Программирование машины тьюринга. Машины тьюринга

27.06.2020

Машина Тьюринга - это совокупность следующих объектов

  • 1) внешний алфавит A={a 0 , a 1 , …, a n };
  • 2) внутренний алфавит Q={q 1 , q 2 ,…, q m } - множество состояний;
  • 3) множество управляющих символов {П, Л, С}
  • 4) бесконечная в обе стороны лента, разделённая на ячейки, в каждую из которых в любой дискретный момент времени может быть записан только один символ из алфавита А;
  • 5) управляющее устройство, способное находиться в одном из множества состояний

Символом пустой ячейки является буква внешнего алфавита а 0 .

Среди состояний выделяются начальное q 1 , находясь в котором машина начинает работать, и заключительное (или состояние остановки) q 0 , попав в которое машина останавливается.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита A. Управляющее устройство работает согласно командам, которые имеют следующий вид

q i a j > a p X q k

Запись означает следующее: если управляющее устройство находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то (1) в ячейку вместо a j записывается a p , (2) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если Х= П, или к обозрению следующей левой ячейки, если Х= Л, или же продолжает обозревать ту же ячейку ленты, если Х= С, (3) управляющее устройство переходит в состояние q k.

Поскольку работа машины, по условию, полностью определяется ее состоянием q, в данный момент и содержимым а обозреваемой в этот момент ячейки, то для каждой возможной конфигурации q i a j имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Поэтому программа машины Тьюринга с внешним алфавитом A={a0, a1, …, an} и внутренним Q={q1, q2,…, qm} содержит не более m (n+ 1) команд.

Словом в алфавите А или в алфавите Q, или в алфавите A Q называется любая последовательность букв соответствующего алфавита. Под k-ой конфигурацией будем понимать изображение ленты машины с информацией, сложившейся на ней к началу k-того шага (или слово в алфавите А, записанное на ленту к началу k-того шага), с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина. Имеют смысл лишь конечные конфигурации, т.е. такие, в которых все ячейки ленты, за исключением, быть может, конечного числа, пусты. Конфигурация называется заключительной, если состояние, в котором при этом находится машина, заключительное.

Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация.

Будем говорить, что непустое слово б в алфавите А {а 0 } = {a 1 , …, a n } воспринимается машиной в стандартном положении, если оно записано в последовательных ячейках ленты, все другие ячейки пусты, и машина обозревает крайнюю слева или крайнюю справа ячейку из тех, в которых записано слово б. Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q 1 (соответственно в состоянии остановки q 0).

Если обработка слова б переводит машину Тьюринга в заключительное состояние, то говорят, что она применима к б, в противном случае - не применима к б (машина работает бесконечно)

Рассмотрим пример:

Дана машина Тьюринга с внешним алфавитом А = {0, 1} (здесь 0 - символ пустой ячейки), алфавитом внутренних состояний Q = {q 0 , q 1 , q 2 } и со следующей функциональной схемой (программой):

q 1 0 > 1 Л q 2 ;

q 1 1 > 0 С q 2 ;

q 2 0 > 0 П q 0 ;

q 2 1 > 1 С q 1 ;

Данную программу можно записать с помощью таблицы

На первом шаге действует команда: q 1 0 > 1 Л q 2 (управляющее устройство находится в состоянии q1, а в обозреваемой ячейке записана буква 0, в ячейку вместо 0 записывается 1, головка сдвигается влево, управляющее устройство переходит в состояние q2), в результате на машине создается следующая конфигурация:

Наконец, после выполнения команды q 2 0 > 0 П q 0 создается конфигурация

Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки q 0 .

Таким образом, исходное слово 110 переработано машиной в слово 101.

Полученную последовательность конфигураций можно записать более коротким способом (содержимое обозреваемой ячейки записано справа от состояния, в котором находится в данный момент машина):

11q 1 0 => 1 q 2 11 => 1q 1 11 => 1q 2 01 => 10q 0 1

Машина Тьюринга - не что иное, как некоторое правило (алгоритм) для преобразования слов алфавита A Q, т.е. конфигураций. Таким образом, для определения машины Тьюринга нужно задать ее внешний и внутренний алфавиты, программу и указать, какие из символов обозначают пустую ячейку и заключительное состояние.

Который, позаимствовав идею у Эмиля Поста, придумал её, как считается, в 1936 году. Несмотря на довольно сложное формальное определение, идея в принципе проста. Чтобы понять её, давайте прогуляемся по страницам Википедии.

Первым делом мы попадаем на страничку, которая, собственно, так и называется: «машина Тьюринга ».

Машина Тьюринга

Машина Тьюринга (МТ) - математическая абстракция, представляющая вычислительную машину общего вида. Была предложена Аланом Тьюрингом в году для формализации понятия алгоритма .

Машина Тьюринга является расширением модели конечного автомата и, согласно тезису Чёрча - Тьюринга , способна имитировать (при наличии соответствующей программы) любую машину, действие которой заключается в переходе от одного дискретного состояния к другому.

В состав Машины Тьюринга входит бесконечная в обе стороны лента , разделённая на ячейки, и управляющее устройство с конечным числом состояний.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

В управляющем устройстве содержится таблица переходов , которая представляет алгоритм, реализуемый данной Машиной Тьюринга. Каждое правило из таблицы предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния Машины Тьюринга могут быть помечены как терминальные , и переход в любое из них означает конец работы, остановку алгоритма.

Машина Тьюринга называется детерминированной , если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила, и недетерминированной в противном случае.

Итак, машина Тьюринга - математическая абстракция , умозрительное построение человеческого разума: в природе её нет. Или есть? Сразу приходит на ум, как работает живая клетка . Хотя бы два примера.

1. Для производства белков в клетке с помощью сложно устроенного фермента - РНК-полимеразы - считывается информация с ДНК, своего рода информационной ленты машины Тьюринга. Здесь, правда, не происходит перезапись ячеек самой ленты, но в остальном процесс весьма похож: РНК-полимераза садится на ДНК и двигается по ней в одном направлении, при этом она синтезирует нить РНК - нуклеиновой кислоты, сходной с ДНК. Готовая РНК, отсоединяясь от фермента, несёт информацию к клеточным органеллам, в которых производятся белки.

2. Ещё более похож на машину Тьюринга процесс исправления ошибок в ДНК - её репарация. Здесь ДНК-полимераза вместе с другими белками двигается по ленте ДНК и считывает обе её половинки (геномная ДНК, как известно, представляет собой две переплетенных нити, несущих одну и ту же информацию). Если информация в половинках не совпадает, ДНК-полимераза принимает одну из них за образец и «правит» другую.

Такая аналогия не нова, и в Википедии она тоже описана в статье «Молекулярный компьютер »:

Молекулярный компьютер

Биомолекулярные вычисления или молекулярные компьютеры или даже ДНК - или РНК -вычисления - все эти термины появились на стыке таких различных наук как молекулярная генетика и вычислительная техника.

Биомолекулярные вычисления - это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК-вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты .

Основой всей системы хранения биологической информации, а стало быть, и ДНК-компьютеров, является способность атомов водорода , входящих в азотистые соединения (аденин , тимин , цитозин и гуанин), при определенных условиях притягиваться друг к другу, образуя невалентно связанные пары. С другой стороны, эти вещества могут валентно связываться с сочетаниями молекулы сахара (дезоксирибозы) и фосфата , образуя так называемые нуклеотиды . Нуклеотиды, в свою очередь, легко образуют полимеры длиной в десятки миллионов оснований. В этих супермолекулах фосфат и дезоксирибоза играют роль поддерживающей структуры (они чередуются в цепочке), а азотистые соединения кодируют информацию.

Молекула получается направленной: начинается с фосфатной группы и заканчивается дезоксирибозой. Длинные цепочки ДНК называют нитями, короткие - олигонуклеотидами. Каждой молекуле ДНК соответствует еще одна ДНК - так называемое дополнение Ватсона - Крика . Она имеет противоположную направленность, нежели оригинальная молекула. В результате притяжения аденина к тимину и цитозина к гуанину получается знаменитая двойная спираль, обеспечивающая возможность удвоения ДНК при размножении клетки. Задача удвоения решается с помощью специального белка-энзимы - полимеразы. Синтез начинается только если с ДНК прикреплен кусочек ее дополнения, Данное свойство активно используется в молекулярной биологии и молекулярных вычислениях. По сути своей ДНК + полимераза - это реализация машины Тьюринга , состоящая из двух лент и программируемого пульта управления. Пульт считывает данные с одной ленты, обрабатывает их по некоторому алгоритму и записывает на другую ленту. Полимераза также последовательно считывает исходные данные с одной ленты (ДНК) и на их основе формирует ленту как бы с результатами вычислений (дополнение Ватсона - Крика).

Немножко фантастические перспективы только подогревают наше любопытство. Между тем, мы еще не всё выяснили относительно машины Тьюринга. Как вы помните, в статье из Википедии её назвали расширением конечного автомата. Что же это такое конечный автомат? На него, к счастью, даётся ссылка. Заходя по ней, узнаём, что:

Конечный автомат

Абстрактные автоматы образуют фундаментальный класс дискретных моделей как самостоятельная модель, и как основная компонента машин Тьюринга , автоматов с магазинной памятью , конечных автоматов и других преобразователей информации.

С каждым определением мы всё больше вторгаемся в область чистой математики. Язык становится строже, появляются формальные определения, состоящие из математических символов. Если двигаться дальше, мы придём к теории алгоритмов и теории вычислимости. Путешествовать по страницам Википедии можно долго, но лучше запастись водой и едой, на случай забредания в пустыни аксиом и определений, или хотя бы надёжными ссылками на учебники по математике, например http://www.mccme.ru/free-books/ , или статьи журнала «Потенциал» ;)

Надеюсь, после этого объяснения вам стало немного яснее, что же такое машина Тьюринга?

Давайте вернёмся к истории этого термина.

Итак, как мы уже упоминали, Алан Тьюринг поведал миру о своей машине в 1937 году в так называемом Тезисе Чёрча-Тьюринга. Про Алана Тьюринга - первого хакера и пионера информатики, как написано на мемориальной доске гостиницы, где он родился, поведает нам статья «Алан Тьюринг». Текст статьи полностью приводить здесь не будем, но она и сама по себе не очень подробная.

Алан Тьюринг

Тьюринг, Алан Матисон (23 июня 1912 - 7 июня 1954) - английский математик, логик, криптограф, изобретатель Машины Тьюринга.

В самой статье больше про труды Тьюринга: помимо текста про машину Тьюринга, который мы еще приведем дальше, повествуется о том, что он работал над «проблемой зависания» (Забавно, не так ли? Компьютеров еще не было, и системы Windows тоже, а проблема зависания уже была.); героическая история про то, как Тьюринг взломал код «Энигмы» во время Второй Мировой Войны и тем самым спас Великобританию; факт о том, что он является основателем теории искусственного интеллекта, а также упоминание о знаменитом тесте Тьюринга. Сейчас этот тест уже не так часто используется как завязка научно-фантастического рассказа, однако проблема человеческого в машине всегда останется классикой, как и романы Айзека Азимова и Станислава Лема.

Несмотря на свою старомодность, тест Тьюринга всплыл неожиданным образом в современном мире общения по интернету. К примеру, можно встретить текст диалога двух пользователей ICQ, один из которых является «ботом», и задача - определить, какой именно. Или к Вам может постучаться незнакомый пользователь, возможно, ICQ-робот. Узнаете ли вы его? Изучая теорию, Вы, возможно, сумеете вовремя применить тест Тьюринга и не останетесь обмануты. Начать изучение можно с соответствующей статьи в Википедии, а затем пройтись по ссылкам, приводимым в конце статьи:

Тест Тьюринга

Тест Тьюринга - тест, предложенный Аланом Тьюрингом в 1950 г. в статье «Вычислительные машины и разум» (Computing machinery and intelligence) для проверки, является ли компьютер разумным в человеческом смысле слова.

Судья (человек) переписывается на естественном языке с двумя собеседниками, один из которых - человек, другой - компьютер. Если судья не может надёжно определить, кто есть кто, компьютер прошёл тест. Предполагается, что каждый из собеседников стремится, чтобы человеком признали его. С целью сделать тест простым и универсальным, переписка сводится к обмену текстовыми сообщениями.

Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения исходя из скорости ответов. (Во времена Тьюринга компьютеры реагировали медленнее человека. Сейчас это правило необходимо, потому что они реагируют гораздо быстрее, чем человек).

Тест был инспирирован салонной игрой, в ходе которой гости пытались угадать пол человека, находящегося в другой комнате, путём написания вопросов и чтения ответов. В оригинальной формулировке Тьюринга, человек должен был притворяться человеком противоположного пола, а тест длился 5 минут. Сейчас эти правила не считаются необходимыми и не входят в спецификацию теста.

Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос «может ли машина мыслить?» на более определённый.

Тьюринг предсказал, что компьютеры в конечном счёте пройдут его тест. Он считал, что к 2000 году, компьютер с памятью 1 миллиард бит (около 119 Мб) в ходе 5-минутного теста сможет обмануть судей в 30 % случаев. Это предсказание не сбылось. (Правда, на первом конкурсе Лебнера компьютерная программа «PC Therapist» на IBM PC 386 смогла ввести в заблуждение 5 судей из 10, но ей не засчитали результат, а в 1994 году конкурс усложнили.) Тьюринг также предсказал, что сочетание «мыслящая машина» не будет считаться оксюмороном , а обучение компьютеров будет играть важную роль в создании мощных компьютеров (с чем большинство современных исследователей согласны).

Пока что ни одна программа и близко не подошла к прохождению теста. Такие программы, как Элиза (ELIZA), иногда заставляли людей верить, что они говорят с человеком, как, например, в неформальном эксперименте, названном AOLiza. Но такие «успехи» не являются прохождением теста Тьюринга. Во-первых, человек в таких беседах не имел никаких оснований считать, что он говорит с программой, в то время как в настоящем тесте Тьюринга человек активно пытается определить, с кем он беседует. Во-вторых, документированые случаи обычно относятся к таким чатам, как IRC , где многие беседы отрывочны и бессмысленны. В-третьих, многие пользователи IRC используют английский как второй или третий язык, и бессмысленный ответ программы, вероятно, спишется ими на языковый барьер. В-четвертых, многие пользователи ничего не знают об Элизе и ей подобных программах и не могут распознать совершенно нечеловеческие ошибки, которые эти программы допускают.

Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner). Есть дополнительный приз для программы, которая, по мнению судей, пройдёт тест Тьюринга. Этот приз ещё не присуждался.

Самый лучший результат в тесте Тьюринга показала программа A.L.I.C.E. выиграв тест 3 раза (в 2000, 2001 и 2004).

Ссылки

  • Тьюринг А. М. Вычислительные машины и разум. // В сб.: Хофштадер Д., Деннет Д. Глаз разума. - Самара: Бахрах-М, 2003. - С. 47-59.
  • Книга на английском: Roger Penrose «The Emperor’s New Mind».
  • Статья Алана Тьюринга:
    • Alan Turing, «Computing Machinery and Intelligence», Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
    • В сети:
  • Статья Дж. Оппи (G. Oppy) и Д. Дави (D. Dowe) о тесте Тьюринга из Стэнфордской Философской Энциклопедии (на английском)
  • «Turing Test: 50 Years Later» обзор 50-летней работы над тестом Тьюринга, с точки зрения 2000 г. (на английском).

Возвращаемся опять к машине Тьюринга. В выдержке из статьи про Алана Тьюринга утверждается, что впервые понятие машины Тьюринга было предложено в составе т. н. тезиса Чёрча-Тьюринга:

Выдержка из статьи Википедии «Алан Тьюринг»

Любая интуитивно вычислимая функция является частично вычислимой, или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга.

Алан Тьюринг высказал предположение (известное как Тезис Чёрча-Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.

В статье под названием «Те́зис Чёрча-Тью́ринга» про него пишут так:

Те́зис Чёрча-Тью́ринга

Те́зис Чёрча-Тью́ринга - фундаментальное утверждение для многих областей науки, таких, как теория вычислимости , информатика , теоретическая кибернетика и др. Это утверждение было высказано Алонзо Чёрчем и Аланом Тьюрингом в середине 1930-х годов.

В самой общей форме оно гласит, что любая интуитивно вычислимая функция является частично вычислимой , или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга .

Тезис Чёрча-Тьюринга невозможно строго доказать или опровергнуть, поскольку он устанавливает «равенство» между строго формализованным понятием частично вычислимой функции и неформальным понятием «интуитивно вычислимой функции».

Физический тезис Чёрча-Тьюринга гласит: Любая функция, которая может быть вычислена физическим устройством, может быть вычислена машиной Тьюринга .

С этого перекрёстка можно двинуться в сторону, к примеру, теории вычислимости. А можно попытаться выяснить, кто такой этот загадочный Чёрч, вместе с которым Алан Тьюринг выдвинул свой тезис.

Универсальная машина Тьюринга

Универсальной машиной Тью́ринга называют машину Тьюринга , которая может заменить собой любую машину Тьюринга. Получив на вход программу и входные данные, она вычисляет ответ, который вычислила бы по входным данным машина Тьюринга, чья программа была дана на вход.

Формальное определение

Программу любой детерминированной машины Тьюринга можно записать, используя некоторый конечный алфавит, состоящий из символов состояния, скобок, стрелки и т. п.; обозначим этот машинный алфавит как Σ 1 {\displaystyle \Sigma _{1}} . Тогда универсальной машиной Тьюринга U для класса машин с алфавитом Σ 2 {\displaystyle \Sigma _{2}} и k входными лентами называется машина Тьюринга с k+1 входной лентой и алфавитом Σ 1 ∪ Σ 2 {\displaystyle \Sigma _{1}\cup \Sigma _{2}} такая, что если подать на первые k лент входное значение, а на k+1 - правильно записанный код некоторой машины Тьюринга , то U выдаст тот же ответ, какой выдала бы на этих входных данных M 1 {\displaystyle M_{1}} , или будет работать бесконечно долго, если M 1 {\displaystyle M_{1}} на этих данных не остановится.

Теорема об универсальной машине Тьюринга утверждает, что такая машина существует и моделирует другие машины с не более чем квадратичным замедлением (то есть если исходная машина произвела t шагов, то универсальная произведёт не более ct 2 ). Доказательство у этой теоремы конструктивное (такую машину несложно построить, надо только аккуратно её описать). Теорема была предложена и доказана Тьюрингом в 1936-37 г.

Программная реализация на языке программирования Delphi достаточно проста. С одной из таких реализаций можно ознакомиться на сайте http://kleron.ucoz.ru/load/24-1-0-52 . Предусмотрена возможность загрузки и сохранения в файл Excel.

Недетерминированная машина Тьюринга

Вероятностная машина Тьюринга

Обобщение детерминированной машины Тьюринга, в которой из любого состояния и значений на ленте машина может совершить один из нескольких (можно считать, без ограничения общности - двух) возможных переходов, а выбор осуществляется вероятностным образом (подбрасыванием монетки).

Вероятностная Машина Тьюринга похожа на недетерминированную машину Тьюринга, только вместо недетерминированного перехода машина выбирает один из вариантов с некоторой вероятностью.

Существует также альтернативное определение:

Вероятностная машина Тьюринга представляет собой детерминированную машину Тьюринга, имеющую дополнительно аппаратный источник случайных битов, любое число которых, например, она может «заказать» и «загрузить» на отдельную ленту и потом использовать в вычислениях обычным для МТ образом.

Класс алгоритмов, завершающихся за полиномиальное время на вероятностной машине Тьюринга и возвращающих ответ с ошибкой менее 1/3, называется классом BPP .

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

Введение

Машина Тьюринга - это очень простое вычислительное устройство. Она состоит из ленты бесконечной длины, разделенной на ячейки, и головки, которая перемещается вдоль ленты и способна читать и записывать символы. Также у машины Тьюринга есть такая характеристика, как состояние, которое может выражаться целым числом от нуля до некоторой максимальной величины. В зависимости от состояния машина Тьюринга может выполнить одно из трех действий: записать символ в ячейку, передвинуться на одну ячейку вправо или влево и установить внутреннее состояние.

Устройство машины Тьюринга чрезвычайно просто, однако на ней можно выполнить практически любую программу. Для выполнения всех этих действий предусмотрена специальная таблица правил, в которой прописано, что нужно делать при различных комбинациях текущих состояний и символов, прочитанных с ленты.

В 1947 г. Алан Тьюринг расширил определение, описав "универсальную машину Тьюринга". Позже для решения определенных классов задач была введена ее разновидность, которая позволяла выполнять не одну задачу, а несколько.

Описание машины Тьюринга

Предыстория создания этой работы связана с формулировкой Давидом Гильбертом на Международном математическом конгрессе в Париже в 1900 году неразрешенных математических проблем. Одной из них была задача доказательства непротиворечивости системы аксиом обычной арифметики, которую Гильберт в дальнейшем уточнил как "проблему разрешимости" - нахождение общего метода, для определения выполнимости данного высказывания на языке формальной логики.

Статья Тьюринга как раз и давала ответ на эту проблему - вторая проблема Гильберта оказалась неразрешимой. Но значение статьи Тьюринга выходило далеко за рамки той задачи, по поводу которой она была написана.

Приведем характеристику этой работы, принадлежащую Джону Хопкрофту: "Работая над проблемой Гильберта, Тьюрингу пришлось дать четкое определение самого понятия метода. Отталкиваясь от интуитивного представления о методе как о некоем алгоритме, т.е. процедуре, которая может быть выполнена механически, без творческого вмешательства, он показал, как эту идею можно воплотить в виде подробной модели вычислительного процесса. Полученная модель вычислений, в которой каждый алгоритм разбивался на последовательность простых, элементарных шагов, и была логической конструкцией, названной впоследствии машиной Тьюринга".

Машина Тьюринга является расширением модели конечного автомата, расширением, включающим потенциально бесконечную память с возможностью перехода (движения) от обозреваемой в данный момент ячейки к ее левому или правому соседу.

Формально машина Тьюринга может быть описана следующим образом. Пусть заданы:

конечное множество состояний - Q, в которых может находиться машина Тьюринга;

конечное множество символов ленты - Г;

функция д (функция переходов или программа), которая задается отображением пары из декартова произведения Q x Г (машина находится в состоянии qi и обозревает символ i) в тройку декартова произведения Q х Г х {L,R} (машина переходит в состояние qi, заменяет символ i на символ j и передвигается влево или вправо на один символ ленты) - Q x Г-->Q х Г х {L,R}

один символ из Г-->е (пустой);

подмножество У є Г - -> определяется как подмножество входных символов ленты, причем е є (Г - У);

одно из состояний - q0 є Q является начальным состоянием машины.

Решаемая проблема задается путем записи конечного количества символов из множества У є Г - Si є У на ленту:

eS1S2S3S4... ... ... Sne

после чего машина переводится в начальное состояние и головка устанавливается у самого левого непустого символа (q0,w) -, после чего в соответствии с указанной функцией переходов (qi,Si) - ->(qj,Sk, L или R) машина начинает заменять обозреваемые символы, передвигать головку вправо или влево и переходить в другие состояния, предписанные функций переходов.

Остановка машины происходит в том случае, если для пары (qi,Si) функция перехода не определена.

Алан Тьюринг высказал предположение, что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Это предположение известно как тезис Черча-Тьюринга. Каждый компьютер может моделировать машину Тьюринга (операции перезаписи ячеек, сравнения и перехода к другой соседней ячейке с учетом изменения состояния машины). Следовательно, он может моделировать алгоритмы в любом формализме, и из этого тезиса следует, что все компьютеры (независимо от мощности, архитектуры и т.д.) эквивалентны с точки зрения принципиальной возможности решения алгоритмических задач.

Свойства машины Тьюринга как алгоритма

На примере машины Тьюринга хорошо прослеживаются свойства алгоритмов. Попросите учащихся показать, что машина Тьюринга обладает всеми свойствами алгоритма.

Дискретность. Машина Тьюринга может перейти к (к + 1) - му шагу только после выполнения каждого шага, т.к именно каждый шаг определяет, каким будет (к + 1) - й шаг.

Понятность. На каждом шаге в ячейку пишется символ из алфавита, автомат делает одно движение (Л, П, Н), и машина Тьюринга переходит в одно из описанных состояний.

Детерминированность. В каждой клетке таблицы машины Тьюринга записан лишь один вариант действия. На каждом шаге результат определен однозначно, следовательно, последовательность шагов решения задачи определена однозначно, т.е. если машине Тьюринга на вход подают одно и то же входное слово, то выходное слово каждый раз будет одним и тем же.

Результативность. Содержательно результаты каждого шага и всей последовательности шагов определены однозначно, следовательно, правильно написанная машина Тьюринга за конечное число шагов перейдет в состояние q0, т.е. за конечное число шагов будет получен ответ на вопрос задачи.

Массовость. Каждая машина Тьюринга определена над всеми допустимыми словами из алфавита, в этом и состоит свойство массовости. Каждая машина Тьюринга предназначена для решения одного класса задач, т.е. для каждой задачи пишется своя (новая) машина Тьюринга.

Транскрипт

1 Московский государственный университет им. М.В. Ломоносова Факультет вычислительной математики и кибернетики В.Н. Пильщиков, В.Г. Абрамов, А.А. Вылиток, И.В. Горячая Машина Тьюринга и алгоритмы Маркова. Решение задач (Учебно-методическое пособие) Москва, 2006


2 УДК ББК П32 Пильщиков В.Н., Абрамов В.Г., Вылиток А.А., Горячая И.В. Машина Тьюринга и алгоритмы Маркова. Решение задач. (Учебно-методическое пособие) - М.: МГУ, с. Издательский отдел факультета ВМК МГУ (лицензия ЛР от) Пособие посвящено решению задач по теме «Введение в теорию алгоритмов», изучаемой на первом курсе факультета ВМК МГУ в рамках дисциплины «Алгоритмы и алгоритмические языки». Это задачи на составление алгоритмов в виде машины Тьюринга и нормальных алгоритмов Маркова, а также задачи теоретического характера. В пособии приводятся необходимые сведения по теории алгоритмов, подробно объясняются типичные приёмы решения задач и предлагается большой набор задач для самостоятельного решения. Пособие рассчитано на студентов первого курса факультета ВМК МГУ и преподавателей, ведущих семинарские занятия по программированию. Рецензенты: доцент Баула В.Г. доцент Корухова Л.С. Печатается по решению Редакционно-издательского совета факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова. ISBN??? Издательский отдел факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова,


3 1. Машина Тьюринга В разделе рассматриваются задачи на составление алгоритмов для машины Тьюринга. Приводится краткое описание этой машины, на примерах объясняются основные приёмы составления таких алгоритмов и предлагаются задачи для самостоятельного решения. 1.1 Краткое описание машины Тьюринга Структура машины Тьюринга Машина Тьюринга (МТ) состоит из двух частей ленты и автомата (см. слева): лента: a b b Λ Λ a b b Λ Λ автомат: q q Лента используется для хранения информации. Она бесконечна в обе стороны и разбита на клетки, которые никак не нумеруются и не именуются. В каждой клетке может быть записан один символ или ничего не записано. Содержимое клетки может меняться в неё можно записать другой символ или стереть находящийся там символ. Договоримся пустое содержимое клетки называть символом «пусто» и обозначать знаком Λ («лямбда»). В связи с этим изображение ленты, показанное на рисунке справа, такое же, как и на рисунке слева. Данное соглашение удобно тем, что операцию стирания символа в некоторой клетке можно рассматривать как запись в эту клетку символа Λ, поэтому вместо длинной фразы «записать символ в клетку или стереть находящийся там символ» можно говорить просто «записать символ в клетку». Автомат это активная часть МТ. В каждый момент он размещается под одной из клеток ленты и видит её содержимое; это видимая клетка, а находящийся в ней символ видимый символ; содержимое соседних и других клеток автомат не видит. Кроме того, в каждый момент автомат находится в одном из состояний, которые будем обозначать буквой q с номерами: q1, q2 и т.п. Находясь в некотором состоянии, автомат выполняет какую-то определённую операцию (например, перемещается направо по ленте, заменяя все символы b на a), находясь в другом состоянии другую операцию. Пару из видимого символа (S) и текущего состояния автомата (q) будем называть конфигурацией и обозначать . Автомат может выполнять три элементарных действия: 1) записывать в видимую клетку новый символ (менять содержимое других клеток автомат не может); 2) сдвигаться на одну клетку влево или вправо («перепрыгивать» сразу через несколько клеток автомат не может); 3) переходить в новое состояние. Ничего другого делать автомат не умеет, поэтому все более сложные операции так или иначе должны быть сведены к этим трём элементарным действиям. 3


4 Такт работы машины Тьюринга МТ работает тактами, которые выполняются один за другим. На каждом такте автомат МТ выполняет три следующих действия, причем обязательно в указанном порядке: 1) записывает некоторый символ S в видимую клетку (в частности, может быть записан тот же символ, что и был в ней, тогда содержимое этой клетки не меняется); 2) сдвигается на одну клетку влево (обозначение L, от left), либо на одну клетку вправо (обозначение R, от right), либо остается неподвижным (обозначение N). 3) переходит в некоторое состояние q (в частности, может остаться в прежнем состоянии). Формально действия одного такта будем записывать в виде тройки: S, , q где конструкция с квадратными скобками означает возможность записи в этом месте любой из букв L, R или N. Например, такт *,L,q8 означает запись символа * в видимую клетку, сдвиг на одну клетку влево и переход в состояние q8. Программа для машины Тьюринга Сама по себе МТ ничего не делает. Для того чтобы заставить её работать, надо написать для неё программу. Эта программа записывается в виде следующей таблицы: q 1 q j q m S 1 S 2 S i S n Λ S, , q Слева перечисляются все состояния, в которых может находиться автомат, сверху все символы (в том числе и Λ), которые автомат может видеть на ленте. (Какие именно символы и состояния указывать в таблице определяет автор программы.) На пересечениях же (в ячейках таблицы) указываются те такты, которые должен выполнить автомат, когда он находится в соответствующем состоянии и видит на ленте соответствующий символ. В целом таблица определяет действия МТ при всех возможных конфигурациях и тем самым полностью задаёт поведение МТ. Описать алгоритм в виде МТ значит предъявить такую таблицу. (Замечание. Часто МТ определяют как состоящую из ленты, автомата и программы, поэтому при разных программах получаются разные МТ. Мы же будет считать, в духе современных компьютеров, что МТ одна, но она может выполнять разные программы.) 4


5 Правила выполнения программы До выполнения программы нужно проделать следующие предварительные действия. Во-первых, надо записать на ленту входное слово, к которому будет применена программа. Входное слово это конечная последовательность символов, записанных в соседних клетках ленты; внутри входного слова пустых клеток быть не должно, а слева и справа от него должны быть только пустые клетки. Пустое входное слово означает, что все клетки ленты пусты. Во-вторых, надо установить автомат в состояние q 1 (указанное в таблице первым) и разместить его под первым символом входного слова: a b b q 1 Если входное слово пустое, то автомат может смотреть в любую клетку, т.к. все они пусты. После этих предварительных действий начинается выполнение программы. В таблице отыскивается ячейка на пересечении первой строки (т.к. автомат находится в состоянии q 1) и того столбца, который соответствует первому символу входного слова (это необязательно левый столбец таблицы), и выполняется такт, указанный в этой ячейке. В результате автомат окажется в новой конфигурации. Теперь такие же действия повторяются, но уже для новой конфигурации: в таблице отыскивается ячейка, соответствующая состоянию и символу этой конфигурации, и выполняется такт из этой ячейки. И так далее. Когда завершается выполнение программы? Введём понятие такта останова. Это такт, который ничего не меняет: автомат записывает в видимую клетку тот же символ, что и был в ней раньше, не сдвигается и остается в прежнем состоянии, т.е. это такт S,N,q для конфигурации . Попав на такт останова, МТ, по определению, останавливается, завершая свою работу. В целом возможны два исхода работы МТ над входным словом: 1) Первый исход «хороший»: это когда в какой-то момент МТ останавливается (попадает на такт останова). В таком случае говорят, что МТ применима к заданному входному слову. А то слово, которое к этому моменту получено на ленте, считается выходным словом, т.е. результатом работы МТ, ответом. В момент останова должны быть выполнены следующие обязательные условия: внутри выходного слова не должно быть пустых клеток (отметим, что во время выполнения программы внутри обрабатываемого слова пустые клетки могут быть, но в конце их уже не должно остаться); автомат обязан остановиться под одним из символов выходного слова (под каким именно не играет роли), а если слово пустое под любой клеткой ленты. 5


6 2) Второй исход «плохой»: это когда МТ зацикливается, никогда не попадая на такт останова (например, автомат на каждом шаге сдвигается вправо и потому не может остановиться, т.к. лента бесконечна). В этом случае говорят, что МТ неприменима к заданному входному слову. Ни о каком результате при таком исходе не может идти и речи. Отметим, что один и тот же алгоритм (программа МТ) может быть применимым к одним входным словам (т.е. останавливаться) и неприменимым к другим (т.е. зацикливаться). Таким образом, применимость/неприменимость зависит не только от самого алгоритма, но и от входного слова. На каких входных словах алгоритм должен останавливаться? На, так сказать, хороших словах, т.е. на тех, которые относятся к допустимым исходным данным решаемой задачи, для которых задача осмысленна. Но на ленте могут быть записаны любые входные слова, в том числе и те, для которых задача не имеет смысла; на таких словах поведение алгоритма не фиксируется, он может остановиться (при любом результате), а может и зациклиться. Соглашения для сокращения записи Договоримся о некоторых соглашениях, сокращающих запись программы для МТ. 1) Если в такте не меняется видимый символ, или автомат не сдвигается, или не меняется состояние автомата, то в соответствующей позиции такта мы не будем ничего писать. Например, при конфигурации следующие записи тактов эквивалентны: a,r,q3,r,q3 (но не Λ,R,q3!!) b,n,q2 b,q2 a,l,q1,l, a,n,q1, (это такт останова) Замечание. Запятые в тактах желательно не опускать, т.к. иначе возможна путаница, если среди символов на ленте могут встретиться буквы L и R. 2) Если надо указать, что после выполнения некоторого такта МТ должна остановиться, то в третьей позиции этого такта будем писать знак «!». Например, такт b,l,! означает следующие действия: запись символа b в видимую клетку ленты, сдвиг влево и останов. Формально можно считать, что в программе МТ имеется состояние с названием!, во всех ячейках которого записаны такты останова. При этом, однако, такую строку явно не выписывают, а лишь подразумевают. 3) Если заранее известно, что в процессе выполнения программы не может появиться некоторая конфигурация, тогда, чтобы подчеркнуть это явно, будем в соответствующей ячейке таблицы рисовать крестик. (Формально этот крестик считается тактом останова.) Эти соглашения необязательны, но они сокращают запись программы и упрощают её восприятие. 6


7 1.2 Примеры на составление программ для МТ Рассмотрим примеры на составление программ для МТ, чтобы продемонстрировать некоторые типичные приёмы программирования на МТ. Для сокращения формулировки задач введём следующие два соглашения: буквой Р будем обозначать входное слово; буквой А будем обозначать алфавит входного слова, т.е. набор тех символов, из которых и только которых может состоять Р (отметим, однако, что в промежуточных и выходном словах могут появляться и другие символы). Пример 1 (перемещение автомата, замена символов) А={0,1,2,3,4,5,6,7,8,9}. Пусть Р непустое слово; значит, Р это последовательность из десятичных цифр, т.е. запись неотрицательного целого числа в десятичной системе. Требуется получить на ленте запись числа, которое на 1 больше числа Р. Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Перегнать автомат под последнюю цифру числа. 2. Если это цифра от 0 до 8, то заменить её цифрой на 1 больше и остановиться; например: Если же это цифра 9, тогда заменить её на 0 и сдвинуть автомат к предыдущей цифре, после чего таким же способом увеличить на 1 эту предпоследнюю цифру; например: Особый случай: в Р только девятки (например, 99). Тогда автомат будет сдвигаться влево, заменяя девятки на нули, и в конце концов окажется под пустой клеткой. В эту пустую клетку надо записать 1 и остановиться (ответом будет 100): В виде программы для МТ эти действия описываются следующим образом: Λ q1 0,R,q1 1,R,q1 2,R,q1 3,R,q1 4,R,q1 5,R,q1 6,R,q1 7,R,q1 8,R,q1 9,R,q1 Λ,L,q2 q2 1,N,! 2, N,! 3, N,! 4, N,! 5, N,! 6, N,! 7, N,! 8, N,! 9, N,! 0,L,q2 1,N,! Пояснения. q1 это состояние, в котором автомат «бежит» под последнюю цифру числа. Для этого он всё время движется вправо, не меняя видимые цифры и оставаясь в том же состоянии. Но здесь есть одна особенность: когда автомат находится под 7


8 последней цифрой, то он ещё не знает об этом (ведь он не видит, что записано в соседних клетках) и определит это лишь тогда, когда попадёт на пустую клетку. Поэтому, дойдя до первой пустой клетки, автомат возвращается назад под последнюю цифру и переходит в состояние q2 (вправо двигаться уже не надо). q2 это состояние, в котором автомат прибавляет 1 к той цифре, которую видит в данный момент. Сначала это последняя цифра числа; если она в диапазоне от 0 до 8, то автомат заменяет её цифрой, которая на 1 больше, и останавливается. Но если это цифра 9, то автомат заменяет её на 0 и сдвигается влево, оставаясь в состоянии q2. Тем самым, он будет теперь прибавлять 1 к предыдущей цифре. Если и эта цифра равна 9, то автомат заменяет её на 0 и сдвигается влево, оставаясь попрежнему в состоянии q2, т.к. должен выполнить то же самое действие увеличить на 1 видимую цифру. Если же автомат сдвинулся влево, а в видимой клетке нет цифры (а есть «пусто»), то он записывает сюда 1 и останавливается. Отметим, что для пустого входного слова наша задача не определена, поэтому на этом слове МТ может вести себя как угодно. В нашей программе, например, при пустом входном слове МТ останавливается и выдает ответ 1. Выше мы привели запись программы в полном, несокращённом виде. Теперь же приведём запись программы в сокращённом, более наглядном виде, при этом справа дадим краткое пояснение действий, которые реализуются в соответствующих состояниях автомата: Λ q1,r,r,r,r,r,r,r,r,r,r,l,q2 под последнюю цифру q2 1,! 2,! 3,! 4,! 5,! 6,! 7,! 8,! 9,! 0,L, 1,! видимая цифра + 1 Именно так мы и будем в дальнейшем записывать программы. Пример 2 (анализ символов) А={a,b,c}. Перенести первый символ непустого слова Р в его конец. Например: a b c b b c b a Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Запомнить первый символ слова P, а затем стереть этот символ. 2. Перегнать автомат вправо под первую пустую клетку за P и записать в неё запомненный символ. Как «бегать» вправо, мы уже знаем из предыдущего примера. А вот как запомнить первый символ? Ведь в МТ нет другого запоминающего устройства, кроме ленты, а запоминать символ в какой-то клетке на ленте бессмысленно: как только автомат сдвинется влево или вправо от этой клетки, он тут же забудет данный символ. Что делать? Выход здесь таков надо использовать разные состояния автомата. Если первый символ это a, то надо перейти в состояние q2, в котором автомат 8


9 бежит вправо и записывает в конце a. Если же первым был символ b, тогда надо перейти в состояние q3, где делается всё то же самое, только в конце записывается символ b. Если же первым был символ c, тогда переходим в состояние q4, в котором автомат дописывает за входным словом символ c. Следовательно, то, каким был первый символ, мы фиксируем переводом автомата в разные состояния. Это типичный приём при программировании на МТ. С учётом сказанного программа будет такой: a b c Λ q1 Λ,R,q2 Λ,R,q3 Λ,R,q4,R, анализ 1-го символа, удаление его, разветвление q2,r,r,r, a,! запись a справа q3,r,r,r, b,! запись b справа q4,r,r,r, c,! запись c справа Рассмотрим поведение этой программы на входных словах, содержащих не более одного символа. При пустом слове, которое является «плохим» для задачи, программа зациклится автомат, находясь в состоянии q1 и попадая всё время на пустые клетки, будет бесконечно перемещаться вправо. (Конечно, в этом случае программу можно было бы остановить, но мы специально сделали зацикливание, чтобы продемонстрировать такую возможность.) Если же во входном слове ровно один символ, тогда автомат сотрёт этот символ, сдвинется на одну клетку вправо и запишет в неё данный символ: c c q1 q4! Таким образом, слово из одного символа попросту сдвинется на клетку вправо. Это допустимо. Ведь клетки ленты не нумерованы, поэтому местоположение слова на ленте никак не фиксируется и перемещение слова влево или вправо заметить нельзя. В связи с этим не требуется, чтобы выходное слово обязательно находилось в том же месте, где было входное слово, результат может оказаться и левее, и правее этого места. Пример 3 (сравнение символов, стирание слова) А={a,b,c}. Если первый и последний символы (непустого) слова Р одинаковы, тогда это слово не менять, а иначе заменить его на пустое слово. Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Запомнить первый символ входного слова, не стирая его. 2. Переместить автомат под последний символ и сравнить его с запомненным. Если они равны, то больше ничего не делать. 3. В противном случае уничтожить всё входное слово. Как запоминать символ и как перегонять автомат под последний символ слова, мы уже знаем из предыдущих примеров. Стирание же входного слова реализуется 9


10 заменой всех его символов на символ Λ. При этом, раз уж автомат оказался в конце слова, будем перемещать автомат справа налево до первой пустой клетки. Эти действия описываются следующей программой для МТ (напомним, что крестик в ячейке таблицы означает невозможность появления соответствующей конфигурации при выполнении программы): a b c Λ q1,q2,q4,q6,! анализ 1-го символа, разветвление q2,r,r,r, L,q3 идти к последнему символу при 1-м символе a q3,!, q8, q8 сравнить посл. символ с a, не равны на q8 (стереть P) q4,r,r,r, L,q5 аналогично при 1-м символе b q5, q8,!, q8 q6,r,r,r, L,q7 аналогично при 1-м символе c q7, q8, q8,! q8 Λ,L, Λ,L, Λ,L,! стереть всё слово, двигаясь справа налево Пример 4 (удаление символа из слова) А={a,b}. Удалить из слова Р его второй символ, если такой есть. Решение. Казалось бы, эту задачу решить просто: надо сдвинуть автомат под клетку со вторым символом и затем очистить эту клетку: a b b a a b b a a b a Однако напомним, что внутри выходного слова не должно быть пустых клеток. Поэтому после удаления второго символа надо «сжать» слово, перенеся первый символ на одну клетку вправо. Для этого автомат должен вернуться к первому символу, запомнить его и стереть, а затем, снова сдвинувшись вправо, записать его в клетку, где был второй символ. Однако начальный «поход» вправо ко второму символу, чтобы его стереть, и последующий возврат к первому символу являются лишними действиями: какая разница переносить первый символ в пустую клетку или в клетку с каким-то символом? Поэтому сразу запоминаем первый символ, стираем его и записываем вместо второго символа: a b b a b b a a b a В виде программы для МТ всё это записывается так: a b Λ q1 Λ,R,q2 Λ,R,q3,! анализ и удаление 1-го символа, разветвление q2,! a,! a,! замена 2-го символа на a q3 b,!,! b,! замена 2-го символа на b Пример 5 (сжатие слова) А={a,b,c}. Удалить из слова Р первое вхождение символа a, если такое есть. Решение. В предыдущем примере мы переносили на позицию вправо только один сим- 10


11 вол. В данном же примере мы будем в цикле переносить вправо все начальные символы b и c входного слова до первого символа a или до пустой клетки: b c b c b a a b b a a b c a a b c b a Центральный момент здесь как перенести символ x из левой клетки в очередную клетку, где находится некоторый символ y, чтобы затем этот символ y можно было перенести в правую клетку? Если через q x обозначить состояние, в котором в видимую клетку надо записать символ x, находившийся ранее в клетке слева, тогда это действие можно изобразить так: x y y z x z q x Для этого предлагается выполнить такт x,r,q y, в котором объединены следующие три действия: во-первых, в видимую клетку записывается символ x, взятый из клетки слева; во-вторых, автомат сдвигается вправо под клетку, в которую затем надо будет записать только что заменённый символ y; в-третьих, автомат переходит в состояние q y, в котором он и будет выполнять эту запись. Повторение таких тактов в цикле и приведёт к сдвигу вправо на одну позицию начальных символов входного слова. Этот цикл должен закончиться, когда в очередной клетке окажется символ a или Λ (y=a или y=λ), а в начале цикла можно считать, что на место первого символа слева переносится символ «пусто» (x=λ). В итоге получается следующая программа для МТ: a b c Λ q1 Λ,R,! Λ,R,q2 Λ,R,q3,! q Λ : стереть 1-й символ и перенести его вправо q2 b,!,r, b,r,q3 b,! q b: запись b, перенос ранее видимого символа вправо q3 c,! c,r,q2,r, c,! q c: запись c, перенос ранее видимого символа вправо В этой программе следует обратить внимание на такт Λ,R,!, который выполняется в конфигурации , т.е. когда первым символом входного слова является a. Ясно, что надо просто стереть этот символ и остановиться. Однако в этом такте указан ещё и сдвиг вправо. Зачем? Напомним, что в момент останова автомат должен находиться под выходным словом (под любым его символом), поэтому мы и сдвигаем автомат с пустой клетки на клетку с первым символом выходного слова, который во входном слове был вторым. b q y Пример 6 (вставка символа в слово) А={a,b,c}. Если Р непустое слово, то за его первым символом вставить символ a. Решение. Ясно, что между первым и вторым символами слова Р надо освободить клетку для нового символа a. Для этого надо перенести на одну позицию влево 11


12 первый символ (на старом месте его можно пока не удалять), а затем, вернувшись на старое место, записать символ a: b c a b c a b b c a b a c a Перенос символа на одну позицию влево аналогичен переносу символа вправо, о чём говорилось в двух предыдущих примерах, поэтому приведем программу для МТ без дополнительных комментариев. Отметим лишь, что в состояниях q2, q3 и q4 автомат может видеть только пустую клетку, а в состоянии q5 он обязательно видит первый символ входного слова, но не пустую клетку. a b c Λ q1,l,q2,l,q3,l,q4,! анализ 1-го символа для переноса его влево q2 a,r,q5 приписать a слева q3 b,r,q5 приписать b слева q4 c,r,q5 приписать c слева q5,! a,! a,! заменить бывший 1-й символ на a Пример 7 (раздвижка слова) А={a,b,c}. Вставить в слово P символ a за первым вхождением символа c, если такое есть. Решение. Просматриваем входное слово слева направо до пустой клетки или до первого символа c. В первом случае c не входит в P, поэтому ничего не делаем. Во втором случае надо освободить место для вставляемого символа a, для чего сдвигаем начало слова P (от первого символа до найденного символа c) на одну позицию влево. При этом осуществляем такой сдвиг справа налево от символа c к началу слова, раз уж автомат находится под этим символом. Кроме того, чтобы затем не возвращаться к освободившейся позиции, начинаем этот сдвиг с записи a вместо найденного символа c. Поскольку этот циклический сдвиг влево реализуется аналогично циклическому сдвигу вправо из примера 5, то не будем пояснять его, а сразу приведём программу для МТ: a b c Λ q1,r,r, a,l,q4,l,! вправо до с, вставка a вместо c, перенос c влево q2,l, a,l,q3 a,l,q4 a,! перенос a справа q3 b,l,q2,l, b,l,q4 b,! перенос b справа q4 c,l,q2 c,l,q3,l, c,! перенос c справа Пример 8 (формирование слова на новом месте) А={a,b,c}. Удалить из P все вхождения символа a. Решение. Предыдущие примеры показывают, что в МТ достаточно сложно реализуются вставки символов в слова и удаления символов из слов. Поэтому иногда проще не раздвигать или сжимать входное слово, а формировать выходное сло- 12


13 во в другом, свободном месте ленты. Именно так мы и поступим при решении данной задачи. Конкретно предлагается выполнить следующие действия: 1. Выходное слово будем строить справа от входного. Чтобы разграничить эти слова, отделим их некоторым вспомогательным символом, например знаком =, отличным от всех символов алфавита A (см. шаг 1). (Напомним, что на ленте могут быть записаны не только символы из алфавита входного слова.) 2. После этого возвращаемся к началу входного слова (см. шаг 2). a b c a b c = a b c = Теперь наша задача перенести в цикле все символы входного слова, кроме a, вправо за знак = в формируемое выходное слово. Для этого анализируем первый символ входного слова. Если это a, тогда стираем его и переходим к следующему символу (см. шаг 3). Если же первый символ это b или c, тогда стираем его и «бежим» вправо до первой пустой клетки (см. шаг 4), куда и записываем этот символ (см. шаг 5). b c = c = c = b Снова возвращаемся налево к тому символу, который стал первым во входном слове, и повторяем те же самые действия, но уже по отношению к этому символу (см. шаги 6-9). c = b = b = b c Этот цикл завершается, когда при возврате налево мы увидим в качестве первого символа знак =. Это признак того, что мы полностью просмотрели входное слово и перенесли все его символы, отличные от a, в формируемое справа выходное слово. Надо этот знак стереть, сдвинуться вправо под выходное слово и остановиться (см. шаг 10). = b c b c 9 10 С учётом всего сказанного и строим программу для МТ. При этом отметим, что помимо символов a, b и c в процессе решения задачи на ленте появляется знак =, поэтому в таблице должен быть предусмотрен столбец и для этого знака. a b c = Λ q1,r,r,r, =,q2 записать справа знак = q2,l,l,l,l,r,q3 влево к 1-му символу слова q3 Λ,R, Λ,R,q4 Λ,R,q5 Λ,R,! анализ и удаление его, разветвление q4,r,r,r,r, b,q2 запись b справа, возврат налево (в цикл) q5,r,r,r,r, c,q2 запись c справа, возврат налево (в цикл) 13


14 Пример 9 (фиксирование места на ленте) А={a,b}. Удвоить слово P, поставив между ним и его копией знак =. Например: a a b a a b = a a b Решение. Эта задача решается аналогично предыдущей: в конец входного слова записываем знак =, затем возвращаемся к началу слова и в цикле все его символы (в том числе и a) копируем в пустые клетки справа: a a b a a b = a a b = a a b = a 1 2 Однако есть и отличие: копируемые символы входного слова не удаляются, и это приводит к следующей проблеме. Записав справа копию очередного символа, мы затем должны вернуться к входному слову в позицию этого символа и потом сдвинуться вправо к следующему символу, чтобы скопировать уже его. Но как узнать, в какую позицию входного слова надо вернуться? Например, откуда мы знаем в нашем примере, что после копирования первого символа a мы должны вернуться именно к первому символу входного слова, а не ко второму или третьему? В предыдущей задаче мы всегда возвращались к первому из оставшихся символов входного слова, а теперь мы сохраняем все символы, поэтому непонятно, какие символы мы уже скопировали, а какие ещё нет. Отметим также, что в МТ ячейки ленты никак не нумеруются, нет в МТ и счетчиков, которые позволили бы определить, сколько символов мы уже скопировали. В общем виде проблема, с которой мы столкнулись, следующая: как зафиксировать на ленте некоторую позицию, в которой мы уже были и к которой позже должны вернуться? Обычно эта проблема решается так. Когда мы оказываемся в этой позиции в первый раз, то заменяем находящийся в ней символ на его двойник на новый вспомогательный символ, причем разные символы заменяем на разные двойники, например a на A и b на B. После этого мы выполняем какие-то действия в других местах ленты. Чтобы затем вернуться к нашей позиции, надо просто отыскать на ленте ту клетку, где находится символ A или B. Затем в данной клетке можно восстановить прежний символ, если нам больше не надо фиксировать эту позицию (именно для восстановления прежнего символа и надо было заменять разные символы на разные двойники). Воспользуемся этим приёмом в нашей задаче, выполняя следующие действия: 1. Как уже сказано, вначале записываем знак = за входным словом (см. шаг 1 выше). 2. Затем возвращаемся под первый символ входного слова (см. шаг 2 выше). 3. Далее заменяем видимый символ a на двойник A (см. шаг 3 ниже), «бежим» вправо до первой свободной клетки и записываем в неё символ a (см. шаг 4). После этого возвращаемся влево к клетке с двойником A (см. шаг 5), восстанавливаем прежний символ a и сдвигаемся вправо к следующему символу (см. шаг 6). 14


15 a a b = A a b = A a b = a A a b = a a a b = a a A b = a a A b = a a a a B = a a b a a b = a a b Теперь аналогичным образом копируем второй символ (заменяем его на A, в конец дописываем a и т.д.) и все последующие символы входного слова. 4. Когда мы скопируем последний символ входного слова и вернёмся к его двойнику (после шага 12), то затем после сдвига на одну позицию вправо мы попадём на знак = (шаг 13). Это сигнал о том, что входное слово полностью скопировано, поэтому работу МТ надо завершать. С учётом всего сказанного получаем следующую программу для МТ: a b = A B Λ q1,r,r, =,L,q2 поставить = справа от слова q2,l,l,r,q3 налево под 1-й символ q3 A,R,q4 B,R,q5,! анализ и замена очередного символа q4,r,r,r, a,q6 запись a справа q5,r,r,r, b,q6 запись b справа q6,l,l,l, a,r,q3 b,r,q3 возврат, восстановление, к след. символу Отметим, что в этой программе можно избавиться от состояния q6, если объединить его с состоянием q2, предусмотрев в q2 возврат влево как до пустой клетки, так и до символов A и B: a b = A B Λ... q2,l,l,l, a,r,q3 b,r,q3,r,q3 налево до Λ, A или B Задачи для самостоятельного решения Замечания: 1) В задачах рассматриваются только целые неотрицательные числа, если не сказано иное. 2) Под «единичной» системой счисления понимается запись неотрицательного целого числа с помощью палочек должно быть выписано столько палочек, какова величина числа; например: 2, 5, 0 <пустое слово>. 1.1 A={a,b,c}. Приписать слева к слову P символ b (P bp). 1.2 A={a,b,c}. Приписать справа к слову P символы bc (P Pbc). 1.3 A={a,b,c}. Заменить на a каждый второй символ в слове P. 15


16 1.4 A={a,b,c}. Оставить в слове P только первый символ (пустое слово не менять). 1.5 A={a,b,c}. Оставить в слове P только последний символ (пустое слово не менять). 1.6 A={a,b,c}. Определить, является ли P словом ab. Ответ (выходное слово): слово ab, если является, или пустое слово иначе. 1.7 A={a,b,c}. Определить, входит ли в слово P символ a. Ответ: слово из одного символа a (да, входит) или пустое слово (нет). 1.8 A={a,b,c}. Если в слово P не входит символ a, то заменить в P все символы b на с, иначе в качестве ответа выдать слово из одного символа a. 1.9 A={a,b,0,1}. Определить, является ли слово P идентификатором (непустым словом, начинающимся с буквы). Ответ: слово a (да) или пустое слово (нет) A={a,b,0,1}. Определить, является ли слово P записью числа в двоичной системе счисления (непустым словом, состоящем только из цифр 0 и 1). Ответ: слово 1 (да) или слово A={0,1}. Считая непустое слово P записью двоичного числа, удалить из него незначащие нули, если такие есть A={0,1}. Для непустого слова P определить, является ли оно записью степени двойки (1, 2, 4, 8,) в двоичной системе счисления. Ответ: слово 1 (является) или слово A={0,1,2,3}. Считая непустое слово P записью числа в четверичной системе счисления, определить, является оно чётным числом или нет. Ответ: 1 (да) или A={0,1}. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное учетверенному числу P (например:) A={0,1}. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное неполному частному от деления числа P на 2 (например:) A={a,b,c}. Если P слово чётной длины (0, 2, 4,), то выдать ответ a, иначе пустое слово A={0,1,2}. Считая непустое слово P записью числа в троичной системе счисления, определить, является оно чётным числом или нет. Ответ: 1 (да) или 0. (Замечание: в чётном троичном числе должно быть чётное количество цифр 1.) 1.18 A={a,b,c}. Пусть P имеет нечётную длину. Оставить в P только средний символ A={a,b,c}. Если слово P имеет чётную длину, то оставить в нём только левую половину A={a,b,c}. Приписать слева к непустому слову P его первый символ. 16


17 1.21 A={a,b}. Для непустого слова P определить, входит ли в него ещё раз его первый символ. Ответ: a (да) или пустое слово A={a,b}. В непустом слове P поменять местами его первый и последний символы A={a,b}. Определить, является P палиндромом (перевёртышем, симметричным словом) или нет. Ответ: a (да) или пустое слово A={a,b}. Заменить в P каждое вхождение a на bb A={a,b,c}. Заменить в P каждое вхождение ab на c A={a,b}. Удвоить слово P (например: abb abbabb) A={a,b}. Удвоить каждый символ слова P (например: bab bbaabb) A={a,b}. Перевернуть слово P (например: abb bba) A={0,1}. Считая непустое слово P записью двоичного числа, получить это же число, но в четверичной системе. (Замечание: учесть, что в двоичном числе может быть нечётное количество цифр.) 1.30 A={0,1,2,3}. Считая непустое слово P записью числа в четверичной системе счисления, получить запись этого числа в двоичной системе A={0,1,2}. Считая непустое слово P записью положительного числа в троичной системе счисления, уменьшить это число на A={ }. Считая слово P записью числа в единичной системе счисления, получить запись этого числа в троичной системе. (Рекомендация: следует в цикле удалять из «единичного» числа по палочке и каждый раз прибавлять 1 к троичному числу, которое вначале положить равным 0.) 1.33 A={0,1,2}. Считая непустое слово P записью числа в троичной системе счисления, получить запись этого числа в единичной системе Пусть слово P имеет следующий вид: {... {... n m где один из знаков +, /, или, слева от которого указано n палочек, а справа m палочек. Реализовать соответствующую операцию в единичной системе счисления (в качестве ответа выдать слово, указанное справа от стрелки): а) сложение: {... + {... {... (n 0, m 0) n m n+ m б) вычитание: {... {... {... (n m 0) n m n m в) умножение: {... {... {... (n 0, m 0) n m n m г) деление нацело: {{... /... {... (n 0, m>0, k=n div m) n m k д) взятие остатка: {... {... {... (n 0, m>0, k=n mod m) n m k 17


18 е) максимум: {... {... {... (n 0, m 0, k=max(n,m)) n m k ж) минимум: {... {... {... (n 0, m 0, k=min(n,m)) k n m 1.35 A={ }. Считая слово P записью числа в единичной системе, определить, является ли это число степенью 3 (1, 3, 9, 27,). Ответ: пустое слово, если является, или слово из одной палочки иначе A={ }. Считая слово P записью числа n в единичной системе, получить в этой же системе число 2 n A={ }. Пусть слово P является записью числа 2 n (n=0, 1, 2,) в единичной системе. Получить в этой же системе число n Пусть P имеет вид Q+R, где Q и R непустые слова из символов 0, 1 и 2. Трактуя Q и R как записи чисел в троичной системе счисления (возможно, с незначащими нулями), выдать в качестве ответа запись суммы этих чисел в той же троичной системе Пусть P имеет вид Q R, где Q и R непустые слова из символов 0, 1 и 2. Трактуя Q и R как записи чисел в троичной системе счисления (возможно, с незначащими нулями) и считая, что Q R, выдать в качестве ответа запись разности этих чисел в той же троичной системе Пусть P имеет вид Q=R, где Q и R любые слова из символов a и b. Выдать ответ a, если слова Q и R одинаковы, и пустое слово иначе Пусть P имеет вид Q=R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если эти числа равны, и слово 0 иначе Пусть P имеет вид Q>R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если число Q больше числа R, и слово 0 иначе A={(,)}. Определить, сбалансировано ли слово P по круглым скобкам. Ответ: Д (да) или Н (нет) A={a,b}. Если в P символов a больше, чем символов b, то выдать ответ a, если символов a меньше символов b, то выдать ответ b, а иначе в качестве ответа выдать пустое слово. 2. Нормальные алгоритмы Маркова В разделе рассматриваются задачи на составление нормальных алгоритмов Маркова. Приводится краткое описание этих алгоритмов, на примерах объясняются основные приёмы их составления и предлагаются задачи для самостоятельного решения. 18


19 2.1 Краткое описание нормальных алгоритмов Маркова Подстановки Интересной особенностью нормальных алгоритмов Маркова (НАМ) является то, что в них используется лишь одно элементарное действие так называемая подстановка, которая определяется следующим образом. Формулой подстановки называется запись вида α β (читается «α заменить на β»), где α и β любые слова (возможно, и пустые). При этом α называется левой частью формулы, а β правой частью. Сама подстановка (как действие) задается формулой подстановки и применяется к некоторому слову Р. Суть операции сводится к тому, что в слове Р отыскивается часть, совпадающая с левой частью этой формулы (т.е. с α), и она заменяется на правую часть формулы (т.е. на β). При этом остальные части слова Р (слева и справа от α) не меняются. Получившееся слово R называют результатом подстановки. Условно это можно изобразить так: P x α y R x β y Необходимые уточнения: 1. Если левая часть формулы подстановки входит в слово Р, то говорят, что эта формула применима к Р. Но если α не входит в Р, то формула считается неприменимой к Р, и подстановка не выполняется. 2. Если левая часть α входит в Р несколько раз, то на правую часть β, по определению, заменяется только первое вхождение α в Р: P x α y α z R x β y α z 3. Если правая часть формулы подстановки пустое слово, то подстановка α сводится к вычеркиванию части α из Р (отметим попутно, что в формулах подстановки не принято как-либо обозначать пустое слово): P x α y R x y 4. Если в левой части формулы подстановки указано пустое слово, то подстановка β сводится, по определению, к приписыванию β слева к слову P: P x R β x Из этого правила вытекает очень важный факт: формула с пустой левой частью применима к любому слову. Отметим также, что формула с пустыми левой и правой частями не меняет слово. Определение НАМ Нормальным алгоритмом Маркова (НАМ) называется непустой конечный упорядоченный набор формул подстановки: 19


20 α1 β1 α 2 β 2... (k 1) α k β k В этих формулах могут использоваться два вида стрелок: обычная стрелка () и стрелка «с хвостиком» (a). Формула с обычной стрелкой называется обычной формулой, а формула со стрелкой «с хвостиком» заключительной формулой. Разница между ними объясняется чуть ниже. Записать алгоритм в виде НАМ значит предъявить такой набор формул. Правила выполнения НАМ Прежде всего, задается некоторое входное слово Р. Где именно оно записано не важно, в НАМ этот вопрос не оговаривается. Работа НАМ сводится к выполнению последовательности шагов. На каждом шаге входящие в НАМ формулы подстановки просматриваются сверху вниз и выбирается первая из формул, применимых к входному слову Р, т.е. самая верхняя из тех, левая часть которых входит в Р. Далее выполняется подстановка согласно найденной формуле. Получается новое слово Р. На следующем шаге это слово Р берется за исходное и к нему применяется та же самая процедура, т.е. формулы снова просматриваются сверху вниз начиная с самой верхней и ищется первая формула, применимая к слову Р, после чего выполняется соответствующая подстановка и получается новое слово Р. И так далее: Р Р Р Следует обратить особое внимание на тот факт, что на каждом шаге формулы в НАМ всегда просматриваются начиная с самой первой. Необходимые уточнения: 1. Если на очередном шаге была применена обычная формула (α β), то работа НАМ продолжается. 2. Если же на очередном шаге была применена заключительная формула (α a β), то после её применения работа НАМ прекращается. То слово, которое получилось в этот момент, и есть выходное слово, т.е. результат применения НАМ к входному слову. Как видно, разница между обычной и заключительной формулами подстановки проявляется лишь в том, что после применения обычной формулы работа НАМ продолжается, а после заключительной формулы прекращается. 3. Если на очередном шаге к текущему слову неприменима ни одна формула, то и в этом случае работа НАМ прекращается, а выходным словом считается текущее слово. Таким образом, НАМ останавливается по двум причинам: либо была применена заключительная формула, либо ни одна из формул не подошла. То и другое считается «хорошим» окончанием работы НАМ. В обоих случаях говорят, что НАМ применúм к входному слову. 20



Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики В.Н. Пильщиков, В.Г. Абрамов, А.А. Вылиток, И.В. Горячая Машина Тьюринга и алгоритмы Маркова.

МАШИНА ТЬЮРИНГА В ИЗУЧЕНИИ ТЕОРИИ АЛГОРИТМОВ Лебедева Н.Ю. Шуйский филиал Ивановского государственного университета TURING MACHINE IN THE STUDY OF THE THEORY OF ALGORITHMS Lebedeva N. Yu. Shuya branch

СЛОЖЕНИЕ Прибавить 1 к числу означает получить число, следующее за данным: 4+1=5, 1+1=14 и т.д. Сложить числа 5 и значит прибавить к 5 три раза единицу: 5+1+1+1=5+=8. ВЫЧИТАНИЕ Вычесть 1 из числа означает

Задачи и решения отборочного тура олимпиады ДМиТИ 2014-2015 Все задачи, манипуляторы и решения доступны участникам на сайте олимпиады. Все предложенные задачи оценивались одинаковым числом баллов. Графы.

Машина Тьюринга 1 Машина Тьюринга математическое понятие, а не реальная вычислительная машина. MT является математической моделью вычислительного устройства. MT была предложена Аланом Тьюрингом в 1936

Решение задач по машине тьюринга онлайн >>> Решение задач по машине тьюринга онлайн Решение задач по машине тьюринга онлайн Содержимое клетки может меняться в неё можно записать другой символ или стереть

Системы счисления В наше время человек всё время сталкивается с числами. Все мы с детства знакомы с общепринятой записью чисел при помощи арабских цифр. Однако этот способ записи использовался далеко не

Реализуемый алгоритм Мы используем следующую вариацию алгоритма Евклида для вычисления НОД чисел M и N:. a M, b N; 2. t a-b, если t = 0, останов; 3. a t, b min{a,b}, переход на шаг 2. После останова НОД(M,N)

Задачи отборочного тура Олимпиады по дискретной математике и теоретической информатике с решениями (при решении конструктивных задач участник работает с эмуляторами, в решениях приведены картинки их интерфейсов)

Глава B. Компьютерная арифметика Урок B3. Двоичная арифметика Посмотрим, как вы справились с упражнениями из Урока B2. Вот их решения. Упражнения B2-2 a) Таблица размещения гирь выглядит так: в нумерации

Занятие 23 В условиях задач M, x означают соответственно описание машины Тьюринга и входного слова в том формате, который был введён на лекции (и написан в черновике учебника). Задача 23.1. Докажите, что

Раздел 6. Теория алгоритмов. Неформальное понятие алгоритма, его основные черты и свойства. Алфавит, слова, алгоритм в алфавите. Вполне эквивалентные алгоритмы. Определение нормального алгоритма (алгоритма

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Будем называть такие символы

Задания для 11 класса Отборочный этап. Первый тур 1. Кодирование информации. Системы счисления (2 балла) [Перестановки] Сколько существует трехразрядных шестнадцатеричных чисел, для которых будут одновременно

Решение задач на тему «Представление чисел в компьютере» Типы задач: 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей запятой.

1. Рыцари и лжецы. Логическая схема - 1. Задачи и решения очного тура Олимпиады ДмиТИ-2017-2018 За круглым столом сидят четыре человека. Каждый из них либо рыцарь, либо лжец. Рыцари всегда говорят только

Системы счисления Система счисления способ записи чисел с помощью заданного набора специальных символов (цифр). В вычислительной технике применяются позиционные системы счисления, в которых значение цифры

ЛЕКЦИЯ 3. Алгоритмы обработки одномерных массивов. Цель лекции: Знакомство с понятием массива. Приобретение навыков построения алгоритмов предназначенных для обработки одномерных массивов. 6. Алгоритмы

Демонстрационный вариант ЕГЭ 2019 г. задание 6 На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи

Введение в системы счисления А.А. Вылиток Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных

Часть III Языки, грамматики, автоматы 137 Глава 10 Языки и конечные автоматы 10.1 Язык Дика Как мы знаем, правильные скобочные структуры перечисляются числами Каталана. Выпишем все правильные скобочные

Муниципальный этап всероссийской олимпиады школьников по информатике Москва, декабря 0 г. Задания для 7 8 классов Каждая задача оценивается в 0 баллов. Итоговый балл выставляется как сумма баллов за задачи

Виртуальные машины Введение Свыше сорока лот назад выдающийся американский математик Эмиль Л. Пост опубликовал в «Журнале символической логики» статью «Финитные комбинаторные процессы, формулировка!» (ее

Югорский физико-математический лицей ВП Чуваков Задача С6 (Теория чисел на ЕГЭ) Учебно-методическое пособие Ханты-Мансийск 0 ВП Чуваков Задача С6 (Теория чисел на ЕГЭ): Учебнометодическое пособие, - Ханты-Мансийск,

9 КЛАСС 1. В одной из клеток бесконечной клетчатой бумаги находится робот, которому могут быть отданы следующие команды: вверх (робот перемещается на соседнюю клетку сверху); вниз (робот перемещается на

Системы счисления Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных системах вес

Системы счисления Система счисления способ описания чисел с помощью знаков определенного алфавита по известным правилам. Позиционные системы счисления В позиционной системе счисления значение цифры зависит

К. Поляков, 009-06 6- (базовый уровень, время 4 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: исполнитель это человек, группа людей, животное, машина или другой объект,

Лекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная

Элементы теории сложности Машина Тьюринга Алан Тьюринг (23.06.1912-7.06.1954) (Alan Mathison Turing) Английский математик, логик, криптограф. В 1936 году предложил абстрактную вычислительную «Машина Тьюринга»,

Министерство образования и науки Российской Федерации Государственное образовательное учреждение профессионального образования Российской Федерации «Ростовский государственный университет» М. Э. Абрамян

10 КЛАСС 1. Действительные числа удовлетворяют соотношениям: Найдите все возможные тройки чисел, где Решение. Заметим, что Обозначим и Вычитая друг из друга эти равенства, получим Предположим, что все

Приложение к статье Горбунов К.Ю., Любецкий В.А. «Линейный алгоритм минимальной перестройки структур» Доказательство леммы 3. Жестким назовём блок, ограниченный с обеих сторон общими генами, полужёстким

Приложение 1 Практикум к главе 2 «Представление информации в компьютере» Практическая работа к п. 2.1 Пример 2.1. Представьте в виде разложения по степеням основания числа 2466,675 10, 1011,11 2. Для десятичного

Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА 8 Экспериментальный учебник Часть 1 МОСКВА 2016 СОДЕРЖАНИЕ 1. Делимость. 2. Чёт нечет 3. Множества. 4. Забавные задачи. 5. Комбинаторика

Задачник по информатике ученика (цы) 11 физико-математического класса средней школы 36 г.владимира Часть II 2016-2017 г. 2 1. Алгоритмизация. 1.1 Предлагается некоторая операция над двумя произвольными

Тема 7. Представление информации в ЭВМ.. Единицы информации. Бит - (bit-biry digit - двоичный разряд) наименьшая единица информации - количество её, необходимое для различения двух равновероятных событий.

И. В. Яковлев Материалы по математике MathUs.ru Содержание Десятичная запись 1 Всероссийская олимпиада школьников по математике................ 1 2 Московская математическая олимпиада........................

Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Глава 5 Элементы теории алгоритмов 31 Уточнение понятия алгоритма Ключевые слова: алгоритм теория алгоритмов универсальный исполнитель машина Тьюринга машина Поста нормальный алгорифм Маркова Зачем нужно

Решение задач на тему «Представление чисел в компьютере». Типы задач. 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей

А. Шень Игры и стратегии с точки зрения математики, МЦНМО Простые игры и классификация позиций На столе лежит 12 спичек. Играющие по очереди могут взять от одной до трёх спичек. Кто не может сделать ход

Теория алгоритмов 79 3.2. Нормальные алгоритмы j Пусть A алфавит, не содержащий символов. и. Обыкновенной формулой подстановок называется запись вида P Q, где P и Q некоторые слова в алфавите A. Заключительной

ЛЕКЦИЯ 2. Алгоритмы циклической структуры. Цель лекции: Знакомство с понятием алгоритма циклической струк туры. Приобретение навыков построения алгоритмов циклической с трук т уры. 5. Алгоритмы циклической

Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Практическая работа. Формы представления числовой информации на компьютере. Часть I. Системы счисления. Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита

Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, осень 2018 Семинар 1: язык записи формальных утверждений, с решениями некоторых

Лекция 16. Универсальная машина Тьюринга Дискретная математика, ВШЭ, факультет компьютерных наук (Осень 2014 весна 2015) Важнейшим свойством вычислимых функций является существование универсальной вычислимой

16 (повышенный уровень, время мин) Тема: Кодирование чисел. Системы счисления. Что нужно знать: принципы кодирования чисел в позиционных системах счисления чтобы перевести число, скажем, 15, из системы

2015 Регулярные выражения Решения задач отборочного тура (два варианта) Вариант 1 Постройте регулярное выражение, описывающее множество слов из букв a и b, из которого удалены все слова, задаваемые регулярным