Пзс матрицы используются в таких периферийных устройствах. Типы матриц фотоаппаратов

02.03.2019

Матрица является главным структурным элементом фотоаппарата и одним из ключевых параметров, принимаемых во внимание пользователем при выборе фотокамеры. Матрицы современных цифровых фотоаппаратов можно классифицировать по нескольким прознакам, но основным и наиболее распространенным всеже является деление матриц по методу считывания заряда , на: матрицы CCD типа и CMOS матрицы. В данной статье мы рассмотрим принципы работы, а также достоинства и недостатки этих двух типов матриц, так как именно они повсеместно используются в современных фото- и видеотехнике.

CCD матрица

Матрицу CCD называют еще ПЗС-матрицей (Приборы с Зарядовой Связью). ПЗС матрица представляет собой прямоугольную пластину светочувствительных элементов (фотодиодов), расположенных на полупроводниковом кристалле кремния. В основе принципа ее действия лежит построчное перемещение зарядов, которые накопились в прорехах, образованных фотонами в атомах кремния. То есть, при столкновении с фотодиодом, фотон света поглощается и при этом выделяется электрон (происходит внутренний фотоэффект). В результате образуется заряд, который нужно как-то сохранить для дальнейшей обработки. Для этой цели в кремниевой подложке матрицы встроен полупроводник, над которым располагается прозрачный электрод из поликристаллического кремния. И в результате подачи на данный электрод электрического потенциала в обеднённой зоне под полупроводником образуется так называемая потенциальная яма, в которой и хранится полученный от фотонов зарад. При считывании с матрицы электрического заряда осуществляется перенос зарядов (хранящихся в потенциальных ямах) по электродам переноса к краю матрицы (последовательный регистр сдвига) и в сторону усилителя, который усиливает сигнал и передает его в аналогово-цифровой преобразователь (АЦП), откуда преобразованный сигнал направляется в процессор, который обрабатывает сигнал и сохраняет полученное изображение на карту памяти.

Для изготовления ПЗС-матриц используются поликремневые фотодиоды. Такие матрицы отличаются небольшими размерами и позволяют получать достаточно качественные фотографии при съемке с нормальным освещением.

Преимущества ПЗС-матриц :

  1. Кконструкция матрицы обеспечивает высокую плотность размещения фотоэлементов (пикселей) на подложке;
  2. Высокая эффективность (отношение зарегистрированных фотонов к их общему числу, составляет около 95%);
  3. Высокая чувствительность;
  4. Хорошая цветопередача (при достаточном освещении).

Недостатки ПЗС-матриц:

  1. Высокий уровень шума на высоких ISO (на низких ISO, уровень шума умеренный);
  2. Низкая скорость работы в сравнении с CMOS-матрицами;
  3. Высокое энергопотребление;
  4. Более сложная технология считывания сигнала, так как необходимо много управляющих микросхем;
  5. Производство обходится дороже чем CMOS-матриц.

CMOS матрица

Матрица CMOS , или КМОП-матрица (Комплементарные Металл-Оксидные Полупроводники) использует активные точечные сенсоры. В отличие от ПЗС-матриц, КМОП-матрица содержат отдельный транзистор в каждом светочувствительном элементе (пикселе) в результате чего преобразование заряда выполняется непосредственно в пикселе. Полученный заряд может быть считан из каждого пикселя индивидуально, поэтому отпадает необходимость переноса заряда (как это происходит в ПЗС-матрицах). Пиксели КМОП-матрицы интегрируется непосредственно с аналогово-цифровым преобразователем или даже с процессором. В результате применения такой рациональной технологии происходит экономия энергии за счет сокращения цепочек действий по сравнению с матрицами CCD, а также удешевление устройства за счет более простой конструкции.


Краткий принцип работы КМОП-матрицы: 1) Перед съемкой на транзистор сброса подается сигнал сброса. 2) Во время экспозиции свет проникает через линзу и фильтр на фотодиод и в результате фотосинтеза в потенциальной яме накапливается заряд. 3) Считывается значение полученного напряжения. 4) Обработка данных и сохранение изображения.

Преимущества КМОП-матриц :

  1. Низкое энергопотребление (особенно в ждущих режимах);
  2. Высокое быстродействие;
  3. Требует меньше затрат при производстве, благодаря схожести технологии с производством микросхем;
  4. Единство технологии с другими цифровыми элементами, что позволяет объединить на одном кристале аналоговую, цифровую и обрабатывающую части (т.е. кроме захвата света в пикселе можно преобразовать, обработать и очистить сигнал от шума).
  5. Возможность произвольного доступа к каждому пикселю или группе пикселей, что позволяет уменьшить размер захваченного изображения и увеличить скорость считывания.

Недостатки КМОП-матриц:

  1. Фотодиод занимает малую площать пикселя, в результате получается низкая светочувствительность матрицы, но в современных КМОП-матрицах этот минус практически устранен;
  2. Наличие теплового шума от нагревающихся транзисторов внутри пикселя в процессе считывания.
  3. Относительно большие размеры, фтооборудование с таким типом матриц отличается большим весом и размерами.

Кроме вышеупомянутых типов, существуют еще трехслойные матрицы, каждый слой которых представляет собой CCD. Отличие состоит в том, что ячейки могут одновременно воспринимать три цвета, которые образуются дихроидными призмами при попадании на них пучка света. Затем каждый пучок направляется на отдельную матрицу. В результате яркость синего, красного и зеленого цветов определяется на фотоэлементе сразу. Трехслойные матрицы применяют в видеокамерах высокого уровня, которые имеют специальное обозначение - 3CCD .

Подводя итоги хотелось бы отметить, что с развитием технологий производства CCD и CMOS матриц, меняются и их характеристики, поэтому все сложнее сказать какая из матриц однозначно лучше, но при этом в последнее время в производстве зеркальных фотокамер все большей популярностью пользуются КМОП-матрицы. На основе характерных особенностей различных видов матриц, можно составить четкое представление, почему профессиональная фототехника, обеспечивающая высокое качество съемок, довольно громоздкая и тяжелая. Эту информацию обязательно следует помнить при выборе фотоаппарата - то есть, учитывать физические размеры матрицы, а не количество пикселей.

Введение

В данной курсовой работе я рассмотрю общие сведения о приборах с зарядовой связью, параметры, историю создания, характеристики современных ПЗС-камер среднего инфракрасного диапазона.

В результате выполнения курсовой работы изучил литературу по созданию, принципу действия, технических характеристиках и применении ПЗС-камер среднего ИК диапазона.

ПЗС. Физический принцип работы ПЗС. ПЗС-матрица

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл -- диэлектрик-- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис. 1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур .

Рисунок 1 - Структура ПЗС

Основные функциональные назначения фото-чувствительных ПЗС - преобразование оптических изображений в последовательность электрических импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации.

ПЗС изготовляют на основе монокристаллического кремния. Для этого на поверхности кремниевой пластины методом термического окисления создаётся тонкая (0,1-0,15 мкм) диэлектрическая плёнка диоксида кремния. Этот процесс осуществляется таким образом, чтобы обеспечить совершенство границы раздела полупроводник - диэлектрик и минимизировать концентрацию рекомбинаций центров на границе. Электроды отдельных МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП-элементов 500-2000 в линейном и в матричном ПЗС; площадь пластины Под крайними электродами каждой строки изготовляют p- n - переходы, предназначенные для ввода - вывода порции зарядов (зарядовых пакетов) электрич. способом (инжекция p- n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегированного поликристаллического кремния (поликремния), прозрачного в видимой и ближней ИК-областях спектра.

Принцип работы ПЗС

Общий принцип работы ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности вглубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей -- дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик -- полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента, либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода. Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рисунке 2. В течение такта I (восприятие, накопление и хранение видеоинформации) к электродам 1, 4, 7 прикладывается т. н. напряжение хранения Uxp, оттесняющее основные носители - дырки в случае кремния р-типа - в глубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм - потенциальные ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенциальные ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4,7, образуя сигнальные зарядовые пакеты.

зарядовый связь камера инфракрасный

Рисунок 2 - схема работы трёхфазного прибора с зарядовой связью - сдвигового регистра

Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела эти заряды будут накапливаться в потенциальных ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и так далее прикладывается, напряжение считывания, более высокое, чем напряжение хранения. Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7, и вследствие близости электродов 1 и 2, 4 и 5,7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенциальные ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до а с электродов 1, 4, 7 снимается.

Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам или поддерживается небольшое напряжение смещения (1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней рекомбинации эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний r- h-переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данного пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, который после продвижения вдоль всей строки преобразуется в последовательность электрических импульсов. Чем больше число элементов в строке или матрице (число 1- ИК приемники; 2- буферные элементы; 3 - ПЗС происходит неполная передача зарядового пакета от одного электрода к соседнему и усиливаются обусловленные этим искажением информации. Чтобы избежать искажений накопленного видеосигнала из-за продолжающегося во время переноса освещения, на кристалле ФПЗС создают пространственно разделённые области восприятия - накопления и хранения - считывания, причём в первых обеспечивают максимальную фоточувствительность, а вторые, наоборот, экранируют от света. В линейном ФПЗС (рис. 3, а) заряды, накопленные в строке 1 за один цикл, передаются в регистр 2 (из чётных элементов) и в регистр 3 (из нечётных). В то время, как по этим регистрам информация передаётся через выход 4 в схему объединения сигналов 5, в строке 1 накапливается новый видеокадр. В ФПЗС с кадровым переносом (рисунок 3) информация, воспринятая матрицей накопления 7, быстро "сбрасывается" в матрицу хранения 2, из которой последовательно считывается ПЗС-регистром 3; в это же время матрица 1 накапливает новый кадр.

Рисунок 3 - накопление и считывание информации в линейном (a), матричном (б) фоточувствительном приборе с зарядовой связью и в приборе с зарядовой инжекцией.

Кроме ПЗС простейшей структуры (рисунок 1) получили распространение и другие их разновидности, в частности приборы с поликремниевыми перекрывающимися электродами (рисунок 4), в которых обеспечиваются активное фотовоздействие на всю поверхность полупроводника и малый зазор между электродами, и приборы с асимметрией приповерхностных свойств (напр., слоем диэлектрика переменной толщины - рисунок 4), работающие в двухтактовом режиме. Принципиально отлична структура ПЗС с объёмным каналом (рисунок 4), образованным диффузией примесей. Накопление, хранение, перенос заряда происходят в объёме полупроводника, где меньше, чем на поверхности, рекомбинация центров и выше подвижность носителей. Следствием этого является увеличение на порядок значения и уменьшение по сравнению со всеми разновидностями ПЗС с поверхностным каналом.

Рисунок 4 - Разновидности приборов с зарядовой связью с поверхностным и объёмным каналами.

Для восприятия цветных изображений используют один из двух способов: разделение оптического потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС - кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.

Твердотельные фотоэлектрические преобразователи (ТФЭП) изображений являются аналогами передающих ЭЛТ.

ТФЭП ведут начало с 1970г., с так называемых ПЗС и формируются на основе отдельных ячеек, представляющих собой конденсаторы МДП- или МОП-структуры. Одной из обкладок такого элементарного конденсатора является металлическая пленка М, второй – полупроводниковая подложка П (p - или n -проводимости), диэлектриком Д служит полупроводник, наносимый в виде тонкого слоя на подложку П. В качестве подложки П применяется кремний, легированный акцепторной (p -типа) или донорной (n -типа) примесью, а в качестве Д – окисел кремния SiO 2 (см. рис.8.8).

Рис. 8.8. Конденсатор МОП-структуры

Рис. 8.9. Перемещение зарядов под действием электрического поля

Рис. 8.10. Принцип работы трехфазной системы ПЗС

Рис. 8.11. Перемещение зарядов в двухфазной системе ПЗС

При подаче на металлический электрод напряжения, под ним образуется «карман» или потенциальная яма, в которой могут «скапливаться» неосновные носители (в нашем случае электроны), а основные носители, дырки, будут отталкиваться от М. На каком-то расстоянии от поверхности, концентрирование неосновных носителей может оказаться выше концентрации основных. Вблизи диэлектрика Д в подложке П возникает инверсионный слой, в котором тип проводимости изменяется на обратный.

Зарядовый пакет в ПЗС может быть введен электрическим путем или с помощью световой генерации. При световой генерации фотоэлектрические процессы, возникающие в кремнии, приведут к накоплению неосновных носителей в потенциальных ямах. Накопленный заряд пропорционален освещенности и времени накопления . Направленная передача заряда в ПЗС обеспечивается расположением МОП-конденсаторов на столь близком расстоянии друг от друга, что их обедненные области перекрываются и потенциальные ямы соединяются. При этом подвижный заряд неосновных носителей будет накапливаться в том месте, где глубже потенциальная яма.

Пусть под воздействием света накоплен заряд под электродом U 1 (см. рис.8.9). Если теперь на соседний электрод U 2 подать напряжение U 2 > U 1 , то рядом появится другая потенциальная яма, более глубокая (U 2 > U 1). Между ними возникнет область электрического поля и неосновные носители (электроны) будут дрейфовать (перетекать) в более глубокий «карман» (см. рис.8.9). Чтобы исключить двунаправленность в передаче зарядов, используют последовательность электродов, объединенных в группы по 3 электрода (см. рис.8.10).

Если, например, накоплен заряд под электродом 4 и необходимо передать его вправо, то на правый электрод 5 подается более высокое напряжение (U 2 > U 1) и заряд перетекает к нему и т.д.


Практически вся совокупность электродов подсоединена к трем шинам:

I – 1, 4, 7, …

II – 2, 5, 8, …

III – 3, 6, 9, …

В нашем случае напряжение «приема» (U 2) будет на электродах 2 и 5, но электрод 2 отделен от электрода 4, где хранится заряд, электродом 3 (у которого

U 3 = 0), поэтому перетекания влево не будет.

Трехтактная работа ПЗС предполагает наличие трех электродов (ячеек) на один элемент ТВ-изображения, что уменьшает полезную площадь, используемую световым потоком. Для сокращения числа ячеек (электродов) ПЗС металлические электроды и слой диэлектрика формируются ступенчатой формы (см. рис.8.11). Это позволяет при подаче на электроды импульсов напряжения создавать под разными его участками потенциальные ямы разной глубины. В более глубокую яму стекает большинство зарядов из соседней ячейки.

При двухфазной системе ПЗС сокращается число электродов (ячеек) в матрице на одну треть, что благоприятно сказывается на считывании потенциального рельефа.

ПЗС вначале предлагали использовать в вычислительной технике в качестве запоминающих устройств, регистров сдвига. В начале цепочки ставили инжектирующий диод, вводящий в систему заряд, а в конце цепи – выводной диод, обычно это n-p- или p-n- переходы МОП структуры, образующие с первым и последним электродами (ячейками) цепочки ПЗС полевые транзисторы.

Но скоро выяснилось, что ПЗС очень чувствительны к свету, и поэтому их лучше и эффективнее использовать в качестве светоприемников, а не в качестве запоминающих устройств.

Если ПЗС-матрица используется в качестве фотоприемника, то накопление заряда под тем или иным электродом может быть осуществлено оптическим методом (инжекция светом). Можно говорить, что ПЗС-матрицы по сути своей являются светочувствительными аналоговыми сдвиговыми регистрами. Сегодня ПЗС не используются в качестве запоминающих устройств (ЗУ), а только в качестве фотоприемников. Они используются в факсимильных аппаратах, сканерах (линейки ПЗС), в фотокамерах и видеокамерах (матрицы ПЗС). Обычно в ТВ камерах используются так называемые ПЗС-чипы.

Мы предполагали, что все 100% зарядов передаются в соседний карман. Однако на практике приходится считаться с потерями. Одним из источников потерь является «ловушки», способные захватывать и удерживать некоторое время заряды. Эти заряды не успевают перетечь в соседний карман, если скорость передачи будет велика.

Второй причиной является сам механизм перетекания. В первый момент перенос зарядов происходит в сильном электрическом поле - дрейф в Е . Однако по мере перетекания зарядов напряженность поля падает и дрейфовый процесс затухает, поэтому последняя порция перемещается за счет диффузии, в 100 раз медленнее дрейфа. Дождаться последней порции – значит снизить быстродействие. Дрейф дает более 90% переноса. Но именно последние проценты являются основными при определении потерь.

Пусть коэффициент передачи одного цикла переноса равен k = 0,99, полагая число циклов равным N = 100, определим суммарный коэффициент передачи:

0,99 100 = 0,366

Становится очевидным, что при большом числе элементов даже незначительные потери на одном элементе приобретают большое значение для цепочки в целом.

Поэтому вопрос о сокращении числа переносов зарядов в матрице ПЗС является особо важным. В этом отношении у матрицы двухфазной ПЗС коэффициент передачи зарядов будет несколько большим, чем в трехфазной системе.

ПЗС-ма́трица (сокр. от «п рибор с з арядовой с вязью») или CCD-ма́трица (сокр. от англ. CCD , «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема , состоящая из светочувствительных фотодиодов , выполненная на основе кремния , использующая технологию ПЗС - приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon , Canon , Sony , Fuji , Kodak , Matsushita , Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывает и выпускает ЗАО "НПП «ЭЛАР», С.-Петербург.

    1 История ПЗС-матрицы

    2 Общее устройство и принцип работы

    • 2.1 Пример субпикселя ПЗС-матрицы с карманом n-типа

    3 Классификация по способу буферизации

    • 3.1 Матрицы с полнокадровым переносом

      3.2 Матрицы с буферизацией кадра

      3.3 Матрицы с буферизацией столбцов

    4 Классификация по типу развёртки

    • 4.1 Матрицы для видеокамер

    5 Размеры фотографических матриц

    6 Некоторые специальные виды матриц

    • 6.1 Светочувствительные линейки

      6.2 Координатные и угловые датчики

      6.3 Матрицы с обратной засветкой

    7 Светочувствительность

    8 См. также

    9 Примечания

История ПЗС-матрицы

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs ). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кацуо Ивама (Kazuo Iwama ) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года . Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering ).

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике .

Общее устройство и принцип работы

ПЗС-матрица состоит из поликремния , отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов .

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС :

    1 - Фотоны света, прошедшие через объектив фотоаппарата;

    2 - Микролинза субпикселя;

    3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;

    4 - Прозрачный электрод из поликристаллического кремния или оксида олова ;

    5 - Изолятор (оксид кремния);

    6 - Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта);

    7 - Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей;

    8 - Кремниевая подложка p-типа;

Классификация по способу буферизации

[Матрицы с полнокадровым переносом

Матрицы с буферизацией кадра

Матрицы с буферизацией столбцов

Размеры фотографических матриц

Координатные и угловые датчики

Матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back - illuminated matrix ). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10-15 мкм . Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии .

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:

    интегральной светочувствительности , представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;

    монохроматической светочувствительности" - отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;

    набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность - зависимость светочувствительности от длины волны света;

| ПЗС-матрица (Прибор с зарядовой связью ) или CCD-матрица (на англ. Charge-Coupled Device ) – это аналоговая интегральная микросхема, в состав которой входят светочувствительные фотодиоды, выполненные на основе кремния или оксида олова. Данная микросхема использует технологию ПЗС (Приборов с зарядовой связью).

История CCD-матрицы

Первый прибор с зарядовой связью был разработан в 1969 году Джорджем Смитом (George Smith) и Уиллардом Бойлом (Willard Boyle) в Лабораториях Белла (AT&T Bell Labs) в США. Разработки велись в области видеотелефонии (Picture Phone) и развитии актуальной в то время, «полупроводниковой пузырьковой памяти» (Semiconductor Bubble Memory). Вскоре приборы с зарядовой связью начали использоваться как устройства памяти, в которых можно было поместить заряд во входной регистр микросхемы. Но позднее способность элемента памяти устройства получать заряд за счет фотоэлектрического эффекта сделала применение CCD устройств основным.

В 1970 году исследователи Лаборатории Белла научились фиксировать изображения с помощью простейших линейных устройств.

Вскоре, под руководством Кадзуо Ивамы, компания Sony стала активно разрабатывать и заниматься CCD технологиями, вложив в это огромные средства, и сумела наладить массовое производство ПЗС-матриц для своих видео камер.

Кадзуо Ивама скончался в августе 1982 года. Для увековечения его вклада, микросхема ПЗС-матрицы была установлена на его надгробной плите.

В 2006 году за работы над CCD, Уиллард Бойл и Джордж Смит были награждены Национальной Инженерной Академией США (USA National Academy of Engineering).

Позднее, в 2009 году создатели были награждены Нобелевской премией по физике.

Принцип работы ПЗС-матрицы

CCD-матрица в основном состоит из поликремния, отделённого от кремниевой подложки мембраной, у которой при подаче напряжения питания через поликремневые затворы сильно изменяются электрические потенциалы вблизи электродов проводника.

До экспонирования и подачей определённой комбинации напряжений на электроды, происходит сброс всех зарядов образовавшихся ранее и преобразование всех элементов в идентичное или первоначальное состояние.

Затем комбинация напряжений на электродах создаёт потенциальный запас или яму, в которой накапливаться электроны, образовавшиеся в определенном пикселе матрицы в результате воздействия световых лучей при экспонировании. Чем интенсивней сила светового потока во время экспозиции, тем больше накапливается запас электронов в потенциальной яме, соответственно тем выше мощность итогового заряда определенного пикселя.

После экспонирования, последовательные изменения напряжения питания на электродах формируются в каждом отдельно взятом пикселе и рядом с ним происходит распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным пикселям ПЗС-матрицы.

Пример пикселя CCD-матрицы с карманом n-типа

Примечание: архитектура субпикселей у каждого производителя своя.

Обозначения пикселя CCD на схеме:

1 - Частицы света (фотоны), прошедшие через объектив видеокамеры;
2 - Микролинза субпикселя;
3 - Красный светофильтр субпикселя (является фрагментом фильтра Байера);
4 - Светопропускающий электрод из оксида олова или поликристаллического кремния;
5 - Изолятор (состоит из оксида кремния);
6 - Специальный кремниевый канал n-типа. Зона внутреннего фотоэффекта (зона генерации носителей);
7 - Зона возможного запаса или ямы (карман n-типа). Место где собираются электроны из зоны генерации носителей;
8 - Кремниевая подложка p-типа.

Полнокадровый перенос CCD-матрицы

Полностью сформированное объективом видео изображение попадает на CCD-матрицу, то есть световые лучи падают на светочувствительную поверхность CCD-элементов, цель которых - преобразовать энергию частиц (фотонов) в электрический заряд.
Данный процесс протекает следующим образом.
Для фотона, попавшего на CCD-элемент, есть три варианта развития событий - он либо «отлетит» от поверхности, либо поглотится толщей полупроводника (состав материала матрицы), либо пробьет его поверхность. Поэтому от разработчиков требуется создать такой сенсор, в котором потери от отражения и поглащения были бы минимизированы. Те же частицы, которые были поглощены CCD-матрицей, образуют пару электрон-дырка, если произошло слабое взаимодействие с атомом кристаллической решётки полу проводника, или взаимодействие было с атомами донорских, либо акцепторных примесей. Оба из вышеперечисленных явлений называются - внутренним фотоэффектом. Но, внутренним фотоэффектом работа сенсора не ограничивается – главное необходимо сохранить «отнятые» у полупроводника носители заряда в специализированном хранилище, а потом их считать.

Строение элементов CCD-матрицы

В общем виде конструкция CCD-элемента выглядит примерно так: кремниевая подложка p-типа снабжается каналами из полу проводника n-типа. Над этими каналами размещаются электроды из поликристаллического кремния с изолирующей мембраной из оксида кремния. После подачи на этот электрод электрического потенциала, в ослабленной зоне под каналом n-типа создаётся потенциальная ловушка (яма), задача которой - сохранить электроны. Частица света, проникающая в кремний, приводит к генерации электрона, который притягивается потенциальной ловушкой и «застревает» в ней. Огромное количество фотонов или яркий свет обеспечивает больший заряд ловушки. Потом надо считать значение полученного заряда, также именуемого фототоком, и затем усилить его.

Считывание фототоков CCD-элементов происходит с так называемыми последовательными регистрами сдвига, которые конвертируют строку зарядов на входе в серию импульсов на выходе. Созданная серия импульсов – это и есть аналоговый сигнал, который в дальнейшем поступает на усилитель.

Так, при помощи регистра возможно преобразовать в аналоговый сигнал заряды строки из CCD-элементов. Практически, последовательный регистр сдвига в CCD-матрицах реализуется с помощью тех же CCD-элементов, объединённых в одну строку. Работа данного устройства базируется на умении приборов с зарядовой связью обмениваться зарядами своих потенциальных ловувшек. Этот обмен происходит благодаря наличию специализированных электродов переноса (по англ. Transfer Gate), расположенных между соседними CCD-элементами. При подаче повышенного потенциала на ближайший электрод, заряд «мигрирует» под него из потенциальной ловушки. Между CCD-элементами обычно располагаются от двух до четырёх электродов переноса, и от их количества зависит фазность регистра сдвига, который также называется двухфазным, трёхфазным или четырёхфазным.

Подача разных потенциалов на электроды переноса синхронизирована так, что перетекание зарядов потенциальных ловушек всех CCD-элементов регистра происходит практически одновременно. Так за один цикл переноса, CCD-элементы передают по цепочке заряды справа налево или слева направо. А крайний CCD-элемент отдаёт свой заряд усилителю, размещенного на выходе регистра.

Итак, последовательный регистр сдвига это и есть устройство с последовательным выходом и параллельным входом. После считывания абсолютно всех зарядов из регистра возникает возможность подать на его вход новую строку, потом следующую и так сформировать непрерывный аналоговый сигнал в основе которых лежит двумерный массив фототоков. Затем, входной параллельный поток для последовательного регистра сдвига обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая называется параллельным регистром сдвига, а вся конструкция в сборе как раз и является устройством, называемое CCD-матрицей.