, энергией.

Асинхронный генератор переменного тока

Асинхронные генераторы отличаются отсутствием электрической связи меж статором и ротором. Скорость регулируется направляющим аппаратом. Сообразно стабильность частоты падает, амплитуда напряжения также носит непостоянный характер. В результате можно отметить относительную простоту конструкции асинхронного генератора переменного тока, стабильность параметров не блещет хорошими показателями.

Отличительной чертой назовем способность недостатков асинхронных двигателей плавно перекочевывать, заражая новые устройства. Очевидно, для снабжения потребителей энергией регулируют частоту тока, мощность получается случайной. Хотя, если генератор находится в относительно постоянном окружении, сказанное не окажется большой проблемой.

Содержание:

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение. К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось - электрической цепью. А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию. Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество. Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится - генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) - все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия - это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение - вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он - колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то - два проводочка. А в случае с трамваями вообще один. Второй - сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных - учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф - наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, - этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Трамвайные линии, как известно, поначалу унаследовали эту традицию - питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора - выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами - генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока - это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная - статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально - начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле - ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор - это точно пригнанные друг к другу массивные части. Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат. «сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов - при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита - а от него токопроводящая пыль) - начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Однофазные и многофазные

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части - ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками. Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f вращения ротора. Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта - наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита - около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или - U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек. Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга. Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 - 120⁰ и напряжение U3 - 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов - три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно - в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз». Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции - к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии. Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты - занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника - это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника - и генератор тока возбуждения, и генератор-устройство, дающее конечный результат - напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций - все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.