Проверка реле напряжения. Тиристорный регулятор напряжения простая схема, принцип работы

17.08.2019

Рис. 1. Способы управления током возбуждения: Г - генератор с параллельным возбуждением; W в - обмотка возбуждения; R д - дополнительное сопротивление; R - балластное сопротивление; К - коммутатор тока (регулирующий орган) в цепи возбуждения; а, б, в,г, д указаны в тексте.

Современный автомобильный двигатель внутреннего сгорания (ДВС) работает в широком интервале изменения оборотов (900:.. 6500 об/мин). Соответственно изменяется и частота вращения ротора автомобильного генератора, а значит и его выходное напряжение.

Зависимость выходного напряжения генератора от оборотов двигателя внутреннего сгорания недопустима, так как напряжение в бортовой сети автомобиля должно быть постоянным и не только при изменении оборотов двигателя, но и при изменении тока нагрузки. Функцию автоматического регулирования напряжения в автомобильном генераторе выполняет специальное устройство - регулятор напряжения автомобильных генераторов . Данный материал посвящен рассмотрению регуляторов напряжения современных автомобильных генераторов переменного тока.

Регулирование напряжения в генераторах с электромагнитным возбуждением

Способы регулирования . Если главное магнитное поле генератора наводится электромагнитным возбуждением, то электродвижущая сила E г генератора может быть функцией двух переменных: частоты n вращения ротора и тока I в в обмотке возбуждения - E г = f(n, I в).

Именно такой тип возбуждения имеет место во всех современных автомобильных генераторах переменного тока, которые работают с параллельной обмоткой возбуждения.

При работе генератора без нагрузки его напряжение U г равно его электродвижущей силе ЭДС E г:
U г = E г = СФ n (1).

Напряжете U г генератора под током I н нагрузки меньше ЭДС E г на величину падения напряжения на внутреннем сопротивлении r г генератора, т.е. можно записать, что
E г = U г + I н r г = U г (1 + β) (2).

Величина β = I н r г /U г называется коэффициентом нагрузки.

Из сравнения формул 1 и 2 следует, что напряжение генератора
U г = nСФ/(1 + β), (3)
где С - постоянный конструктивный коэффициент.

Уравнение (3) показывает, что как при разных частотах (n) вращения ротора генератора (n = Var), так и при изменяющейся нагрузке (β = Var), неизменность напряжения U г генератора может быть получена только соответствующим изменением магнитного потока Ф.

Магнитный поток Ф в генераторе с электромагнитным возбуждением формируется магнитодвижущей силой F в = W I в обмотки W в возбуждения (W - число витков обмотки W в) и может легко управляться с помощью тока I в в обмотке возбуждения, т.е. Ф = f (I в). Тогда U г = f 1 что позволяет удерживать напряжение U г генератора в заданных пределах регулирования при любых изменениях его оборотов и нагрузки соответствующим выбором функции f(I в) регулирования.

Автоматическая функция f(I в) регулирования в регуляторах напряжения сводится к уменьшению максимального значения тока I в в обмотке возбуждения, которое имеет место при I в = U г /R w (R w - активное сопротивление обмотки возбуждения) и может уменьшаться несколькими способами (рис. 1): подключением к обмотке W в параллельно (а) или последовательно (б) дополнительного сопротивления R д: закорачиванием обмотки возбуждения (в); разрывом токовой цепи возбуждения (г). Ток через обмотку возбуждения можно и увеличивать, закорачивая последовательное дополнительное сопротивление (б).

Все эти способы изменяют ток возбуждения скачкообразно, т.е. имеет место прерывистое (дискретное) регулирование тока. В принципе возможно и аналоговое регулирование, при котором величина последовательного дополнительного сопротивления в цепи возбуждения изменяется плавно (д).

Но во всех случаях напряжение U г генератора удерживается в заданных пределах регулирования соответствующей автоматической корректировкой величины тока возбуждения.

Дискретно - импульсное регулирование

В современных автомобильных генераторах магнитодвижущую силу F в обмотки возбуждения, а значит и магнитный поток Ф, изменяют периодическим прерыванием или скачкообразным уменьшением тока I в возбуждения с управляемой частотой прерывания, т.е. применяют дискретно-импульсное регулирование рабочего напряжения U г генератора (ранее применялось аналоговое регулирование, например, в угольных регуляторах напряжения).

Суть дискретно-импульсного регулирования станет понятной из рассмотрения принципа действия генераторной установки, состоящей из простейшего контактно-вибрационного регулятора напряжения, и генератора переменного тока (ГПТ).


Рис. 2. Функциональная (а) и электрическая (б) схемы генераторной установки с вибрационным регулятором напряжения.

Функциональная схема генераторной установки, работающей совместно с бортовой аккумуляторной батареей (АКБ), показана на рис. 2а, а электрическая схема - на рис. 26.

В состав генератора входят: фазные обмотки W ф на статоре СТ, вращающийся ротор R, силовой выпрямитель ВП на полупроводниковых диодах VD, обмотка возбуждения W в (с активным сопротивлением R w). Механическую энергию вращения A м = f (n) ротор генератора получает от ДВС. Вибрационный регулятор напряжения РН выполнен на электромагнитном реле и включает в себя коммутирующий элемент КЭ и измерительный элемент ИЭ.

Коммутирующий элемент КЭ - это вибрационный электрический контакт К, замыкающий или размыкающий дополнительное сопротивление R д, которое включено с обмоткой возбуждения W в генератора последовательно. При срабатывании коммутирующего элемента (размыкание контакта К) на его выходе формируется сигнал τR д (рис. 2а).

Измерительный элемент (ИЭ, на рис. 2а) - это та часть электромагнитного реле, которая реализует три функции:

  1. функцию сравнения (СУ) механической упругой силы F n возвратной пружины П с магнитодвижущей силой F s = W s I s релейной обмотки S (W s - число витков обмотки S, I s - ток в релейной обмотке), при этом результатом сравнения является сформированный в зазоре с период Т (Т = t р + t з) колебаний якоря N;
  2. функцию чувствительного элемента (ЧЭ) в цепи обратной связи (ЦОС) регулятора напряжения, чувствительным элементом в вибрационных регуляторах является обмотка S электромагнитного реле, подключенная непосредственно к напряжению U г генератора и к аккумуляторной батарее (к последней через ключ зажигания ВЗ);
  3. функцию задающего устройства (ЗУ), которое реализуется с помощью возвратной пружины П с силой упругости F п и опорной силой F о.

Работа регулятора напряжения с электромагнитным реле наглядно может быть пояснена с помощью скоростных характеристик генератора (рис. 3 и 4).


Рис. 3. Изменение U г, I в, R б во времени t: а - зависимость текущего значения выходного напряжения генератора от времени t - U г = f (t); б - зависимость текущего значения в обмотке возбуждения от времени - I в = f (t); в - зависимость среднеарифметического значения сопротивления в цепи возбуждения от времени t - R б = f(t); I - время, отвечающее частоте (n) вращения ротора генератора.

Пока напряжение U г генератора ниже напряжения U б аккумуляторной батареи (U г

При увеличении оборотов ДВС напряжение генератора возрастает и при достижении некоторого значения U max) > U б) магнитодвижущая сила F s релейной обмотки становится больше силы F п возвратной пружины П, т.е. F s = I s W s > F п. Электромагнитное реле срабатывает и контакт К размыкается, при этом в цепь обмотки возбуждения включается дополнительное сопротивление.

Еще до размыкания контакта К ток I в в обмотке возбуждения достигает своего максимального значения I в max = U г R w > I вб, от которого, сразу после размыкания контакта К, начинает падать, стремясь к своему минимальному значению I в min = U г /(R w + R д). Вслед за падением тока возбуждения напряжение генератора начинает соответственно уменьшаться (U г = f(I в), что приводит к падению тока I s = U г /R s в релейной обмотке S и контакт К вновь размыкается усилием возвратной пружиной П (F п > F s). К моменту размыкания контакта К напряжение генератора U г становится равным своему минимальному значению U min , но остается несколько больше напряжения аккумуляторной батареи (U гmin > U б).

Начиная с момента размыкания контакта К (n = n min , рис. 3), даже при неизменной частоте n вращения ротора генератора, якорь N электромагнитного реле входит в режим механических автоколебаний и контакт К, вибрируя, начинает периодически, с определенной частотой коммутации f к = I/Т = I/(t р + t з) то замыкать, то размыкать дополнительное сопротивление R д в цепи возбуждения генератора (зеленая линия на участке n = n ср = const, рис. 3). При этом сопротивление R в в токовой цепи возбуждения изменяется скачкообразно от значения R w до величины R w +R д.

Так как при работе регулятора напряжения контакт К вибрирует с достаточно высокой частотой f к коммутации, то R в = R w + τ р где величина τ р - это относительное время разомкнутого состояния контакта К, которое определяется по формуле τ р = t р /(t з + t р), I/(t з + t р) = f к - частота коммутации. Теперь среднее, установившееся для данной частоты f к коммутации, значение тока возбуждения может быть найдено из выражения:

I в ср = U г ср /R в = U г ср /(R w +τ р R д) = U г ср /(R w + R д t р /f к),
где R в - среднеарифметическое (эффективное) значение пульсирующего сопротивления в цепи возбуждения, которое при увеличении относительного времени τ р разомкнутого состояния контакта К также увеличивается (зеленая линия на рис. 4).


Рис. 4. Скоростные характеристики генератора.

Процессы при коммутациях с током возбуждения

Рассмотрим более подробно, что происходит при коммутациях с током возбуждения. Когда контакт К длительно замкнут, по обмотке W в возбуждения протекает максимальный ток возбуждения I в = U г /R w .

Однако обмотка возбуждения W в генератора представляет собой электропроводную катушку с большой индуктивностью и с массивным ферромагнитным сердечником. Как следствие, ток через обмотку возбуждения после замыкания контакта К нарастает с замедлением. Это происходит потому, что скорости нарастания тока препятствует гистерезис в сердечнике и противодействующая нарастающему току - ЭДС самоиндукции катушки.

При размыкании контакта К ток возбуждения стремится к минимальной величине, значение которой при длительно разомкнутом контакте определяется как I в = U г /(R w + R д). Теперь ЭДС самоиндукции совпадает по направлению с убывающим током и несколько продлевает процесс его убывания.

Из сказанного следует, что ток в обмотке возбуждения не может изменяться мгновенно (скачкообразно, как дополнительное сопротивление R д) ни при замыкании, ни при размыкании цепи возбуждения. Более того, при высокой частоте вибрации контакта К ток возбуждения может не достигать своей максимальной или минимальной величины, приближаясь к своему среднему значению (рис. 4), так как величина t р = τ р /f к увеличивается с увеличением частоты f к коммутации, а абсолютное время t з замкнутого состояния контакта К уменьшается.

Из совместного рассмотрения диаграмм, показанных на рис. 3 и рис. 4, вытекает, что среднее значение тока возбуждения (красная линия б на рис. 3 и рис. 4) при повышении оборотов n уменьшается, так как при этом увеличивается среднеарифметическая величина (зеленая линия на рис. 3 и рис. 4) суммарного, пульсирующего во времени, сопротивления R в цепи возбуждения (закон Ома). При этом среднее значение напряжения генератора (U ср на рис. 3 и рис. 4) остается неизменным, а выходное напряжение U г генератора пульсирует в интервале от U max до U min .

Если же увеличивается нагрузка генератора, то регулируемое напряжение U г первоначально падает, при этом регулятор напряжения увеличивает ток в обмотке возбуждения настолько, что напряжение генератора обратно повышается до первоначального значения.

Таким образом, при изменении тока нагрузки генератора (β = V ar) процессы регулирования в регуляторе напряжения протекают так же, как и при изменении частоты вращения ротора.

Пульсации регулируемого напряжения . При постоянной частоте n вращения ротора генератора и при постоянной его нагрузке рабочие пульсации тока возбуждения (ΔI в на рис. 46) наводят соответствующие (по времени) пульсации регулируемого напряжения генератора.

Амплитуда пульсаций ΔU г - 0,5(U max - U min)* регулятора напряжения U г от амплитуды тоновых пульсаций ΔI в в обмотке возбуждения не зависит, так как определяется заданным с помощью измерительного элемента регулятора интервалом регулирования. Поэтому пульсации напряжения U г на всех частотах вращения ротора генератора практически одинаковы. Однако скорость нарастания и спада напряжения U г в интервале регулирования определяется скоростью нарастания и спада тока возбуждения и, в конечном счете, частотой вращения (n) ротора генератора.

* Следует заметить, что пульсации 2ΔU г являются неизбежным и вредным побочным проявлением работы регулятора напряжения. В современных генераторах они замыкаются на массу шунтирующим конденсатором Сш, который устанавливается между плюсовой клеммой генератора и корпусом (обычно Сш = 2,2 мкФ)

Когда нагрузка генератора и частота вращения его ротора не изменяются, частота вибрации контакта К также неизменна (f к = I/(t з + t р) = const). При этом напряжение U г генератора пульсирует с амплитудой ΔU р = 0,5(U max - U min) около своего среднего значения U ср.

При изменении частоты вращения ротора, например, в сторону увеличения или при уменьшении нагрузки генератора, время t з замкнутого состояния становится меньше времени t р разомкнутого состояния (t з

При уменьшении частоты ротора генератора (n↓), или при увеличении нагрузки (β), среднее значение тока возбуждения и его пульсации будут расти. Но напряжение генератора будет попрежнему колебаться с амплитудой ΔU г вокруг неизменной величины U г ср.

Постоянство среднего значения напряжения U г генератора объясняется тем, что оно определяется не режимом работы генератора, а конструктивными параметрами электромагнитного реле: числом витков W s релейной обмотки S, ее сопротивлением R s , величиной воздушного зазора σ между якорем N и ярмом М, а также силой F п возвратной пружины П, т.е. величина U ср есть функция четырех переменных: U ср = f(W s , R s , σ, F п).

Электромагнитное реле с помощью подгиба опоры возвратной пружины П настраивается на величину U ср таким образом, чтобы на нижней частоте вращения ротора (n = n min - рис. 3 и рис. 4) контакт К начинал бы размыкаться, а ток возбуждения успевал бы достигать своего максимального значения I в = U г /R w . Тогда пульсации ΔI в и время t з, замкнутого состояния - максимальны. Этим устанавливается нижний предел рабочего диапазона регулятора (n = n min). На средних частотах вращения ротора время t з примерно равно времени t р, и пульсации тока возбуждения становятся почти в два раза меньше. На частоте вращения n, близкой к максимальной (n = n max - рис. 3 и рис. 4), среднее значение тока I в и его пульсации ΔI в - минимальны. При n max происходит срыв автоколебаний регулятора и напряжение U г генератора начинает возрастать пропорционально оборотам ротора. Верхний предел рабочего диапазона регулятора задается величиной дополнительного сопротивления (при определенной величине сопротивления R w).

Выводы . Вышесказанное о дискретно-импульсном регулировании можно обобщить следующим образом: после пуска двигателя внутреннего сгорания (ДВС), с повышением его оборотов, наступает такой момент, когда напряжение генератора достигает верхнего предела регулирования (U г = U max). В этот момент (n = n min) в регуляторе напряжения размыкается коммутирующий элемент КЭ и сопротивление в цепи возбуждения скачкообразно увеличивается. Это приводит к уменьшению тока возбуждения и, как следствие, к соответствующему падению напряжения U г генератора. Падение напряжения U г ниже минимального предела регулирования (U г = U min) приводит к обратному замыканию коммутирующего элемента КЭ и ток возбуждения начинает снова возрастать. Далее, с этого момента, регулятор напряжения входит в режим автоколебаний и процесс коммутации тока в обмотке возбуждения генератора периодически повторяется, даже при постоянной частоте вращения ротора генератора (n = const).

При дальнейшем увеличении частоты вращения n, пропорционально ей, начинает уменьшаться время t з замкнутого состояния коммутирующего элемента КЭ, что приводит к плавному уменьшению (в соответствии с ростом частоты n) среднего значения тока возбуждения (красная линия на рис. 3 и рис. 4) и амплитуды ΔI в его пульсации. Благодаря этому напряжение U г генератора начинает также пульсировать, но с постоянной амплитудой ΔU г около своего среднего значения (U г = U ср) с достаточно высокой частотой колебаний.

Те же процессы коммутации тока I в и пульсации напряжения U г, будут иметь место и при изменении тока нагрузки генератора (см. формулу 3).

В обоих случаях среднее значение напряжения U г генератора остается неизменным во всем диапазоне работы регулятора напряжения по частоте n (U г ср = const, от n min до n max) и при изменении тока нагрузки генератора от I г = 0 до I г = max.

В сказанном заключается основной принцип регулирования напряжения генератора с помощью прерывистого изменения тока в его обмотке возбуждения.

Электронные регуляторы напряжения автомобильных генераторов

Рассмотренный выше вибрационный регулятор напряжения (ВРН) с электромагнитным реле (ЭМ-реле) имеет ряд существенных недостатков:

  1. как механический вибратор ВРН ненадежен;
  2. контакт К в ЭМ-реле подгорает, что делает регулятор недолговечным;
  3. параметры ВРН зависят от температуры (среднее значение U ср рабочего напряжения U г генератора плавает);
  4. ВРН не может работать в режиме полного обесточивания обмотки возбуждения, что делает его низкочувствительным к изменению выходного напряжения генератора (высокие пульсации напряжения U г) и ограничивает верхнии предел работы регулятора напряжения;
  5. электромеханический контакт К электромагнитного реле ограничивает величину максимального тока возбуждения до значений 2...3 А, что не позволяет применять вибрационные регуляторы на современных мощных генераторах переменного тока.

С появлением полупроводниковых приборов контакт К ЭМ-реле стало возможным заменить эмиттерно-коллекторным переходом мощного транзистора с его управлением по базе тем же контактом К ЭМ-реле.

Так появились первые контактно-транзисторные регуляторы напряжения. В дальнейшем функции электромагнитного реле (СУ, КЭ, УЭ) были полностью реализованы с помощью низкоуровневых (малоточных) электронных схем на полупроводниковых приборах. Это позволило изготавливать чисто электронные (полупроводниковые) регуляторы напряжения.

Особенностью работы электронного регулятора (ЭРН) является то, что в нем отсутствует дополнительный резистор R д, т.е. в цепи возбуждения реализуется практически полное выключение тока в обмотке возбуждения генератора, так как коммутирующий элемент (транзистор) в закрытом (разомкнутом) состоянии имеет достаточно большое сопротивление. При этом становится возможным управление более значительным током возбуждения и с более высокой скоростью коммутации. При таком дискретно-импульсном управлении ток возбуждения имеет импульсный характер, что позволяет управлять как частотой импульсов тока, так и их длительностью. Однако основная функция ЭРН (поддержание постоянства напряжения U г при n = Var и при β = Var) остается такой же, как и в ВРН.

С освоением микроэлектронной технологии регуляторы напряжения сначала стали выпускаться в гибридном исполнении, при котором бескорпусные полупроводниковые приборы и навесные миниатюрные радиоэлементы включались в электронную схему регулятора вместе с толстопленочными микроэлектронными резистивными элементами. Это позволило значительно уменьшить массу и габариты регулятора напряжения.

Примером такого электронного регулятора напряжения может служить гибридно-интегральный регулятор Я-112А, который устанавливается на современных отечественных генераторах.

Регулятор Я-112А (см. схему на рис. 5) является типичным представителем схемотехнического решения задачи дискретно-импульсного регулирования напряжения U г генератора по току I в возбуждения. Но в конструктивном и технологическом исполнении выпускаемые в настоящее время электронные регуляторы напряжения имеют значительные различия.

Рис. 5. Принципиальная схема регулятора напряжения Я-112А: R1...R6 - толстопленочные резисторы: C1, С2 - навесные миниатюрные конденсаторы; V1...V6 - бескорпусные полупроводниковые диоды и транзисторы.

Что касается исполнения регулятора Я-112А, все его полупроводниковые диоды и триоды бескорпусные и смонтированы по гибридной технологии на общей керамической подложке совместно с пассивными толстопленочными элементами. Весь блок регулятора герметичен.

Регулятор Я-112А, как и описанный выше вибрационный регулятор напряжения, работает в прерывистом (ключевом) режиме, когда управление током возбуждения не аналоговое, а дискретно-импульсное.

Принцип работы регулятора напряжения Я-112А автомобильных генераторов

Пока напряжение U г генератора не превышает наперед заданного значения, выходной каскад V4-V5 находится в постоянно открытом состоянии и ток I в обмотки возбуждения напрямую зависит от напряжения U г генератора (участок 0-n на рис. 3 и рис. 4). По мере увеличения оборотов генератора или уменьшения его нагрузки U г становится выше порога срабатывания чувствительной входной схемы (V1, R1-R2), стабилитрон пробивается и через усилительный транзистор V2 выходной каскад V4-V5 закрывается. При этом ток I в в катушке возбуждения выключается до тех пор, пока U г снова станет меньше заданного значения U min . Таким образом, при работе регулятора ток возбуждения протекает по обмотке возбуждения прерывисто, изменяясь от I в = 0 до I в = I max . При отсечке тока возбуждения напряжение генератора сразу не падает, так как имеет место инерционность размагничивания ротора. Оно может даже несколько увеличиться при мгновенном уменьшении тока нагрузки генератора. Инерционность магнитных процессов в роторе и ЭДС самоиндукции в обмотке возбуждения исключают скачкообразное изменение напряжение генератора как при включении тока возбуждения, так и при его выключении. Таким образом, пилообразная пульсация напряжения U г генератора остается и при электронном регулировании.

Логика построения принципиальной схемы электронного регулятора следующая. V1 - стабилитрон с делителем R1, R2 образуют входную цепь отсечки тока I в при U г > 14,5 В; транзистор V2 управляет выходным каскадом; V3 - запирающий диод на входе выходного каскада; V4, V5 - мощные транзисторы выходного каскада (составной транзистор), включенные последовательно с обмоткой возбуждения (коммутирующий элемент КЭ для тока I в); V6 шунтирующий диод для ограничения ЭДС самоиндукции обмотки возбуждения; R4, C1, R3 цепочка обратной связи, ускоряющая процесс отсечки тока I в возбуждения.

Еще более совершенным регулятором напряжения является электронный регулятор в интегральном исполнении. Это такое исполнение, при котором все его компоненты, кроме мощного выходного каскада (обычно это составной транзистор), реализованы с помощью тонкопленочной микроэлектронной технологии. Эти регуляторы настолько миниатюрны, что практически не занимают никакого объема и могут устанавливаться непосредственно на корпусе генератора в щеткодержателе.

Примером конструктивного исполнения ИРН может служить регулятор фирмы BOSCH-EL14V4C, который устанавливается на генераторах переменного тока мощностью до 1 кВт (рис. 6).

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками - шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой - с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает . Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью , расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения

Введение

Цель – изучение конструкции и диагностических параметров регуляторов напряжения.

1. Рассмотреть конструкции регуляторов напряжения.

2. Изучить порядок подключения генератора и регулятора напряжения к установке.

3. Снять диагностические параметры регулятора напряжения согласно порядку выполнения лабораторной работы.

4. Дать оценку полученным результатам.

5. Составить отчет о проделанной работе.

Теория

Принцип работы регулятора напряжения

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы - при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузок, автоматически включать в бортовую сеть силовую цепь генераторной установки или обмотку возбуждения.

По своей конструкции регуляторы делятся на бесконтактные транзисторные, контактно-транзисторные и вибрационные (реле-регуляторы). Разновидностью бесконтактных транзисторных регуляторов являются интегральные регуляторы, выполняемые по специальной гибридной технологии, или монолитные - на монокристалле кремния. Несмотря на столь разнообразное конструктивное исполнение, все регуляторы работают по единому принципу.

Напряжение генератора зависит от трех факторов - частоты вращения его ротора, силы тока нагрузки и величины магнитного потока, создаваемого обмоткой возбуждения, который зависит от силы тока в этой обмотке. Любой регулятор напряжения содержит:

· чувствительный элемент, воспринимающий напряжение генератора (обычно это делитель напряжения на входе регулятора),

· элемент сравнения, в котором напряжение генератора сравнивается с эталонной величиной,

· регулирующий орган, изменяющий силу тока в обмотке возбуждения, если напряжение генератора отличается от эталонной величины.

В реальных регуляторах эталонной величиной может быть не обязательно электрическое напряжение, но и любая физическая величина, достаточно стабильно сохраняющая свое значение, например, сила натяжения пружины в вибрационных и контактно-транзисторных регуляторах.

В транзисторных регуляторах эталонной величиной является напряжение стабилизации стабилитрона, к которому напряжение генератора подводится через делитель напряжения. Управление током в обмотке возбуждения осуществляется электронным или электромагнитным реле.

Частота вращения ротора и нагрузка генератора изменяются в соответствии с режимом работы автомобиля, а регулятор напряжения любого типа компенсирует влияние этого изменения на напряжение генератора воздействием на ток в обмотке возбуждения. При этом вибрационный или контактно-транзисторный регулятор включает в цепь и выключает из цепи обмотки возбуждения последовательно резистор (в двухступенчатых вибрационных регуляторах при работе на второй ступени «закорачивает» эту обмотку на массу), а бесконтактный транзисторный регулятор напряжения периодически подключает и отключает обмотку возбуждения от цепи питания.


В обоих вариантах изменение тока возбуждения достигается за счет перераспределения времени нахождения переключающего элемента регулятора во включенном и выключенном состояниях.

Если сила тока возбуждения должна быть, например, для стабилизации напряжения, увеличена, то в вибрационном и контактно-транзисторном регуляторах время включения резистора уменьшается по сравнению со временем его отключения, а в транзисторном регуляторе время включения обмотки возбуждения в цепь питания увеличивается по отношению к времени ее отключения.

На Рис. 2.1 показано влияние работы регулятора на силу тока в обмотке возбуждения для двух частот вращения ротора генератора n1 и n2, причем частота вращения n2 больше, чем n1.

При большей частоте вращения относительное время включения обмотки возбуждения в цепь питания транзисторным регулятором напряжения уменьшается, среднее значение силы тока возбуждения уменьшается, чем и достигается стабилизация напряжения.

Рис. 2.1. Изменение тока в обмотке возбуждения

при различной частоте вращения ротора n(n2>n1)

tвкл и tвыкл – время нахождения реле соответственно во включенном и выключенном состояниях.

С ростом нагрузки напряжение уменьшается, относительное время включения обмотки увеличивается, среднее значение силы тока возрастает таким образом, что напряжение генераторной установки остается практически неизменным.

На Рис. 2.2 представлены типичные регулировочные характеристики генераторной установки, показывающие, как изменяется сила тока в обмотке возбуждения при неизменном напряжении и изменении частоты вращения или силы тока нагрузки. Нижний предел частоты переключения регулятора составляет 25-30 Гц.

Рис. 2.2. Зависимость напряжения генератора и силы тока в обмотке возбуждения от частоты вращения (а) и силы тока в нагрузке (в)

Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования, и зарядки аккумуляторной батареи при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи. Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

Генераторная установка - достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов.

Технические характеристики генераторов

Особенности устройства и принцип действия

Генератор типа 37.3701 - переменного тока, трехфазный, со встроенным выпрямительным блоком и электронным регулятором напряжения, правого вращения (со стороны привода), с вентилятором у приводного шкива и вентиляционными окнами в торцевой части. Для защиты от грязи задняя крышка генератора закрыта защитным кожухом.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. Такие катушки, помещенные в пазы магнитопровода (железного пакета), представляют собой обмотки статора - важнейшей неподвижной части генератора - именно они генерируют переменный электрический ток.
Магнитный поток в генераторе создается ротором. Он тоже представляет собой катушку (обмотка возбуждения), через которую пропускается постоянный ток (ток возбуждения). Эта обмотка уложена в пазы своего магнитопровода (полюсной системы). В состав ротора - важнейшей подвижной части генератора - входят также вал и контактные кольца. При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего обмотки статора, меняется, что и вызывает появление в них переменного напряжения.
Можно было бы использовать в качестве ротора постоянный магнит, но создание магнитного потока электромагнитом позволяет легко регулировать выходное напряжение генератора в широких диапазонах скоростей вращения и тока нагрузки путем изменения тока возбуждения.

Для того, чтобы получить из переменного напряжения постоянное, используют шесть силовых полупроводниковых диодов, которые составляют между собой выпрямительный блок установленный внутри корпуса генератора.

Питание обмотки возбуждения осуществляется от самого генератора и подводится к ней через щётки и контактные кольца.
Для обеспечения же первоначального возбуждения генератора, после включения зажигания, к клемме "В" регулятора напряжения, подводится ток по двум цепям.

  1. Плюс АКБ - контакт 30 генератора - контакты 30/1 и 15 замка зажигания - контакт 86 и 85 обмотки реле зажигания - минус АКБ. Реле включилось, и ток пошёл по второй цепи:
  2. Плюс АКБ - контакт 30 генератора - контакты 30 и 87 реле зажигания - предохранитель №2 в блоке предохранителей - контакт 4 белого разъема в комбинации приборов - резистор 36 Ом в комбинации приборов - контрольная лампа зарядки АКБ - контакт 12 белого разъема в комбинации приборов - контакт 61 - вывод "В" регулятора напряжения - обмотка возбуждения - вывод "Ш" регулятора напряжения - выходной транзистор регулятора напряжения - минус АКБ.

После пуска двигателя обмотка возбуждения питается с общего вывода трёх дополнительных диодов, установленных на выпрямительном блоке, а напряжение в системе электрооборудования автомобиля контролируется светодиодом или лампой в комбинации приборов. При исправно работающем генераторе после включения зажигания светодиод или лампа должны светиться, а после пуска двигателя - гаснуть. Напряжение на 30-м контакте и общем выводе 61 дополнительных диодов становится одинаковым. Поэтому ток через контрольную лампу (светодиод) не протекает, и она не горит.
Если лампа (светодиод) горит после пуска двигателя, то это означает, что генераторная установка неисправна, т. е. вообще не выдаёт напряжение, или оно ниже напряжения АКБ. В этом случае напряжение на разъёме 61 ниже напряжения на контакте 30. Поэтому в цепи между ними протекает ток, проходящий через светодиод/лампу. Он/она загорается, предупреждая о неисправности генератора.




Регулятор напряжения: назначение и принцип действия

Генераторная установка оснащена полупроводниковым электронным регулятором напряжения, встроенным внутрь генератора. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и от величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки, тем меньше это напряжение.
Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет управления током возбуждения.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов).
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается. Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.
Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора. Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незаметны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В.

Привод генератора и крепление его к двигателю

Привод генератора осуществляется от коленчатого вала ременной передачей при помощи клинового ремня. Соответственно, для этого ремня приводной шкив генератора выполняется с одним ручьём.
Для охлаждения генератора с тыльной стороны шкива точечной сваркой приварены пластины. На шкиве они располагаются почти перпендикулярно и выполняют функцию вентилятора.
Нижнее крепление генератора на двигателе выполнено на двух крепежных лапах, сочленяемых с кронштейном двигателя одним длинным болтом с гайкой. Верхнее - через шпильку к натяжной планке.

Меры предосторожности

Эксплуатация генераторной установки требует соблюдения некоторых правил, связанных, главным образом, с наличием в них электронных элементов.

  1. Не допускается работа генераторной установки с отключенной аккумуляторной батареей. Даже кратковременное отсоединение аккумуляторной батареи при работающем генераторе может привести к выходу элементов регулятора напряжения из строя.
    При полностью разряженной аккумуляторной батарее машину невозможно завести, даже если катать ее на буксире: АКБ не дает тока возбуждения, и напряжение в бортовой сети остается близким к нулю. Помогает установка исправной заряженной батареи, которая затем при работающем двигателе меняется на прежнюю, разряженную. Чтобы избежать выхода из строя элементов регулятора напряжения (и подключенных потребителей) из-за повышения напряжения, на время перестановки батарей необходимо включить мощные потребители электроэнергии, таких, как обогрев заднего стекла или фары. В дальнейшем за полчаса-час работы двигателя на 1500-2000 об/мин разряженная батарея (если она исправна) зарядится достаточно для того, чтобы завести двигатель.
  2. Не допускается подсоединение к бортовой сети источников электроэнергии обратной полярности (плюс на "массе"), что может произойти, например, при запуске двигателя от посторонней аккумуляторной батареи.
  3. Не допускаются любые проверки в схеме генераторной установки с подключением источников повышенного напряжения (выше 14 В).
  4. При проведении на автомобиле электросварочных работ клемма "масса" сварочного аппарата должна быть соединена со свариваемой деталью. Провода, идущие к генератору и регулятору напряжения следует отключить.

Обслуживание генератора

Обслуживание генераторной установки сведено к минимуму и не требует каких-либо специальных знаний и навыков, эти работы может выполнить каждый автолюбитель.
Обслуживание генератора начните с очистки наружных поверхностей. Проверьте крепление генератора к двигателю, надежность присоединения проводов к генератору и регулятору напряжения, а также натяжение приводного ремня вентилятора. Если натяжение слабое, то генератор работает неустойчиво, если сильное - ремень и подшипники быстро изнашиваются.
Также проверьте состояние приводного ремня. На нём не должно быть трещин и расслоений.
Состояние подшипников можно проверить, вращая ротор генератора от руки при снятом приводном ремне. При нормальном состоянии подшипников вращение вала должно происходить плавно, без заеданий, сильного люфта, шумов и щелчков.
В принципе этими работами можно и ограничиться до тех пор, пока не появятся какие-либо неисправности.

Контрольная проверка

Перед выездом рекомендуется проверить работоспособность генераторной установки по контрольной лампе, установленной на панели приборов. После включения зажигания до запуска двигателя контрольная лампа горит, что позволяет проверить ее работоспособность. При нормальной работе генераторной установки контрольная лампа после запуска двигателя гаснет.
У нормально работающей генераторной установки, при средних частотах вращения коленвала двигателя, напряжение должно быть в пределах 13,5...14,2 В. Величину этого напряжения измеряют вольтметром на клеммах аккумулятора.

Предремонтная диагностика

Вспыхнувшая контрольная лампа зарядки АКБ не всегда говорит о неисправности внутри генератора. Зачастую неисправность банальна и лежит на поверхности. Поэтому не стоит сразу же лезть в генератор и сломя голову менять реле-регулятор, авось поможет. Посмотрите схему предварительной диагностики. Для её проведения, возможно, потребуется вольтметр со шкалой не менее 15 В. Каждый может сделать эти проверки и, тем самым, уберечь себя от лишних, неверных действий и потери драгоценного времени.

Если предварительная диагностика показала что, цепь обмотки возбуждения исправна, и неисправность находится в генераторе, то после его снятия желательно проверить все цепи, включая реле-регулятор, по схемам, описанным в разделе

Снятие и установка генератора

  1. Отсоедините минусовый провод от клеммы АКБ (ключ на 10).
  2. Снимите пластмассовые ленточные хомуты с патрубка воздухозаборника и жгута проводов стартёра и генератора.
  3. Разъедините разъём обмотки возбуждения генератора.
  4. Отверните гайку с 30-ой клеммы генератора (ключ на 10).
  5. Отверните гайку крепления генератора к натяжной планке (ключ на 17).
  6. С помощью монтажной лопатки подведите генератор к двигателю и снимите приводной ремень.
  7. Отверните три болта защиты картера (головка на 13) и снимите её.
  8. Снимите правый брызговик двигателя, отвернув пять саморезов с головкой под ключ на 8.
  9. Отверните гайку на 19 с нижнего болта крепления генератора к кронштейну.
  10. Снимите генератор вместе с патрубком воздухозаборника. Для этого нужно немного наклонить его так, чтобы он прошёл вниз между лонжероном и нижним кронштейном крепления генератора.
  11. Установку генератора производите в обратной последовательности.

Разборка и замена регулятора напряжения

Подготовку начните с очистки наружных поверхностей генератора.

  1. Снимите заднюю крышку вместе с воздухозаборным патрубком.
  2. Отсоедините провод от реле-регулятора, отверните два винта М4 и снимите реле-регулятор. Для снятия реле-регулятора старого образца отвинтите провод, закрепленный под удлинителем вывода "30" генератора. Вставьте лезвие отвёртки между корпусом реле-регулятора и щеткодержателем. Работая отвёрткой как рычагом, выдвиньте реле-регулятор и вытащите щётки.
  3. Продуйте от пыли и грязи внутреннюю полость генератора сжатым воздухом с помощью компрессора или насоса.
  4. При сильном обгорании или износе контактных колец ротора, зачистите их мелкой шлифовальной шкуркой.
  5. Установите новое реле-регулятор в порядке обратном снятию.

Если после проверки старое реле-регулятор окажется исправным (метод проверки описан в следующем разделе), то:

  1. очистите контактные соединения генератора и реле-регулятора от грязи и масла тряпкой, смоченной в бензине или растворителе. Масло и грязь увеличивает сопротивление в местах контактов, что уменьшает отдаваемый генератором ток и повышает изнашивание щеток.
  2. проверьте минимально допустимое выступание щеток из щеткодержателя - 5 мм. В случае заедания щёток в щеткодержателе замените реле-регулятор в сборе. (Для реле-регуляторов старого образца достаточно заменить только щёточный узел.)
  3. установите его на место.

Поиск и устранение неисправностей узлов и деталей генераторной установки

Для поиска неисправности электрических цепей генераторной установки достаточно иметь омметр. Более точная проверка обмоточных узлов требует применения специальных приборов, таких как ПДО-1, с его помощью осуществляется поиск неисправности в обмотках методом сравнения их параметров. Для проверки реле-регулятора понадобится источники постоянного напряжения 12…14 В и 16…22 В. Все проверки удобнее проводить на генераторе, снятом с автомобиля.

Проверка регулятора напряжения

Регуляторы напряжения не ремонтируются, а заменяются новыми. Однако перед заменой следует точно установить, что именно он вышел из строя.

Проверка на автомобиле

Для проверки необходимо иметь вольтметр постоянного тока со шкалой до 15...30 вольт.
На работающем при средних оборотах двигателе и включенных фарах замерьте напряжение на клеммах АКБ. Оно должно находится в пределах 13,5...14,2 В.
В том случае, если наблюдается систематический недозаряд или перезаряд аккумуляторной батареи и регулируемое напряжение не укладывается в указанные пределы, возможно, что регулятор напряжения неисправен, и его необходимо заменить. Для того, чтобы узнать, исправен регулятор или нет, проведём его проверку по рисунку показанному ниже.

Проверка снятого регулятора

Регулятор, снятый с генератора, проверяется по следующим схемам (старого образца слева, нового - справа):

Реле-регулятор лучше проверять в сборе со щеткодержателем, так как при этом можно сразу обнаружить обрывы выводов щеток и плохой контакт между выводами регулятора напряжения и щеткодержателя.
Между щетками включите лампу 1...3 Вт, 12 В. К выводам "Б", "В" и к массе регулятора присоедините источник питания сначала напряжением 12…14 В, а затем напряжением 16…22 В.
Если регулятор исправен, то в первом случае лампа должна гореть, а во втором - гаснуть.
Если лампа горит в обоих случаях, то в регуляторе пробой, а если не горит в обоих случаях, то в регуляторе имеется обрыв или нет контакта между щётками и выводами регулятора напряжения.

Проверка обмотки ротора (возбуждения)

Для проверки обмотки следует включить омметр на измерение сопротивления и поднести его выводы к кольцам ротора. У исправного ротора сопротивление обмотки должно быть в пределах 1,8...5 Ом. Если омметр покажет бесконечно большое сопротивление, это значит что, цепь обмотки возбуждения разорвана.
Разрыв чаще всего происходит в месте пайки выводов обмотки к кольцам. Следует внимательно проверить качество этой пайки. Проверку можно осуществить иглой, шевеля выводы обмотки в месте их подпайки. О сгорании обмотки свидетельствует потемнение и осыпание ее изоляции, что можно обнаружить визуально. Сгорание обмоток приводит к обрыву или к межвитковому замыканию в обмотке с уменьшением ее общего сопротивления. Частичное межвитковое замыкание, при котором сопротивление обмотки меняется мало, может быть выявлено прибором ПДО-1, сравнением данной обмотки с заведомо исправной. После проверки сопротивления обмотки следует проверить отсутствие у нее замыкания на "массу". Для этого один вывод омметра подносится к любому кольцу ротора, а другой к его клюву. У исправной обмотки омметр покажет бесконечно большое сопротивление. Неисправный ротор подлежит замене.

Проверка обмотки статора

Статор проверяется отдельно, после разборки генератора. Выводы его обмотки должны быть отсоединены от вентилей выпрямителя.

В первую очередь проверьте омметром, нет ли обрывов в обмотке статора (а). Затем подсоединением концов омметра к одному из выводов обмотки и неизолированному участку железа статора проверьте, не замыкаются ли ее витки на "маccу" (б). Омметр должен показать разрыв цепи у исправной обмотки. Проверку межвиткового замыкания в обмотках статора можно с достаточной точностью осуществить с использованием прибора ПДО-1. Обрыв можно проверить и омметром, подсоединяя его к нулевой точке и поочередно к выводу каждой фазы. Внешним осмотром следует убедиться, что отсутствует растрескивание изоляции и подгорание обмотки, которое происходит при коротком замыкании в вентилях выпрямительного блока. Статор с такой поврежденной обмоткой замените.

Проверка вентилей (диодов) выпрямительного блока

Проверка диодов выпрямительного блока производится после отсоединения его от обмотки статора омметром. Исправный вентиль пропускает ток, только в одном направлении. Неисправный - может либо вообще не пропускать ток (обрыв цепи), или пропускать ток в обоих направлениях (короткое замыкание). В случае повреждения одного из вентилей выпрямителя необходимо заменять целиком выпрямительный блок.
Короткое замыкание вентилей выпрямительного блока можно проверить, не разбирая генератор, а только сняв защитный кожух. Также отсоединяется вывод "Б" регулятора от клеммы "30" генератора и провод от вывода "В" регулятора напряжения. Проверить можно омметром или с помощью лампы (1…5 Вт, 12 В) и аккумуляторной батареи.
С целью упрощения крепления деталей выпрямителя три вентиля (с красной меткой) создают на корпусе "плюс" выпрямленного напряжения. Эти вентили "положительные" и они запрессованы в одну пластину выпрямительного блока, соединенную с выводом "30" генератора. Другие три вентиля ("отрицательные" с черной меткой) имеют на корпусе "минус" выпрямленного напряжения. Они запрессованы в другую пластину выпрямительного блока, соединенную с "массой".
Сначала проверьте, нет ли замыкания одновременно в "положительных" и "отрицательных" вентилях. Для этого "плюс" батареи через лампу подсоедините к зажиму "30" генератора, а "минус" к корпусу генератора:

Если лампа горит, то "отрицательные" и "положительные" вентили имеют короткое замыкание.
Короткое замыкание "отрицательных" вентилей можно проверить, соединив "плюс" батареи через лампу с одним из болтов крепления выпрямительного блока, а "минус" с корпусом генератора:

Горение лампы означает короткое замыкание в одном или нескольких "отрицательных" вентилях. Следует помнить, что в этом случае горение лампы может быть и следствием замыкания витков обмотки статора на корпус генератора. Однако такая неисправность встречается реже, чем короткое замыкание вентилей.
Для проверки короткого замыкания в "положительных" вентилях "плюс" батареи через лампу соедините с зажимом 30 генератора, а "минус" - с одним из болтов крепления выпрямительного блока:

Горение лампы укажет на короткое замыкание одного или нескольких "положительных" вентилей.
Обрыв в вентилях без разборки генератора можно обнаружить либо осциллографом, либо при проверке генератора на стенде по значительному снижению (на 20-30%) величины отдаваемого тока по сравнению с номинальным. Если обмотки, дополнительные диоды и регулятор напряжения генератора исправны, а в вентилях нет короткого замыкания, то причиной уменьшения отдаваемого тока является обрыв в вентилях.

Проверка дополнительных диодов

Короткое замыкание дополнительных диодов можно проверить по схеме:

"Плюс" батареи через лампу (1…3 Вт, 12 В) присоедините к выводу "61" генератора, а "минус" к одному из болтов крепления выпрямительного блока.
Если лампа загорится, то в каком-то из дополнительных диодов имеется короткое замыкание. Найти поврежденный диод можно, только сняв выпрямительный блок и проверяя каждый диод в отдельности.
Обрыв в дополнительных диодах можно обнаружить осциллографом по искажению кривой напряжения на штекере "61", а также по низкому напряжению (ниже 14 В) на штекере "61" при средней частоте вращения ротора генератора.

Проверка конденсатора

Конденсатор служит для защиты электронного оборудования автомобиля от импульсов напряжения системе зажигания, а также для снижения помех радиоприему.
Повреждение конденсатора или ослабление его крепления на генераторе (ухудшение контакта с массой) обнаруживается по увеличению помех радиоприёму при работающем двигателе.
Ориентировочно исправность конденсатора можно проверить мегомметром или тестером (на шкале 1…10 МОм). Если в конденсаторе нет обрыва, то в момент присоединения щупов прибора к выводам конденсатора стрелка должна отклониться в сторону уменьшения сопротивления, а затем постепенно вернуться обратно.
Емкость конденсатора, замеренная специальным прибором, должна быть 2,2 мкФ+20%.

Проверка и замена подшипников

Проверку подшипников начните с внешнего осмотра, выявления трещин в обоймах, наволакивания или выкрашивания металла, наличие коррозии и т. д. Проверьте легкость вращения и отсутствие сильного люфта и шума. Если у подшипника сильно изношены посадочные места или есть повреждения, то он подлежит замене.
Порядок замены подшипников (генератор снят с автомобиля).

  1. Снимите заднюю крышку вместе с патрубком воздухозаборника.
  2. Снимите регулятор напряжения.
  3. Отверните шкив генератора и вытащите шпонку.
  4. Отверните 4 гайки стяжных болтов и снимите переднюю крышку генератора вместе с ротором и подшипниками.
  5. Извлеките неисправный подшипник из крышки со стороны привода. Отверните гайки винтов, стягивающих шайбы крепления подшипника, снимите шайбы с винтами и на ручном прессе выпрессуйте подшипник. Если гайки винтов не отворачиваются (концы винтов раскернены), спилите концы винтов.
  6. Запрессуйте новый подшипник. Для этого новый подшипник положите на посадочное место, а сверху него - старый. Несильными ударами молотка, по старому подшипнику, осаживайте новый подшипник в посадочное место. Если подшипник идёт с большим натягом, побрызгайте на его внешнее кольцо жидкостью WD-40.
  7. С помощью съёмника спрессуйте второй подшипник с обратной стороны ротора.
  8. Запрессуйте новый подшипник (см. п. 6).
  9. Произведите сборку в обратной последовательности.

Проверка крышек

Внешним осмотром определяется отсутствие трещин, проходящих через гнездо подшипника, обломы лап крепления генератора, сильные повреждения посадочных мест. При наличии таких повреждений крышка подлежит замене. При выявлении сильного износа посадочных мест подшипников, замените крышки.

Поиск неисправностей генератора по схемам

Типичные неисправности генератора

Причины неисправности

Способ устранения

Светодиод (лампа) вольтметра не загорается при включении зажигания. Контрольные приборы не работают

1. Поврежден светодиод (лампа) вольтметра

Замените светодиод (лампу) вольтметра

2. Перегорел предохранитель №2 в блоке предохранителей

Замените предохранитель

3. Обрыв в цепи питания комбинации приборов:

не подается напряжение от штекера "Б" блока предохранителей к комбинации приборов

проверьте провод "О" и его соединения от блока предохранителей до комбинации приборов

не подается напряжение от реле зажигания к штекеру "Б" блока предохранителей

проверьте провод "ГЧ" и его соединения от блока предохранителей до реле зажигания

обрыв или нарушение контакта в проводе, соединяющем с "массой" комбинацию приборов

проверить провод "Ч" и его соединения от комбинации приборов на "массу"

4. Не срабатывает выключатель или реле зажигания:

неисправна контактная часть или реле зажигания

проверьте, замените контактную часть выключателя или реле зажигания

не подается напряжение от выключателя к реле зажигания

проверьте провод "Ч" и его соединения между выключателем и реле зажигания

обрыв или нарушение контакта в проводе, соединяющем с "массой" реле зажигания

проверьте провод "Ч" и его соединения от реле зажигания на "массу"

5. Поврежден стабилизатор напряжения в комбинации приборов

Замените стабилизатор напряжения

При включении зажигания и после пуска двигателя светодиод/лампа вольтметра не горит, аккумулятор разряжается

Неисправна цепь обмотки возбуждения генератора:

1. Перегорел предохранитель №2

Замените предохранитель

2. Обрыв проводов в цепях: предохранитель №2 - комбинация приборов; комбинация приборов - реле-регулятор.

Найдите и устраните обрыв

3. В приборной панели; перегорел светодиод/лампа; обрыв печатных проводников; неисправно гасящее сопротивление или плохие пайки его выводов

Замените светодиод/лампу; устраните обрыв печатных проводников; замените или пропаяйте сопротивление.

4. Нет "массы" между корпусом и реле-регулятором

Очистите от окислов и грязи место соединения реле-регулятора с генератором

5. Неисправно реле-регулятор

Замените реле-регулятор

6. Обрыв обмотки ротора

Замените ротор

Светодиод вольтметра горит при работе двигателя. Аккумуляторная батарея разряжена

1. Проскальзывание ремня привода генератора

Отрегулируйте натяжение ремня

2. Нет контакта между выводами "В" и "Ш" регулятора напряжения и выводами щеток

Зачистите выводы "В" и "Ш" регулятора напряжения и щеток, подогните выводы регулятора

3. Обрыв в цепи между комбинацией приборов и штекером "61" генератора

Проверьте "КБ" провод и его соединения от генератора до комбинации приборов

4. Износ или зависание щеток, окисление контактных колец

Замените щеткодержатель со щетками, протрите кольца салфеткой, смоченной в бензине

5. Поврежден регулятор напряжения

Замените регулятор напряжения

6. Повреждены вентили выпрямительного блока

Замените выпрямительный блок

7. Повреждены диоды питания обмотки возбуждения

Замените диоды или выпрямительный блок

8. Отпайка выводов обмотки возбуждения от контактных колец

Припаяйте выводы или замените ротор генератора

9. Обрыв или короткое замыкание в обмотке статора, замыкание ее на "массу"

Замените статор генератора

АКБ разряжается в процессе эксплуатации, но внешних признаков ненормальной работы генератора нет

1. Неисправна АКБ: окисление проводов или клемм батареи; недостаточно электролита; замыкание одной или нескольких банок

Очистите провода/клеммы; долить дистиллированную воду, заменить АКБ

2. Грязь, замасливание, окисление контактных колец ротора

Очистить контактные кольца тряпкой смоченной в бензине, мелкой наждачной бумагой

3. Грязь, замасливание щёток реле-регулятора или слабый контакт в связи с их чрезмерным износом

Очистите щётки от грязи тряпкой смоченной в бензине. Замените реле-регулятор в сборе. (Для реле-регуляторов старого образца достаточно заменить только щётки)

4. Перерасход энергии мощными/ дополнительными потребителями

Замените генератор другим, более мощным (ВАЗ-2108 - 955.3701; ГАЗ-3102)

5. Межвитковое замыкание или обрыв одной из фаз обмотки статора

Замените обмотку статора

Светодиод вольтметра мигает при работе двигателя. Аккумуляторная батарея перезаряжается

Поврежден регулятор напряжения (короткое замыкание между выводом "Ш" и "массой")

Замените регулятор напряжения

Контрольная лампа горит в полнакала при работе двигателя

Неисправны дополнительные и/или выпрямительные диоды

Заменить диоды или выпрямительный блок в сборе

Повышенная шумность генератора

1. Ослаблена гайка шкива генератора

Подтяните гайку

2. Повреждены подшипники ротора или их посадочные места

Замените подшипники, крышку/крышки генератора

3. Межвитковое замыкание или замыкание на "массу" обмотки статора (вой генератора)

Замените статор

4. Короткое замыкание в одном из вентилей генератора

Замените выпрямительный блок

5. Скрип щеток

Протрите щетки и контактные кольца хлопчатобумажной салфеткой, смоченной в бензине

6. Задевание ротора за полюса статора

Замените ротор, статор. Обратить внимание на подшипники

Быстрый износ щёток и контактных колец

1. Попадание масла или грязи на контактные кольца

Очистите контактные кольца тряпкой смоченной в бензине, мелкой наждачной бумагой

2. Увеличенное биение контактных колец

Замените ротор

Внимание! "Минус" аккумуляторной батареи всегда должен соединяться с массой, а "плюс" - подключается к зажиму "30" генератора. Ошибочное обратное включение батареи немедленно вызовет повышенный ток через вентили генератора, и они выйдут из строя.

Не допускается работа генератора с отсоединенной аккумуляторной батареей. Это вызовет возникновение кратковременных перенапряжений на зажиме "30" генератора, которые могут повредить регулятор напряжения генератора и электронные устройства в бортовой сети автомобиля.

Запрещается проверка работоспособности генератора "на искру" даже кратковременным соединением зажима "30" генератора с "массой". При этом через вентили протекает значительный ток, и они повреждаются. Проверять генератор можно только с помощью амперметра или вольтметра.

Вентили генератора не допускается проверять напряжением более 12 В или мегометром, так как он имеет слишком высокое для вентилей напряжение и они при проверке будут пробиты (произойдет короткое замыкание).

Запрещается проверка электропроводки автомобиля мегометром или лампой, питаемой напряжением более 12 В. Если такая проверка необходима, то предварительно следует отсоединить провода от генератора.

Проверять сопротивление изоляции обмотки статора генератора повышенным напряжением следует только на стенде и обязательно с отсоединенными от вентилей выводами фазных обмоток.

При электросварке узлов и деталей кузова автомобиля следует отсоединить провода от всех клемм генератора и выводов аккумуляторной батареи.

В зависимости от устройства и принципа работы реле-регуляторы напряжения генератора в автомобиле делятся на несколько видов: встроенные, внешние, трехуровневые и другие. Теоретически такой прибор можно сделать и самостоятельно, самый простой в плане реализации и дешевый вариант - использовать шунтирующее устройство.

[ Скрыть ]

Назначение реле-регулятора

Реле-регулятор напряжения генератора предназначен для стабилизации тока в установке. При функционировании двигателя вольтаж в электрической системе автомобиля должен быть на одном уровне. Но поскольку коленвал вращается с разной скоростью и обороты мотора неодинаковы, генераторный узел вырабатывает разное напряжение. Без регулировки этого параметра могут произойти сбои в функционировании электрооборудования и приборов машины.

Взаимосвязь источников тока авто

В любом автомобиле используется два источника питания:

  1. Аккумуляторная батарея — требуется для запуска силового агрегата и первичного возбуждения генераторной установки. АКБ расходует и накапливает энергию при подзарядке.
  2. Генератор. Предназначен для питания и нужен для того, чтобы генерировать энергию независимо от оборотов. Устройство позволяет восполнить заряд батареи при работе на повышенных оборотах.

В любой электросети оба узла должны быть рабочими. Если генератор постоянного тока выходит из строя, аккумулятор проработает не более двух часов. Без АКБ не заведется силовой агрегат, который приводит в движение ротор генераторной установки.

Канал «LR West» рассказал о неисправностях электросетей в автомобилях Лэнд Ровер, а также о взаимосвязи АКБ и генераторов.

Задачи регулятора напряжения

Задачи, которые выполняет электронное регулируемое устройство:

  • изменение значения тока в обмотке возбуждения;
  • возможность выдержать диапазон от 13,5 до 14,5 вольт в электросети, а также на клеммных выводах АКБ;
  • отключение питания обмотки возбуждения при выключенном силовом агрегате;
  • функция подзарядки аккумулятора.

«Народный автоканал» подробно рассказал о назначении, а также о задачах, которые выполняет регуляторное устройство напряжения в авто.

Разновидности реле-регуляторов

Есть несколько видов автомобильных реле-регуляторов:

  • внешние — этот тип реле позволяет увеличить ремонтопригодность генераторного узла;
  • встроенные — устанавливаются в пластину выпрямительного устройства либо щеточный узел;
  • изменяющиеся по минусу — оснащаются дополнительным кабелем;
  • регулирующиеся по плюсу — характеризуются более экономичной схемой подключения;
  • для установки в агрегаты переменного тока — напряжение не может регулироваться при подаче на обмотку возбуждения, поскольку она установлена в генератор;
  • для устройств постоянного тока — реле-регуляторы имеют функцию отсечения аккумулятора при незапущенном двигателе;
  • двухуровневые реле — сегодня практически не используются, в них регулировка осуществляется пружинками и рычажком;
  • трехуровневые — оснащаются схемой сравнивающего модуля, а также сигнализатором согласования;
  • многоуровневые — оборудуются 3-5 добавочными резисторными элементами, а также системой контроля;
  • транзисторные образцы — на современных транспортных средствах не применяются;
  • релейные устройства — характеризуются более улучшенной обратной связью;
  • релейно-транзисторные — обладают универсальной схемой;
  • микропроцессорные реле — характеризуются небольшими размерами, а также возможностью плавного изменения нижнего либо верхнего порога срабатывания;
  • интегральные — устанавливаются в держатели щеток, поэтому при их износе меняются.

Реле-регуляторы постоянного тока

В таких агрегатах схема подключения выглядит более сложной. Если машина стоит и двигатель не запущен, генераторный узел должен быть отключен от аккумулятора.

При выполнении испытания реле необходимо удостовериться в наличии трех опций:

  • отсечка батареи при стоянке транспортного средства;
  • ограничение максимального параметра тока на выходе агрегата;
  • возможность изменения параметра напряжения для обмотки.

Реле-регуляторы переменного тока

Такие устройства характеризуются более упрощенной схемой проверки. Автовладельцу необходимо произвести диагностику величины напряжения на обмотке возбуждения, а также на выходе агрегата.

Если в автомобиле установлен генератор переменного тока, то запустить двигатель «с толкача» не получится, в отличие от агрегата постоянного тока.

Встроенные и внешние реле-регуляторы

Процедура изменения величины напряжения производится устройством в определенном месте монтажа. Соответственно, встроенные регуляторы осуществляют воздействие на генераторный узел. А внешний тип реле не связан с ним и может подключаться к катушке зажигания, тогда его работа будет направлена только на изменение напряжения на данном участке. Поэтому перед выполнением диагностики автовладелец должен убедиться, что деталь подключена правильно.

Канал «Sovering TVi» подробно рассказал о предназначении, а также принципе действия данного типа устройств.

Двухуровневые

Принцип действия таких устройств заключается в следующем:

  1. Ток проходит через реле.
  2. В результате образования магнитного поля рычаг притягивается.
  3. В качестве сравнивающего элемента используется пружинка, обладающая конкретным усилием.
  4. Когда напряжение увеличивается, контактные элементы размыкаются.
  5. На обмотку возбуждения подается меньший ток.

В автомобилях ВАЗ для регулирования ранее использовались механические двухуровневые устройства. Главный недостаток заключался в быстром износе конструктивных компонентов. Поэтому вместо механических на эти модели машин стали устанавливать электронные регуляторы.

В основе таких деталей использовались:

  • делители напряжения, которые собирались из резисторных элементов;
  • в качестве задающей детали применялся стабилитрон.

Из-за сложной схемы подключения и неэффективного контроля уровня напряжения такой тип устройств стал использоваться реже.

Трехуровневые

Данный тип регуляторов, как и многоуровневые, являются более усовершенствованными:

  1. Напряжение подается с генераторного устройства на специальную схему и проходит через делитель.
  2. Полученные данные обрабатываются, фактический уровень напряжения сравнивается с минимальным и максимальным значением.
  3. Импульс рассогласования изменяет параметр тока, который подается на обмотку возбуждения.

Трехуровневые устройства с частотной модуляцией не имеют сопротивлений, но частота срабатывания электронного ключа в них выше. Для управления применяются специальные логические схемы.

Управление по минусу и плюсу

Схемы по отрицательному и положительному контактам отличаются только подсоединением:

  • при установке в разрыв плюса одна щетка соединяется с массой, а вторая идет на клемму реле;
  • если реле устанавливается в разрыв минуса, то один щеточный элемент должен быть подключен к плюсу, а второй — непосредственно на реле.

Но во втором случае появится еще один кабель. Это связано с тем, что данные модули реле относятся к классу приспособлений активного типа. Для его функционирования потребуется отдельное питание, поэтому плюс подключается индивидуально.

Фотогалерея «Виды реле-регулятора напряжения генератора»

В данном разделе представлены фото некоторых видов устройства.

Выносной тип устройств Встроенный регулятор Транзисторно-релейный тип Интегральное устройство Устройство для генератора постоянного тока Регулирующее устройство переменного тока Двухуровневый тип устройств Трехуровневый регулирующий прибор

Принцип работы реле-регулятора

Наличие встроенного резисторного устройства, а также специальных схем обеспечивает возможность регулятора сравнивать параметр напряжения, которое вырабатывает генератор. Если значение слишком высокое, то регулятор отключается. Это позволяет не допустить перезаряда АКБ и выхода из строя электрооборудования, которое питается от сети. Неполадки в работе устройства приведут к поломке аккумулятора.

Переключатель зима и лето

Генераторное устройство работает стабильно независимо от температуры окружающей среды и сезона. Когда его шкив приводится в движение, происходит выработка тока. Но в холодное время года внутренние конструктивные элементы батареи могут примерзать. Поэтому заряд АКБ восстанавливается хуже, чем в жару.

Переключатель для изменения сезона работы располагается на корпусе реле. Некоторые модели оснащаются специальными разъемами, их надо найти и подсоединить провода в соответствии со схемой и обозначениями, нанесенными на них. Сам переключатель представляет собой устройство, благодаря которому уровень напряжения на выводах батареи можно увеличить до 15 вольт.

Как снимать реле-регулятор?

Снятие реле допускается только после отключения клемм от АКБ.

Чтобы произвести демонтаж устройства своими руками, потребуется отвертка с крестовым или плоским наконечником. Все зависит от болта, который крепит регулятор. Генераторный узел, а также приводной ремень демонтировать не нужно. От регулятора отсоединяется кабель и выкручивается болт, который его крепит.

Пользователь Виктор Николаевич подробно рассказал о демонтаже регуляторного механизма и его последующей замене на авто.

Признаки неисправности

«Симптомы», в результате которых потребуется проверить или произвести ремонт регуляторного устройства:

  • при активации зажигания на контрольном щитке появляется световой индикатор разряженного аккумулятора;
  • значок на приборной панели не пропадает после запуска двигателя;
  • яркость свечения оптики может быть слишком низкой и увеличиваться при повышении оборотов коленвала и нажатии на педаль газа;
  • силовой агрегат машины с трудом запускается с первого раза;
  • АКБ автомобиля часто разряжается;
  • при увеличении числа оборотов ДВС более двух тысяч в минуту лампочки на контрольном щитке отключаются автоматически;
  • динамические свойства транспортного средства снижаются, что особенно явно проявляется на повышенных оборотах коленвала;
  • возможно закипание аккумулятора.

Возможные причины неисправностей и последствия

Необходимость ремонта реле-регулятора напряжения генератора возникнет при таких проблемах:

  • межвитковое замыкание обмоточного устройства;
  • короткое замыкание в электроцепи;
  • поломка выпрямительного элемента в результате пробоя диодов;
  • ошибки, допущенные при подключении генераторного агрегата к выводам АКБ, переплюсовка;
  • попадание воды или другой жидкости внутрь корпуса регуляторного устройства, к примеру, в высокую влажность на улице или при мойке авто;
  • механические неисправности устройства;
  • естественный износ элементов конструкции, в частности, щеток;
  • низкое качество использующегося устройства.

В результате неисправности последствия могут быть серьезными:

  1. Высокое напряжение в электросети автомобиля приведет к поломке электрооборудования. Из строя может выйти микропроцессорный блок управления машиной. Поэтому не допускается отключение клеммных зажимов АКБ при запущенном силовом агрегате.
  2. Перегрев обмоточного устройства в результате внутреннего замыкания. Ремонт будет дорогостоящим.
  3. Поломка щеточного механизма приведет к неисправности генераторного агрегата. Узел может заклинить, возможен обрыв приводного ремешка.

Пользователь Сникерсон рассказал о диагностике регуляторного механизма, а также о причинах его выхода из строя на автомобилях.

Диагностика реле-регулятора

Проверять работу регуляторного устройства необходимо с помощью тестера — мультиметра. Его предварительно надо настроить в режим вольтметра.

Встроенного

Данный механизм обычно встроен в щеточный узел генераторного агрегата, поэтому потребуется уровневая диагностика устройства.

Проверка выполняется так:

  1. Производится демонтаж защитной крышки. С помощью отвертки или гаечного ключа ослабляется щеточный узел, его необходимо вывести наружу.
  2. Проверяется износ щеточных элементов. Если их длина составляет менее 5 мм, то замена производится обязательно.
  3. Проверка генераторного устройства с использованием мультиметра выполняется вместе с АКБ.
  4. Отрицательный кабель от источника тока замыкается на соответствующую пластину регуляторного устройства.
  5. Положительный контакт от зарядного оборудования либо аккумулятора соединяется с таким же выходом на разъеме реле.
  6. Затем мультиметр выставляется в рабочий диапазон от 0 до 20 вольт. Щупы устройства соединяются со щетками.

В рабочем диапазоне от 12,8 до 14,5 вольт между щеточными элементами должно быть напряжение. Если параметр увеличивается более чем на 14,5 В, то стрелка тестера должна упасть на ноль.

При диагностике встроенного реле-регулятора напряжения генератора допускается применение контрольной лампочки. Источник освещения должен включаться при определенном интервале напряжения и гаснуть, если этот параметр увеличивается больше необходимого значения.

Кабель, который управляет тахометром, надо прозвонить посредством тестера. На дизельных автомобилях этот проводник обозначается W. Уровень сопротивления провода должен составить примерно 10 Ом. Если этот параметр падает, это говорит о том, что проводник пробит и требует замены.

Выносного

Метод диагностики такого типа устройств осуществляется аналогично. Единственное отличие заключается в том, что реле-регулятор не требуется снимать и извлекать из корпуса генераторного агрегата. Произвести диагностику устройства можно при запущенном силовом агрегате, меняя обороты коленчатого вала с низких на средние и на высокие. При повышении их числа необходимо активировать оптику, в частности, дальнее освещение, а также магнитолу, печку и другие потребители.

Канал «AvtotechLife» рассказал о самостоятельной диагностике регуляторного устройства, а также об особенностях выполнения этой задачи.

Самостоятельное подключение реле-регулятора в бортовую сеть генератора (пошаговая инструкция)

При установке нового регуляторного устройства надо учесть следующие моменты:

  1. Перед выполнением задачи обязательно производится диагностика целостности, а также надежности контактов. Речь идет о кабеле, идущем от кузова транспортного средства к корпусу генераторной установки.
  2. Затем выполняется подключение клеммного зажима Б регуляторного элемента к положительному контакту генераторного агрегата.
  3. При выполнении соединения скрутки проводов использовать не рекомендуется. Они греются и становятся непригодными через год эксплуатации. Следует применять пайку.
  4. Штатный проводник рекомендуется заменить проводом, сечение которого составляет не меньше 6 мм2. Особенно если вместо заводского генератора устанавливается новый, который рассчитан на работу в условиях тока выше 60 А.
  5. Наличие амперметра в цепи генератор-АКБ позволяет определить мощность источников питания в конкретное время.

Схема подключения регулятора выносного

Схема подключения выносного типа устройств

Данное устройство устанавливается после того, как будет определен провод, в разрыв которого он подключится:

  1. В старых версиях Газелей и РАФ применяются механизмы 13.3702. Они выполнены в металлическом или полимерном корпусе и оснащаются двумя контактными элементами и щетками. Их рекомендуется подключать в отрицательный разрыв цепи, выходы обычно обозначены. Положительный контакт берется с катушки зажигания. А выход Ш реле подключается к свободному контакту на щетках.
  2. В автомобилях ВАЗ используются устройства 121.3702 в черном либо белом корпусе, есть также двойные модификации. В последних при поломке одной из деталей второй регулятор останется рабочим, но на него надо переключиться. Устройство устанавливается в разрыв положительной цепи клеммой 15 к контакту катушки Б-ВК. Со щетками соединяется проводник под номером 67.

В более новых версиях ВАЗ реле устанавливаются в щеточный механизм и соединяются с выключателем зажигания. Если автовладельцем производится замена штатного агрегата на узел переменного тока, то подключение должно выполняться с учетом нюансов.

Подробнее о них:

  1. Необходимость фиксации агрегата к корпусу транспортного средства определяется автовладельцем самостоятельно.
  2. Вместо плюсового выхода здесь используется контакт В либо В+. Он должен быть подключен к электросети авто через амперметр.
  3. Выносной тип устройств в таких авто обычно не применяется, а встроенные регуляторы уже интегрированы в щеточный механизм. От него идет один кабель, обозначающийся как D или D+. Он должен подключаться к выключателю зажигания.

В автомобилях с дизельными двигателями генераторный узел может оснащаться выходом W — он подключается к тахометру. Этот контакт можно игнорировать, если агрегат ставится на бензиновую модификацию авто.

Пользователь Николай Пуртов подробно рассказал об установке и подключении выносного типа устройств на автомобиль.

Проверка подключения

Мотор обязательно должен запускаться. А уровень напряжения в электросети авто будет контролироваться в зависимости от количества оборотов.

Возможно, после монтажа и подключения нового генераторного устройства автовладелец столкнется с трудностями:

  • при активации силового агрегата генераторный узел запускается, замер величины напряжения производится на любых оборотах;
  • а после отключения зажигания мотор транспортного средства работает и не глушится.

Решить проблему можно путем отключения кабеля возбуждения, только после этого двигатель остановится.

Глушение мотора может произойти при отпускании сцепления с нажатием на педаль тормоза. Причина неисправности заключается в остаточной намагниченности, а также постоянном самовозбуждении обмотки агрегата.

Чтобы не столкнуться с такой проблемой в дальнейшем, в разрыв возбуждающего кабеля можно добавить источник освещения:

  • лампочка будет гореть при отключенном генераторе;
  • когда происходит запуск агрегата, индикатор тухнет;
  • величина тока, которая проходит через источник освещения, будет недостаточной для возбуждения обмотки.

Канал «Altevaa TV» рассказал о проверке подключения регуляторного устройства после подсоединения в 6-вольтовую сеть мотоцикла.

Советы по увеличению срока службы реле-регулятора

Чтобы не допустить быстрого выхода из строя регуляторного устройства, необходимо придерживаться нескольких правил:

  1. Нельзя допускать сильного загрязнения генераторной установки. Время от времени следует выполнять визуальную диагностику состояния устройства. При серьезных загрязнениях производится снятие агрегата и его очистка.
  2. Периодически следует проверять натяжение приводного ремешка. Если потребуется, производится его натяжка.
  3. Рекомендуется следить за состоянием обмоток генераторного агрегата. Нельзя допускать их потемнения.
  4. Надо проверять качество контакта на управляющем кабеле регуляторного механизма. Не допускается наличие окислений. При их появлении производится очистка проводника.
  5. Периодически следует диагностировать уровень напряжения в электросети авто с заведенным и заглушенным двигателем.

Сколько стоит реле-регулятор?

Стоимость устройства зависит от производителя и типа регулятора.

Можно ли сделать регулятор своими руками?

Пример рассмотрен на регуляторном механизме для скутера. Основной нюанс заключается в том, что для корректной работы потребуется разбор генераторного агрегата. Отдельным проводником необходимо вывести кабель массы. Сборка устройства осуществляется по схеме однофазного генератора.

Алгоритм действий:

  1. Выполняется разбор генераторного агрегата, с мотора скутера снимается статорный элемент.
  2. Слева вокруг обмоток располагается масса, ее надо выпаять.
  3. Вместо нее производится пайка отдельного кабеля для обмотки. Затем данный контакт выводится наружу. Этот проводник будет одним концом обмотки.
  4. Выполняется обратная сборка генераторного устройства. Эти манипуляции осуществляются для того, чтобы с агрегата выходило два кабеля. Они будут использоваться.
  5. Затем к полученным контактам выполняется подсоединение шунтирующего устройства. На завершающем этапе к положительной клемме аккумулятора подключается желтый кабель от старого реле.

Видео «Наглядное руководство по сборке самодельного регулятора»

Пользователь Андрей Чернов наглядно показал, как самостоятельно сделать реле для генераторного агрегата автомобиля ВАЗ 2104.