Производители оптических датчиков частоты сердечных сокращений. Какие из них самые точные? Лучшие бюджетные пульсометры и самый дорогой HRM

13.05.2019

Всем привет!

Совсем немного осталось до начала нашей краундфандинговой компании часов для измерения уровня стресса EMVIO . Появилась небольшая передышка и пальцы попросились к клавиатуре.

Немного о нашем сердце

Как известно, сердце – это автономный мышечный орган, который выполняет насосную функцию, обеспечивая непрерывный ток крови в кровеносных сосудах путем ритмичных сокращений. В сердце имеется участок, в котором генерируются импульсы, ответственные за сокращение мышечных волокон, так называемый водитель ритма (pacemaker). В нормальном состоянии, при отсутствии патологий, этот участок полностью определяет частоту сердечных сокращений. В результате образуется сердечный цикл – последовательность сокращений (систола) и расслаблений (диастола) сердечных мышц, начиная от предсердий и заканчивая желудочками. В общем случае под пульсом понимают частоту, с которой повторяется сердечный цикл. Однако есть нюансы, каким способом мы регистрируем эту частоту.

Что мы считаем пульсом

В те времена, когда медицина не имела технических средств диагностики, пульс измеряли всем известным способом – пальпацией, т.е. прикладывали палец к определенной области тела и слушали свои тактильные ощущения, и считали количество толчков стенки артерии через кожу за некоторое время - обычно 30 секунд или одну минуту. Отсюда и появилось латинское название этого эффекта - pulsus, т.е. удар, соответственно единица измерений: ударов в минуту, beatsperminute (bpm). Есть много методик пальпации, самые известные это прощупывание пульса на запястье и на шее, в области сонной артерии, который так популярен в кино.
В электрокардиографии пульс вычисляется по сигналу электрической активности сердца - электрокардиосигналу (ЭКС) путем замеров длительности интервала (в секундах) между соседними R зубцами ЭКС с последующим пересчетом в удары в минуту по простой формуле: BPM = 60/(RR-интервал) . Соответственно нужно помнить, что это желудочковый пульс, т.к. период сокращения предсердий (PP интервал) может немного отличаться.

Attention!!! Cразу хотим отметить важный момент, который вносит в путаницу в терминологию и часто встречается в комментах к статьям про гаджеты с измерением пульса. Фактически пульс, который измеряется по сокращениям стенок кровеносных сосудов, и пульс, который измеряется по электрической активности сердца, имеют разную физиологическую природу, разную форму временной кривой, различный фазовый сдвиг и соответственно требует различные методы регистрации и алгоритмы обработки. Поэтому не может быть никаких RR-интервалов при измерении пульса по модуляции объемов кровенаполнения артерий и капилляров и механических колебаний их стенок. И обратно, нельзя говорить, что если у вас нет RR-интервалов, то вы не можете измерить аналогичные по физиологической значимости интервалы по пульсовой волне.

Как гаджеты измеряют пульс?

Итак, вот наш вариант обзора самых распространённых способов измерения пульса и примеры гаждетов, которые их реализуют.

1. Измерение пульса по электрокардиосигналу

После обнаружения в конце 19 века электрической активности сердца появилась техническая возможность ее зарегистрировать.Первым, по настоящему, это сделал Виллем Эйнтховен (Willem Einthoven) в 1902 году, с помощью своего мегадевайса – струнного гальванометра (string galvanometer). Кстати он осуществил передачу ЭКГ по телефонному кабелю из больницы в лабораторию и, по сути, реализовал идею удаленного доступа к медицинским данным!


Три банки с “рассолом” и электрокардиограф весом 270 кг! Вот так рождался метод, который сегодня помогает миллионам людей во всем мире.

За свои труды в 1924 году он стал лауреатом Нобелевской премии. Именно Эйнтховен в первые получил реальную электрокардиограмму (название он придумал сам), разработал систему отведений – треугольник Эйнтховена и ввел названия сегментов ЭКС. Самым известным является комплекс QRS - момент электрического возбуждения желудочков и, как наиболее выраженный по своим временным и частотным свойствам элемент этого комплекса, зубец R.


До боли знакомый сигнал и RR-интервал!

В современной клинической практике для регистрации ЭКС используют различные системы отведений: отведения с конечностей, грудные отведения в различных конфигурациях, ортогональные отведения (по Франку) и т.п. С точки зрения измерения пульса можно использовать любые отведения, т.к. в нормальном ЭКС R зубец в том или ином виде присутствует на всех отведениях.

Спортивные нагрудные датчики пульса
При проектировании носимых гаджетов и различных спортивных тренажеров система отведений была упрощена до двух точек-электродов. Самым известным вариантом реализации такого подхода являются спортивные нагрудные мониторы в виде ремешка-кардиомонитора – HRM strap или HRM band. Думаем у читателей, ведущих спортивный образ жизни, такие устройства уже имеются.


Пример конструкции ремешка и Мистер-гаджет 80 lvl. Sensor pad – это два ЭКГ электрода с разных сторон груди.

На рынке популярностью пользуются HRM ремешки фирм Garmin и Polar, также имеется множество китайских клонов. В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками-клипсами. Значения пульса, как правило, передаются по Bluetooth по протоколу ANT+ или Smart на спортивные часы или смартфон. Вполне удобно для спортивных занятий, но постоянное ношение вызывает дискомфорт.

Мы экспериментировали с такими ремешками в плане возможности оценки вариабельности пульса, считая их за эталон, но поступающие с них данные, оказались сильно сглаженными. Участник нашей команды Kvanto25 публиковал пост , как он разбирался с протоколом ремешка Polar и подключал его к компьютеру через среду Labview.

С двух рук
Следующим вариантом реализации двух электродной системы является разнесение электродов на две руки, но без постоянного подключения одной из них. В таких устройствах один электрод закрепляется на запястье в виде задней стенки часов или браслета, а другой выносится на лицевую часть устройства. Чтобы измерить пульс, нужно свободной рукой коснуться лицевого электрода и подождать несколько секунд.


Пример пульсометра с фронтальным электродом (Пульсометр Beurer)

Интересным устройством, использующим такую технологию, является браслет Phyode W/Me, разработчики которого провели успешную кампанию на Кикстартере, и их продукт имеется в продаже. На хабре про него был пост .


Электродная система PhyodeW/Me

Верхний электрод совмещен с кнопкой, поэтому многие люди, рассматривая прибор по фоткам и читая отзывы, думали, что измерение происходит просто по нажатию кнопки. Теперь вы знаете, что на подобных браслетах непрерывная регистрация со свободными руками в принципе не возможна.

Плюс этого устройства в том, что измерение пульса не является главой целью. Браслет позиционируется как средство проведения и контроля дыхательных методик, типа индивидуального тренера. Мы приобрели Phyode и проигрались с ним. Все работает, как обещано, регистрируется реальная ЭКГ, соответствующая классическому первому отведению ЭКГ. Однако прибор очень чувствителен к движениям пальца на фронтальном электроде, чуть сдвинулся и сигнал поплыл. С учетом того, что для набора статистики нужно около трех минут процесс регистрации выглядит напряжно.

Вот еще вариант использования принципа двух рук в проекте FlyShark Smartwatch, который выложен на Кикстартере .


Регистрация пульса в проекте FlyShark Smartwatch. Будьте добры подержать пальчик.

Что еще нового есть в этой области? Обязательно нужно упомянуть об интересной реализации ЭКГ электрода – емкостного датчика электрического поля EPIC Ultra High Impedance ECG Sensor производства фирмы Plessey Semiconductors.


Емкостной датчик EPIC для бесконтактной регистрации ЭКГ.

Внутри датчика установлен первичный усилитель, поэтому его можно считать активным. Датчик достаточно компактный (10х10 мм), не требует прямого электрического контакта, соответственно не имеет эффектов поляризации и их не надо смачивать. Нам кажется это решение весьма перспективным для гаджетов с регистрацией ЭКС. Готовых устройств на этих датчиках мы пока не видели.

2. Измерение пульса на основе плетизмографии

Поистине самый распространённый способ измерения пульса в клинике и быту! Сотни разнообразных устройств от прищепок до перстней. Сам метод плетизмографии основан на регистрации изменения объемов кровенаполнения органа. Результатом такой регистрации будет пульсовая волна. Клинические возможности плетизмографии выходят далеко за рамки простого определения пульса, но в данном случае нам интересен именно он.
Определение пульса на основе плетизмографии может быть реализовано двумя основными способами: импедансным и оптическим. Есть и третий вариант – механический, но мы не будем его рассматривать.
Импедансная плетизмография
Как говорит нам Медицинский словарь, импедансная плетизмография – это метод регистрации и исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на регистрации изменений полного (омического и емкостного) электрического сопротивления переменному току высокой частоты. В России часто используется термин реография. Этот способ регистрации ведет свое начала с исследований ученого Манна (Mann, 30 –е годы) и отечественного исследователя Кедрова А.А. (40–е годы).
В настоящее время методология способа основана на двух или четырехточечной схеме измерения объемного удельного сопротивления и состоит в следующем: через исследуемый орган с помощью двух электродов пропускается сигнал с частотой от 20 до 150 кГц (в зависимости от исследуемых тканей).


Электродная система импедансной плетизмографии. Картинка отсюда

Главное условие, предъявляемое к генератору сигнала - это постоянство тока, его значение выбирают обычно не более 10-15 мкА. При прохождении сигнала через ткань его амплитуда модулируется изменением кровенаполнения. Вторая система электродов снимает модулированный сигнал, фактически имеем схему преобразователя импеданс-напряжения. При двухточечной схеме электроды генератора и приемника объединены. Далее сигнал усиливается, из него изымается несущая частота, устраняется постоянная составляющая и остается нужная нам дельта.
Если прибор откалибровать (для клиники это обязательное условие), то по оси Y можно откладывать значения в Омах. В итоге получается вот такой сигнал.



Примеры временных кривых ЭКГ, импедансной плетизмограммы (реограмме) и ее производной при синхронной регистрации. (отсюда)

Очень показательная картинка. Обратите внимание, где находится RR-интервал на ЭКС, а где расстояние между вершинами, соответствующее длительности сердечного цикла на реограмме. Также обратите внимание на резкий фронт R зубца и пологий фронт систолической фазы реограммы.

Из пульсовой кривой можно получить довольно много информации по состоянию кровообращения исследуемого органа, особенно синхронно с ЭКГ, но нам нужен только пульс. Определить его не сложно - нужно найди два локальных максимума, соответствующих максимальной амплитуде систолической волны, вычислить дельту в секундах ∆T и далее BMP = 60/∆T .

Примеров гаджетов, которые используют данный способ, мы пока не нашли. Зато есть пример концепта имплантируемого датчика для контроля кровообращения артерии. Вот про него. Активный датчик сажается прямо на артерию, с хост-девайсом общается по индуктивной связи. Мы считаем, что это очень интересное и перспективный подход. Принцип работы понятен из картинки. Спичка показана для понимания размера:) Используется 4-х точечная схема регистрации и гибкая печатная плата. Думаю, при желании, можно допилить идею для носимого микро-гаджета. Плюс этого решения в том, что потребление такого датчика исчезающее мало.


Имплантируемый сенсор кровотока и пульса. Похож на аксессуар Джонни-Мнемоника.

В завершении этого раздела сделаем ремарку. В свое время мы считали, что таким способом измеряется пульс в известном стартапе HealBeGo, поскольку в этом устройстве базовая функциональность реализуется методом импедансной спектроскопии, что, по сути, и есть реография, только с изменяемой частотой зондирующего сигнала. В общем, все уже на борту. Однако согласно описанию характеристик прибора пульс в HealBe измеряется механическим методом с помощью пьезодатчика (про этот способ во второй части обзора).

Оптическая плетизмография или фотоплетизмографияя
Оптический – это самый распространённый способ измерения пульса с точки зрения массового применения. Сужение и расширение сосуда под действием артериальной пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника. Самые первые устройства были применены в клинике и измеряли пульс с пальца в режиме просвета или отражения. Форма пульсовой кривой повторяет реограмму.


Иллюстрация принципа работы фотоплетизмографии

Способ нашел широкое использование в клинике и вскоре технология была применена в бытовых устройствах. Например, в компактных пульсоксиметрах, регистрирующих пульс и сатурацию кислородом крови в капиллярах пальца. В мире производится сотни модификаций. Для дома, для семьи вполне пойдет, но не подходит для постоянного ношения.


Пульсоксиметр обыкновенный и клипса для уха. Тысячи их!

Существуют варианты с ушными клипсами и наушниками со встроенными датчиками. Например, такой вариант от Jabra или новый проект Glow Headphones . Функциональность аналогична HRM ремешкам, но более стильный дизайн, привычное устройство, свободный руки. Постоянно носить затычки в ушах не будешь, но для пробежек на свежем воздухе под музыку в самый раз.


Наушники Jabra Sport Pulse™ Wireless и Glow Headphones. Пульс регистрируется внутриушным (in-ear sensor) способом.

Прорыв

Самым заманчивым было измерение пульса с запястья, ведь это такое привычное и комфортное место. Первыми были часы Мио Alpha с успешной компанией на Кикстартере.

Создательница продукта Лиз Дикинсон (Liz Dickinson) пафосно провозгласила это устройство Святым Граалем измерения пульса. Модуль датчика был разработан ребятами из Philips. На сегодняшний день это самое качественное устройство для непрерывного измерения пульса с запястья методом фотоплетизмографии.


Даешь умных часов много и разных!

Сейчас можно сказать, что технология отработана и внедрена в серийное производство. Во всех подобных устройствах реализуется измерение пульса по отраженному сигналу.

Выбор длины волны излучателя

Теперь пару слов, как выбирают длину волны излучателя. Тут все зависит от решаемой задачи. Обоснование выбора хорошо иллюстрировать по графику поглощения света окси и дезоксигемоглобина с наложенными на него кривыми спектральных характеристик излучателей.


Кривая поглощения света гемоглобином и основные спектры излучения пульсовых фотоплетизмаграфических датчиков.

Выбор длины волны зависит от того, что мы хотим измерить пульс и/или сатурацию насыщения крови кислородом SO2.

Просто пульс. Для этого случая важна область, где поглощение максимально – это диапазон от 500 до 600 нм, не считая максимума в ультрафиолетовой части. Обычно выбирается значение 525 нм (зеленый цвет) или с небольшим смещением – 535 нм (применено в датчике OSRAM SFH 7050 – Photoplethysmography Sensor).


Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах. В датчике смартфона Samsung Galaxy S5 использован красный светодиод.

Оксиметрия. В этом режиме необходимо мерить пульс и оценивать сатурацию крови кислородом. Способ основан на разнице в поглощении связанного (окси) и не связанного с (дезоки) кислородом гемоглобина. Максимум поглощения деоксигенированного гемоглобина (Hb) находится в “красном” (660 нм) диапазоне, максимум поглощения оксигенированного (Hb02) гемоглобина в инфракасном (940 нм). Для вычисления пульса используется канал с длиной волны 660 нм.

Желтый для EMVIO. Для нашего прибора EMVIO мы выбирали из двух диапазонов: 525 nm и 590 нм (желтый цвет). При этом мы учитывали максимум спектральной чувствительности нашего оптического датчика. Эксперименты показали, что разницы между ними практически нет (в рамках нашей конструкции и выбранного датчика). Любую разницу перебивают артефакты движения, индивидуальные свойства кожи, толщина подкожного слоя запястья и степень прижатия датчика к коже. Мы захотели как-то выделиться из общего “зеленого” списка и пока остановились на желтом цвете.

Конечно, измерения можно проводить не только с запястья. Есть на рынке нестандартные варианты выбора точки регистрации пульса. Например, со лба. Такой подход использован в проекте умного шлема для велосипедистов Life beam Smart helmet разработаного Израильской компанией Lifebeam. В предложениях этой фирмы есть еще бейсболки и солнцезащитные козырьки для девушек. Если постоянно носите бейсболку, то это ваш вариант.


Велосипедист доволен, что не нужно одевать HRM ремешок.

В целом выбор точек регистрации достаточно велик: запястье, палец, мочка уха, лоб, бицпес руки, лодыжка и стопа ноги для малышей. Полное раздолье для разработчиков.

Большим плюсом оптического способа является простота реализации на современных смартфонах, где в качестве датчика используется штатная видеокамера, а в качестве излучателя – светодиод вспышки. В новом смартфоне Samsung Galaxy S5 на задней стенке корпуса, для удобства пользователя, уже имеется штатный модуль датчика пульса, возможно и другие производители будут внедрять аналогичные решения. Это может стать решающими для устройств, в которых нет непрерывной регистрации, смартфоны вберут в себя их функционал.

Новые горизонты фотоплетизмографии

Дальнейшее развитие этого способа связано с переосмыслением функционала оптического датчика и технологическими возможностями современных носимых устройств в плане обработки видеоизображений в реальном времени. В итоге имеем идею измерения пульса по видеоизображению лица. Подсветкой является естественное освещение.

Оригинальное решение, с учетом того, что видеокамера является стандартным атрибутом любого ноутбука, смартфона и даже умных часов. Идея метода раскрыта в этой работе .


Субъект N3 явно напряжен – пульс под 100 уд/мин, наверно сдает работу своему руководителю Субъекту N2. Субъект N1 просто мимо проходил.

Сначала на кадрах выделяется фрагмента лица, потом изображение раскладывается на три цветовых канала и разворачивается по временной шкале (RGB trace). Выделение пульсовой волны основано на разложение изображения методом анализа независимых компонент (ICA) и выделения частотной составляющей, связанной с модуляцией яркости пикселей под действием пульсации крови.

Лаборатория Philips Innovation реализовала аналогичный подход в виде программы Vital Signs Camera для IPhone. Весьма интересная штука. Усреднение значений конечно большое, но принципиально метод работает. Аналогичный проект развивает .


Виды экранов Vital Signs Camera.

Так что в будущем системы видеонаблюдения смогут дистанционно измерять ваш пульс. Контора АНБ возрадуется.

Окончание обзора в следующем посте “Как умные часы, спортивные трекеры и прочие гаджеты измеряют пульс? Часть 2 ”. В той части мы расскажем об более экзотических способах регистрации пульса, которые используются в современных гаджетах.

Удачи! И еще раз пригашаем вас на сайт нашего проекта EMVIO .

Теги: Добавить метки

Оптические пульсометры – относительно новый вид портативных кардиомониторов. В продаже оптические пульсометры появились всего пару лет назад. На нашем сайте можно ознакомиться с особенностями инновационных гаджетов, прочесть отзывы на оптические пульсометры, купить кардиодатчик и на собственном опыте оценить достоинства устройства.

Идея оптического монитора фиксации частоты сердечных сокращений не нова. Наверняка, каждый видел в кино сюжет, где пациент больницы лежит, опутанный с ног до головы проводами и на пальце у него прикреплен приборчик, напоминающий прищепку. Вот эта самая «прищепка» и есть оптический пульсометр. И всем устройство хорошо – миниатюрное, точное, легкое, не дорогое в производстве. Если бы не одно «но» – получить точные показания с его помощью можно только в случае, если пациент неподвижен в течение всего времени снятия данных. Именно поэтому производители портативных пульсометров забраковали оптические датчики.

И так бы, наверное, оптические пульсометры в продаже и не появились, не приди в голову одной любопытной канадке идея приспособить медицинский датчик под бытовые нужды. Лиз Дикинсон (Liz Dickinson) инженер по образованию, работавшая с известными мировыми технологическими компаниями, такими как Oracle, IBM, AT&T, TELUS, в 1999 году предложила идею аппаратной адаптации сенсора, чем вызвала гомерический хохот у всех причастных к производству, как медицинской техники, так и портативных бытовых пульсометров.

Другой бы на ее месте сдался, но гордая жительница Ванкувера больше десяти лет шлифовала идею и в 2012 году начала кампанию по сбору $100 000 на проект наручного пульсометра нового поколения на сайте KickStarter. Период финансирования длился всего 44 дня. Его результатом стала сумма в $321 314, создание компании Mio, 5 технических патентов, патент в категории «Спортивные и фитнес устройства», всемирный почет и уважение. И, конечно, линейка Mia – оптические пульсометры, продажи которых бьют все мыслимые рекорды. Многие производители медицинской техники и спортивных гаджетов используют в своих устройствах канадскую технологию. На сегодняшний день Mio является мировым лидером с области технологии мониторинга сердечного ритма.

Оптические пульсометры, характеристики которых базируются на инновационном подходе к оптическим сенсорам, демонстрируют беспрецедентную точность измерения пульса. Этого удалось достичь благодаря тандему оптического датчика, акселерометра и микропроцессора. Устройство с помощью оптического сенсора и двух зеленых лазеров фиксирует пульсацию кровеносных сосудов, фильтрует помехи, возникающие при движении, анализирует результаты с помощью вычислительного блока и специально разработанных алгоритмов. Конечно, цена на оптические пульсометры далеко не бюджетный вариант. Но и оптические пульсометры smart поколения отнюдь не заурядные гаджеты.

Купить оптические пульсометры можно в формате наручных часов. Модели оптических пульсометров чрезвычайно стильные и выделяются на фоне спортивных часов более широким браслетом. Это обусловлено необходимостью добиться максимально плотного прилегания корпуса с оптическим датчиком к коже. На тыльной стороне корпуса, кроме двух лазеров и оптического датчика, располагают контактную зарядную площадку. Рекомендуемая производителями оптических пульсометров цена включает зарядные адаптеры (чаще всего оригинальной конструкции). Большинство моделей пульсометров работают около 5-8 часов в режиме постоянного снятия показаний частоты пульса.

Оптические пульсометры могут функционировать в автономном режиме, правда в этом случае во встроенной памяти устройств сохраняется ограниченный объем информации. Особенностью оптических пульсометров является наличие цветных индикаторов в нижней части корпуса. Благодаря этим крохотным светодиодам пользователь может контролировать интенсивность нагрузки во время тренировки, чтобы находиться в пределах рабочей зоны пульса. Достаточно бросить мимолетный взгляд – зеленый индикатор свидетельствует о частоте пульса в рамках заданного диапазона, синий – подскажет, что необходимо ускориться, а красный – сигнализирует о критически высокой нагрузке.

Сопряжение со смартфоном или компьютером позволяет расширить базовый функционал гаджета. Оптические пульсометры, обзор которых можно найти на нашем сайте, чаще всего оснащены радиомодулем Bluetooth и поддерживают несколько десятков спортивных приложений.

В нашем магазине представлены оригинальные оптические пульсометры, скидки, акции, бонусные программы, удобный механизм оплаты и оперативная доставка.

Пульс человека - дело тонкое, и это точно знают бегуны, велосипедисты и все, кто занимается циклическими видами спорта. И если раньше всё было просто: выбрал модель, обвязал вокруг груди ремень с датчиком - и бегом на трек, то сегодня перед покупателем пульсометра стоит ещё один выбор. На рынке появились оптические модели мониторов сердечных ритмов, которые не требуют нагрудного ношения: всё что нужно - это надеть устройство на запястье подобно обыкновенным часам.

Казалось бы - теперь ещё проще! Однако, пользователи задаются вопросом: а не уступает ли технологическая новинка классике в точности измерений? Что ж, зададимся этим вопросом и мы - и попробуем разобраться в истине.

Электрокардиография

Для начала рассмотрим, как работает нагрудный пульсометр. Фактически это устройство представляет собой упрощённую версию всем знакомого электрокардиографа: 2 датчика-электрода (вместо 12) встроены в ремешок, который плотно прилегает к груди спортсмена. Датчики считывают информацию об электрических полях, образующихся при сокращениях сердца, и через трансмиттер отправляют данные на приёмник - спортивные часы или смартфон. Раньше для передачи данных использовались провода, современные же модели научились прекрасно работать с Bluetooth.

Кстати, место, с которого электрод считывает данные о пульсе, называется в медицине отведением. А теперь вспомните: когда в поликлинике кардиолог крепит к вам электроды электрокардиографа, он использует не только участок на груди. В ход идут отведения с щиколоток и запястий. Регистрировать работу пульса с запястья куда удобней и практичней, нежели с грудной клетки. Эта максима взята за основу в конструкции оптического пульсометра.

Оптическая плетизмография

Если для нагрудного пульсометра данные представляют собой отображение частоты электрических колебаний, для оптического монитора - это амплитуда волны света, отражённого от капилляров.

Работает это так: при мышечных сокращениях сердца капилляры, несущие кровь, сужаются и расширяются. Когда капилляр сужен, кровь внутри него находится в более плотном состоянии. Оптический пульсометр через светодиоды отправляет к капиллярам пучок фотонов, которые, отражаясь от массы кровотока, возвращаются к устройству. Приёмник считает количество вернувшихся фотонов, и, если их стало меньше, чем в прошлый раз, - значит капилляр расширился, кровь стала менее густой, и часть фотонов рассеилась в ней. Пульсометр регистрирует сокращение пульса. Вот так всё просто.

Принцип работы фотоплетизмографа

Для нас эта научно-популярная выкладка означает следующее: мы надеваем пульсометр на запястье и - готово: не нужны никакие нагрудные ремни! Однако, самое время поговорить о точности измерений пульсометров.

Точность данных

Сама по себе технология оптической плетизмографии довольно точно определяет пульс при условии качественной конструкции устройства и отсутствии агрессивного влияния окружающей среды: ярких солнечных лучей, обильного дождя и т.д. Технически фотоплетизмография может не уступать электрокардиографии в точности измерений. Если в последней электроды получают данные об электромагнитных полях регулярно, оптический датчик может дать сбой при недостаточной интенсивности излучения во время максимальной целевой зоны бега или нециклической физической активности.

Фотодиодные сенсоры принимают вернувшийся сигнал

Для того, чтобы снизить вероятность ошибки, оптические датчики оборудуются светодиодами, излучающими зелёный свет: он имеет длину волны с максимальным световым поглощением (500 - 600 нанометров). Однако неплохо себя показывают также жёлтые или красные светодиоды.

Оптический датчик зелёного цвета на умных часах Garmin Fenix 3

Наручные мониторы сердечного ритма не являются медицинским оборудованием, и производители пульсометров не дают точные характеристики каждого аспекта конструкции датчика. По этой причине полагаться приходится на опыт. А значит - обратимся к исследованиям.

Результаты наиболее авторитетного исследования точности оптических пульсометров опубликованы в еженедельном журнале Американской медицинской ассоциации Jama Cardiology от января 2017 года. Сотрудники кардиологического института Кливлендской клиники изучили работу пяти устройств: оптических Mio Alpha, Basic Peak, Apple Watch, Fitbit Charge HR и нагрудного пульсометра Polar H7. Полученные данные сравнили с показаниями профессионального медоборудования. 50 добровольцев (28 женщин и 22 мужчины) со средним возрастом 37 лет подвергли устройства испытаниям в условиях покоя, ходьбы и бега различной интенсивности. Polar H7 показал лучший результат в 99% точности измерений. Оптические модели немного отстали: 91% точности у Mio Alpha и Apple Watch, 84% у Fitbit и 83% у Basic Peak.

В заключении учёные отметили, что оптические пульсометры непригодны для лечения и диагностики сердечных заболеваний, однако предоставляют неплохую картину сердечных сокращений людям, увлекающимся спортом.

Материалы другого крупного исследования были опубликованы в Journal of Personalized Medicine. Работу провели сотрудники Стэндфордского университета. 60 людей (31 женщина и 29 мужчин) со средним возрастом 38 лет в различных условиях протестировали 7 устройств, включая уже упомянутые модели (Mio Alpha второй версии), а также Samsung Gear S2, Microsoft Band и PulseOn. Устройства показали наиболее точные результаты во время велосипедных занятий и менее точные - во время беговых упражнений. Тем не менее, среднее количество ошибок для всех пульсометров не превысило допустимое значение в 5%. Для беговых упражнений средний процент ошибки составил 2,5% у Apple Watch, 4,9% у PulseOn, 5,6% у Microsoft Band; и 6,5-8,8% у остальных 3 устройств с худшим результатом у Samsung Gear.

Что касается других востребованных брендов, нам удалось найти публикацию данных исследования Техасского университета, в котором фигурировала модель Garmin Forerunner 225. Ошибка измерений для этой модели была в пределах 7,87% и 24,38% в зависимости от условий и интенсивности бега.

Портал Wareable также привёл мнения нескольких экспертов. Создатель системы измерения сердечного ритма MyZone Дейв Райт считает, что оптические пульсометры отлично справляются со своей задачей, если использовать их во время бега или ходьбы. Такого же мнения придерживается директор клинических испытаний компании Valencell Крис Эскобах: «оптические датчики показали сравнимый с нагрудными моделями процент ошибки. Их точность в наших тестах составила 91%. Разумеется, если вы будете использовать наручный пульсометр во время занятий кроссфитом (комплексные физические тренировки) или тяжёлой атлетикой, датчик может давать серьёзные сбои. При подтягиваниях на перекладине или занятиях на тренажёрах он и вовсе может выключиться. Над этим нам ещё предстоит работать».

Крис Эскобах - физиолог из компании Valencell

Напоследок упомянем о небольшом личном опыте из нашей редакции. Наш сотрудник Владимир, готовясь к Московскому марафону 2017, попеременно использовал часы Polar M430 и нагрудный пульсометр Runtastic. Ощутимых расхождений в измерениях обоих устройств замечено не было. Оба пульсометра вполне справились со своей задачей - помочь в подготовке к марафону.

Володя на Московском марафоне (на руке оптический пульсометр)

Умные часы и браслеты

Оптическими датчиками измерения частоты сердечных сокращений сегодня оборудуют не только фитнесс-браслеты, но и модели умных часов, что является ещё одним подспорьем в выборе: устройство, которое всегда под рукой (вернее - на руке) дополнительно предоставляет вам информацию о пульсе.

Наиболее продвинутыми в этом отношении брендами являются Polar, Garmin и Suunto. Эти конкурирующие компании с каждым новым поколением своих устройств улучшают технологии измерения частоты пульса. Вкратце рассмотрим их продукцию.

Garmin ранее использовала датчики измерения пульса от канадской компании Mio Global, однако, начиная с модели Forerunner 235, компания представила миру собственную технологию под названием Elevate. Технология присутствует в линейках смарт-часов Garmin Fenix и Forerunner, а также фитнесc-трекерах Vivosmart. Последние модели умных часов Forerunner 935 и Fenix 5 вы можете приобрести в нашем магазине.

Garmin Forerunner 935

Suunto в пульсометрах и линейке умных спортивных часов Spartan использует оптические датчики американской компании Valencell, уже упоминавшейся в нашей статье. Valencell специализируется на биометрических датчиках, и их измеритель частоты сокращений пульса является эталонным на сегодняшний день. Умные часы и пульсометры Suunto можно приобрести у нас.

Suunto Spartan Ultra

С Valencell конкурирует финская компания Polar Electro, использующая собственные технологии в разработке датчиков измерения пульса. Кстати, именно Polar в 1982 году впервые представила миру беспроводной пульсометр под названием Sport Tester PE 2000. Сегодня оптические датчики Polar присутствуют в линейках умных часов и фитесс-браслетов компании.

Каков итог?

Есть две категории людей, которым оптические пульсометры не подойдут. Это пациенты, нуждающиеся в точной медицинской диагностике работы сердца, и профессиональные спортсмены, также следящие за каждым ударом пульса. И тем и другим точные показания сердечных сокращений необходимы для здоровья, а потому даже небольшое расхождение с реальными показателями имеет значение.

Что же касается людей, увлекающихся спортом непрофессионально или просто делающих пробежки, оптические пульсометры для них - самый удачный выбор. Во всех вышеописанных исследованиях оптические датчики прекрасно справлялись с задачей дать владельцу картину о работе сердца в различных целевых зонах бега.

Оптическим пульсометрам ещё предстоит покорить мир: технологии будут совершенствоваться, показатели - максимально приближаться к абсолютно точным значениям. Но уже сегодня нет никаких причин не воспользоваться этой удобной и замечательной технологией. Мы, например, уже пользуемся!

Обменяете ли вы свой нагрудный пульсометр на оптический пульсометр для запястья?

Для этого теста мы использовали Garmin Fenix 3HR

Пульсометры для запястья становятся всё более и более распространенными и их можно наблюдать везде от современнейших элитных спортивных смартчасов до фитнесс трекеров, эта технология рекламируется повсюду.

Не удивительно, что эти пульсометры завоевали популярность среди велосипедистов, в отличие от неудобного промокшего от пота нагрудного ремня для измерения пульса. Но обеспечивает ли пульсометр на запястье необходимую точность измерений?

Конечно, изготовители этих изделий уверяют вас, что их продукция обладает необходимыми показателями, но проблема в том, что факторы, влияющие на точность в большинстве случаев сложно проконтролировать в реальных условиях.

Итак, мы провели исследование, смогут ли пульсометры для запястья с оптическим датчиком заменить старый добрый и достоверный нагрудный пульсометр. Для испытаний мы взяли и стандартный нагрудный пульсометр от . Испытания проводились в реальных условиях велосипедной езды, для проверки точности пульсометра на запястье.

Что такое оптический пульсометр?

Оптические датчики пульса не являются новинкой и применяются в велосипедной индустрии например – датчики LifeBEAM. Изначально разработанные для контроля жизненных показателей космонавтов и пилотов, датчики LifeBEAM размещались на лбу для считывания значений пульса.

LifeBEAM и датчики для запястья схожи по принципу действия с фотоплетизмографическими (PPG) датчиками для пальцев, применяемых в больницах.

Большинство устройств для запястья доступных в настоящий момент, используют низко интенсивное излучение зёленого цвета, при прохождении которого через кожу определяется частота пульса. Кости, мягкие ткани и кровь поглощают излучение в различной степени. Оптический датчик определяет частоту пульса по изменению отражения света от потока крови, проходящего через вены.

Нагрудный пульсометр имеет датчик другого типа, который измеряет электрические импульсы небольшой амплитуды, излучаемые сердечной мышцей при её сокращении. Показания с такого датчика не могут быть считаны до тех пор, пока вы не вспотеете (другой способ электроды датчика необходимо смочить водой или специальным гелем), это необходимо для создания проводящей среды между датчиком и вашей кожей.

Общим моментом для обеих систем является необходимость хорошего контакта с вашей кожей, а это значит, что правильное размещение устройств оказывает огромное влияние на точность считывания показаний.

Насколько точен оптический метод измерения пульса?

Несмотря на популярность, точность пульсометров для запястья остаётся предметом споров. Даже имеют место групповые судебные иски против компании FitBit, поводом для которых послужили недостоверные измерения пульса, такими устройствами как FibBit Charge HR, Blaze и Surge.

Журнал Американской Медицинской Ассоциации опубликовал данные тестирования, которые показали, что ни одно из устройств ( , Mio Alpha Fit, Bit Charge HR и Basis Peak) не способно обеспечить достоверную выдачу показаний во время умеренной физической нагрузки. И авторы заявляют: «В случае необходимости получения точных измерений пульса настоятельно рекомендуется пользоваться нагрудными пульсометрами с электродами».

Брендовые производители скромно умалчивают, насколько точны их датчики, тестовую информацию по этому вопросу мне удалось найти только от Mio. Однако этот тест проводился над самим датчиком, а не над фитнес трекером.

Довольно часто проблемы с пульсометром на запястье возникают, если во время тренировки датчик неплотно контактирует с кожей. Все тесты, которые мне довелось видеть, проводились в лабораторных условиях с привлечением спортсменов-бегунов на беговых дорожках.

Если не брать в расчет измеритель мощности, пульс является наиболее точной метрикой для измерения потраченных усилий. Попадание в определенную зону частоты сердечных сокращений является важной целью, если вы следуете предписанной тренировочной программе, результат тренировки может оказаться весьма отличающимся от ожидаемого при выходе за пределы этой зоны.

Точность пульсометра для запястья в сравнении с нагрудным пульсометром

Пульсометр для запястья оснащен оптическим датчиком, который считывает показания в режиме 24/7

Для тестирования на точность пульсометров Fenix 3 HR и Garmin Elevate я использовал стандартный нагрудный пульсометр Garmin, тестирование проводилось в реальных условиях – езда на велосипеде.

Стоит отметить, что это не научное исследование, я задался целью выполнить проверку на точность в реальных условиях, и контролировал все параметры настолько тщательно насколько это возможно. Обращаю внимание, я протестировал оптический датчик одного производителя и могу обсуждать только эти результаты. Каждое из устройств измеряет пульс своим способом и с различными интервалами.

Тестирование состояло из тренировки на велотренажере в помещении, и из реальных поездок на дорожном горном велосипедах. Перед каждой тренировкой я проверял правильность крепления пульсометров на запястье в соответствии с руководством пользователя.

Также стоит отметить, что для фиксации на запястье датчика пульсометра в соответствии с руководством пользователя, мне пришлось затянуть ремешок гораздо туже чем обычно – на две отметки на ремешке.

На приведенной ниже диаграмме красной линией представлены данные с Garmin Fenix 3 HR, а голубой линией данные с нагрудного пульсометра Garmin HR.

Результаты теста на турбо трейнере

Тест на турбо трейнере ближе к лабораторным условиям и вы можете видеть на диаграмме выше, что результаты с пульсометров обоих типов очень схожи, за исключением пары странных значений.

Результаты теста на дорожном велосипеде

Как только я взял пульсометр для запястья Fenix 3 HR (красная линия) на испытания в реальных условия начали проявляться сбои. На верхней диаграмме показана езда по довольно ухабистой дороге с грязевыми участками, на нижней диаграмме отображается определённо более ровный маршрут.

На нижней поездке есть период продолжительностью около 10 минут где информация с Fenix 3 HR полностью пропадает. Во время поездки перерывов не было, положение пульсометра и степень его прижатия к запястью не изменялись.

Как вы можете видеть, во время обоих поездок есть значительные промежутки времени, где показания между пульсометрами отличаются более чем на 40 ударов в минуту. Но при этом средняя частота сердечных сокращений во время поездки отличается всего лишь на один удар в минуту в обоих случаях.

Результаты теста на горном велосипеде

Наконец когда дело дошло до езды на горном велосипеде, профили выглядят как два совершенно разных профиля езды. Хотя показания в основном отличаются примерно на 10 ударов в минуту, создается впечатление, что это совершенно разные треки.

Вывод

На показания датчика пульсометра Garmin Fenix 3 HR похоже влияет большое количество факторов. Прежде всего, я следовал указаниям по размещению и закреплению пульсометра на запястье. При этом я одел его на запястье плотнее и выше чем делаю это обычно.

Если вы посмотрите на результаты, полученные на турбо трейнере, то увидите, что точность датчика пульсометра для запястья практически соответствует нагрудному пульсометру. Однако при езде, как на дорожном, так и горном велосипедах, тряска и толчки снижают точность показаний пульсометра для запястья. Возможно, это происходит из-за нарушения плотного прилегания датчика к коже.

Интересный момент – несмотря на разницу в показаниях, минимальное, максимальное и среднее значения за все время отличались всего на пару ударов в минуту.

Фактором, сыгравшим большую роль, особенно при езде на горном велосипеде, была потливость, пульсометр сползал вниз, особенно езде на спусках. Я пытался подтянуть ремешок на более высокий уровень, но уставшими от поездки руками это сделать сложно.

Я обратился к Garmin с результатами тестов, чтобы выяснить, как объяснить мои результаты тестов с их собственными тестами, на что был получен ответ:

«Мы очень рады, что вы нашли время для проведения сравнений и удивлены полученными результатами. Вся продукция Garmin тестируется в контролируемой и подходящей среде, позволяющей проверять параметры изделий, но мы принимаем результаты ваших исследований и сохраним их на будущее».

Итак, пульсометр для запястья показал все свои недостатки, стоит ли вам тратить не так просто заработанный деньги на новые технологии? Может быть. Если вы следуете строго предписанному плану тренировок, и вам необходимо находится в определенной зоне сердечного ритма для достижения цели, пользуйтесь вашим нагрудным пульсометром. Если же нет и вам не нужны сверхточные данные, то пульсометр для запястья может вполне подойти для определения общих направлений вашего тренинга.

Виджет от SocialMart Спасибо за лайки на сайте ! Будьте счастливым, спортивным и активным человеком всегда! Напишите, что Вы думаете по этому поводу, какими гаджетами пользуетесь и почему?

Хотите узнать больше? Прочтите:

  • Фитнес-трекеры отлично подходят для подсчета шагов,…
  • Тестирование пульсометра для ношения на запястье в…
  • Лучшие модели наручных пульсометров года: обзор и…