Работа с потоками данных. Системы "клиент-сервер"

07.08.2019

Архитектура клиент - сервер (client-server architecture) - это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты .

Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис - это процесс обслуживания клиентов.

Рисунок Архитектура клиент - сервер

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре клиент - сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом . Им может быть программа или пользователь. Клиенты - это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя . Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

Рисунок Модель клиент-сервер

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система . Этот ПК становится сервером. Программное обеспечение (ПО ), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

Сети на базе серверовимеют лучшие характеристики и повышенную надежность. Сервервладеет главными ресурсами сети,к которым обращаются остальные рабочие станции.

В современной клиент - серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

Сети клиент - серверной архитектуры имеют следующие преимущества:

Позволяют организовывать сети с большим количеством рабочих станций;

Обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;


Эффективный доступ к сетевым ресурсам;

Пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

Наряду с преимуществами сети клиент - серверной архитектуры имеют и ряд недостатков:

Неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

Требуют квалифицированного персонала для администрирования;

Имеют более высокую стоимость сетей и сетевого оборудования.

Под клиент-серверным приложением мы будем понимать информационную систему, основанную на использовании серверов баз данных (см. длинное замечание в конце раздела 2.1). Общее представление информационной системы в архитектуре "клиент-сервер" показано на рисунке 2.3.

    На стороне клиента выполняется код приложения, в который обязательно входят компоненты, поддерживающие интерфейс с конечным пользователем, производящие отчеты, выполняющие другие специфичные для приложения функции (пока нас не будет занимать, как строится код приложения).

    Клиентская часть приложения взаимодействует с клиентской частью программного обеспечения управления базами данных, которая, фактически, является индивидуальным представителем СУБД для приложения.

(Здесь опять проявляются недостатки в терминологии. Обычно, когда компания объявляет о выпуске очередного сервера баз данных, то неявно понимается, что имеется и клиентская составляющая этого продукта. Сочетание "клиентская часть сервера баз данных" кажется несколько странным, но нам придется пользоваться именно этим термином.)

Рис. 2.3. Общее представление информационной системы в архитектуре "клиент-сервер"

Заметим, что интерфейс между клиентской частью приложения и клиентской частью сервера баз данных, как правило, основан на использовании языка SQL. Поэтому такие функции, как, например, предварительная обработка форм, предназначенных для запросов к базе данных, или формирование результирующих отчетов выполняются в коде приложения.

Наконец, клиентская часть сервера баз данных, используя средства сетевого доступа, обращается к серверу баз данных, передавая ему текст оператора языка SQL.

Здесь необходимо сделать еще два замечания.

    Обычно компании, производящие развитые серверы баз данных, стремятся к тому, чтобы обеспечить возможность использования своих продуктов не только в стандартных на сегодняшний день TCP/IP-ориентированных сетях, но в сетях, основанных на других протоколах (например, SNA или IPX/SPX). Поэтому при организации сетевых взаимодействий между клиентской и серверной частями СУБД часто используются не стандартные средства высокого уровня (например, механизмы программных гнезд или вызовов удаленных процедур), а собственные функционально подобные средства, менее зависящие от особенностей сетевых транспортных протоколов.

    Когда мы говорим об интерфейсе на основе языка SQL, нужно отдавать себе отчет в том, что несмотря на титанические усилия по стандартизации этого языка, нет такой реализации, в которой стандартные средства языка не были бы расширены. Необдуманное использование расширений языка приводит к полной зависимости приложения от конкретного производителя сервера баз данных.

Посмотрим теперь, что же происходит на стороне сервера баз данных. В продуктах практически всех компаний сервер получает от клиента текст оператора на языке SQL.

    Сервер производит компиляцию полученного оператора. На основе информации, содержащейся в таблицах-каталогах базы данных производится преобразование непроцедурного представления оператора в некоторую процедуру его выполнения.

    • Оператор может относиться к классу операторов определения (или создания) объектов базы данных (точнее и правильнее было бы говорить про элементы схемы базы данных или про объекты метабазы данных). В частности, могут определяться домены, таблицы, ограничения целостности, триггеры, привилегии пользователей, хранимые процедуры. В любом случае, при выполнении оператора создания элемента схемы базы данных соответствующая информация помещается в таблицы-каталоги базы данных (в таблицы метабазы данных). Ограничения целостности обычно сохраняются в метабазе данных прямо в текстовом представлении. Для действий, определенных в триггерах, и хранимых процедур вырабатывается и сохраняется в таблицах-каталогах процедурный выполняемый код. Заметим, что ограничения целостности, триггеры и хранимые процедуры являются, в некотором смысле, представителями приложения в поддерживаемой сервером базе данных; они составляют основу серверной части приложения (см. ниже).

      При выполнении операторов выборки данных на основе содержимого затрагиваемых запросом таблиц и, возможно, с использованием поддерживаемых в базе данных индексов формируется результирующий набор данных (мы намеренно не используем здесь термин "результирующая таблица", поскольку в зависимости от конкретного вида оператора результат может быть упорядоченным, а таблицы, т.е. отношения неупорядочены по определению). Серверная часть СУБД пересылает результат клиентской части, и окончательная обработка производится уже в клиентской части приложения.

      При выполнении операторов модификации содержимого базы данных (INSERT, UPDATE, DELETE) проверяется, что не будут нарушены определенные к этому моменту ограничения целостности (те, которые относятся к классу немедленно проверяемых), после чего выполняется соответствующее действие (сопровождаемое модификацией всех соответствующих индексов и журнализацией изменений). Далее сервер проверяет, не затрагивает ли данное изменение условие срабатывания какого-либо триггера, и если такой триггер обнаруживается, выполняет процедуру его действия. Эта процедура может включать дополнительные операторы модификации базы данных, которые могут вызвать срабатывание других триггеров и т.д. Можно считать, что те действия, которые выполняются на сервере баз данных при проверке удовлетворенности ограничений целостности и при срабатывании триггеров, представляют собой действия серверной части приложения.

      При выполнении операторов модификации схемы базы данных (добавления или удаления столбцов существующих таблиц, изменения типа данных существующего столбца существующей таблицы и т.д.) также могут срабатывать триггеры, т.е., другими словами, может выполняться серверная часть приложения.

      Аналогично, триггеры могут срабатывать при уничтожении объектов схемы базы данных (доменов, таблиц, ограничений целостности и т.д.).

      Особый класс операторов языка SQL составляют операторы вызова ранее определенных и сохраненных в базе данных хранимых процедур. Если хранимая процедура определяется с помощью достаточно развитого языка, включающего и непроцедурные операторы SQL, и чисто процедурные конструкции (например, языка PL/SQL компании Oracle), то в такую процедуру можно поместить серьезную часть приложения, которое при выполнении оператора вызова процедуры будет выполняться на стороне сервера, а не на стороне клиента.

      При выполнении оператора завершения транзакции сервер должен проверить соблюдение всех, так называемых, отложенных ограничений целостности (к таким ограничениям относятся ограничения, накладываемые на содержимое таблицы базы целиком или на несколько таблиц одновременно; например, суммарная зарплата сотрудников отдела 999 не должна превышать 150 млн. руб.). Снова к проверке отложенных ограничений целостности можно относиться как к выполнению серверной части приложения.

Как видно, в клиент-серверной организации клиенты могут являться достаточно "тонкими", а сервер должен быть "толстым" настолько, чтобы быть в состоянии удовлетворить потребности всех клиентов (рисунок 2.4).

Рис. 2.4. "Тонкий" клиент и "толстый" сервер в клиент-серверной архитектуре

С другой стороны, разработчики и пользователи информационных систем, основанных на архитектуре "клиент-сервер", часто бывают неудовлетворены постоянно существующими сетевыми накладными расходами, которые следуют из потребности обращаться от клиента к серверу с каждым очередным запросом. На практике распространена ситуация, когда для эффективной работы отдельной клиентской составляющей информационной системы в действительности требуется только небольшая часть общей базы данных. Это приводит к идее поддержки локального кэша общей базы данных на стороне каждого клиента.

Фактически, концепция локального кэширования базы данных является частным случаем концепции реплицированных (или, как иногда их называют в русскоязычной литературе, тиражированных) баз данных. Как и в общем случае, для поддержки локального кэша базы данных программное обеспечение рабочих станций должно содержать компонент управления базами данных - упрощенный вариант сервера баз данных, который, например, может не обеспечивать многопользовательский режим доступа. Отдельной проблемой является обеспечение согласованности (когерентности) кэшей и общей базы данных. Здесь возможны различные решения - от автоматической поддержки согласованности за счет средств базового программного обеспечения управления базами данных до полного перекладывания этой задачи на прикладной уровень. В любом случае, клиенты становятся более толстыми при том, что сервер тоньше не делается (рисунок 2.5).

Рис. 2.5. "Потолстевший" клиент и "толстый" сервер в клиент-серверной архитектуре с поддержкой локального кэша на стороне клиентов

Сформулируем некоторые предварительные выводы. Архитектура "клиент-сервер" на первый взгляд кажется гораздо более дорогой, чем архитектура "файл-сервер". Требуется более мощная аппаратура (по крайней мере, для сервера) и существенно более развитые средства управления базами данных. Однако, это верно лишь частично. Громадным преимуществом клиент-серверной архитектуры является ее масштабируемость и вообще способность к развитию.

При проектировании информационной системы, основанной на этой архитектуре, большее внимание следует обращать на грамотность общих решений. Технические средства пилотной версии могут быть минимальными (например, в качестве аппаратной основы сервера баз данных может использоваться одна из рабочих станций). После создания пилотной версии нужно провести дополнительную исследовательскую работу, чтобы выяснить узкие места системы. Только после этого необходимо принимать решение о выборе аппаратуры сервера, которая будет использоваться на практике.

Увеличение масштабов информационной системы не порождает принципиальных проблем. Обычным решением является замена аппаратуры сервера (и, может быть, аппаратуры рабочих станций, если требуется переход к локальному кэшированию баз данных). В любом случае практически не затрагивается прикладная часть информационной системы. В идеале, которого, конечно же не бывает, информационная система продолжает нормально функционировать после смены аппаратуры.

Ранее были рассмотрены локальные базы данных, когда и БД, и взаимодейст­вующее с ней приложение располагаются на одном компьютере. В данном разделе будут рассмотрены некоторые особенности работы с удаленными БД, используе­мыми в сети, где приложение и БД располагаются на разных компьютерах.

В принципе локальную БД тоже можно использовать для коллективного доступа т. е. в сетевом варианте. В этом случае файлы базы данных и приложение для ра­боты с ней располагаются на сервере сети. Пользователь запускает со своего ком­пьютера находящееся на сервере приложение, при этом у него запускается копия приложения. Можно установить приложение и непосредственно на компьютере пользователя, в этом случае приложению должно быть известно местонахождение общей БД, заданное, например, через псевдоним. Подобный сетевой вариант использования локальной БД соответствует архитектуре "файл-сервер".

Достоинствами сетевой архитектуры "файл-сервер" являются простота разработ­ки и эксплуатации БД и приложения. Разработчик фактически создает локальную БД и приложение, которые затем просто используются в сетевом варианте. При этом не требуется дополнительное программное обеспечение для организации работы с БД. Однако архитектуре "файл-сервер" свойственны и существенные недостатки. Для работы с данными используется навигационный способ доступа, при этом по сети циркулируют большие объемы данных. В результате сеть оказы­вается перегруженной, что является причиной ее низкого быстродействия и плохой производительности при работе с БД. Требуется синхронизация работы отдельных пользователей, связанная с бло­кировкой в таблицах тех записей, которые редактирует другой пользователь. Приложения не только обрабатывают данные, но и управляют самой базой данных. В связи с тем, что управление БД осуществляется с разных компью­теров, затрудняются управление доступом, соблюдение конфиденциальности и поддержание целостности БД.

Из-за этих недостатков архитектура "файл-сервер", как правило, используется в небольших сетях. Для сетей с большим количеством пользователей предпочти­тельным вариантом (а порой и единственным возможным) является архитектура "клиент-сервер".В сетевой архитектуре "клиент-сервер" БД размешается на компьютере-сервере сети (сервере или удаленном сервере) и называется также удаленной БД. Приложение, осуществляющее работу с этой БД, находится на компьютере пользо­вателя. Приложение пользователя является клиентом, его также называют приложением-клиентом. Клиент и сервер взаимодействуют следующим образом. Клиент формирует и отсылает запрос серверу, на котором размешена БД. Сервер вы­полняет запрос и выдает клиенту в качестве результатов требуемые данные. Таким образом, в архитектуре "клиент-сервер" клиент посылает запрос и полу­чает только те данные, которые ему действительно нужны. Вся обработка запро­са выполняется на удаленном сервере. К достоинствам такой архитектуры отно­сятся следующие факторы. Для работы с данными используется реляционный способ доступа, что сни­жает нагрузку на сеть. Приложения не управляют напрямую базой, управлением занимается только сервер. В связи с этим можно обеспечить высокую степень защиты данных. В приложении отсутствует код, связанный с управлением БД, поэтому приложения упрощаются.

Отметим, что сервером называют не только компьютер, но и специальную про­грамму, которая управляет БД. Так как в основе организации обмена данными между клиентом и сервером лежит язык SQL такую программу еще называют SQL-сервером, а базу данных - базой данных SQL. В широком смысле слова под сервером понимают компьютер, программу и саму базу данных. SQL-серверами являются промышленные СУБД, такие как InterBase, Oracle и др. Каждый из серверов имеет свои преимущества и осо­бенности, связанные, например, со структурой БД и реализацией языка SQL, которые необходимо учитывать при разработке приложения. Далее мы будем понимать под сервером программу (т. е. SQL -сервер), а установленную на компьютере-сервере базу данных будем называть удаленной БД.

При работе в архитектуре "клиент-сервер" приложение должно:

· устанавливать соединение с сервером и завершать его;

· формировать и отсылать запрос серверу, получая от него результаты выпол­нения запроса;

· обрабатывать полученные данные.

При этом обработка данных не имеет принципиальных отличий по сравнению с обработкой данных в локальных БД.

Удаленная БД, как и локальная, представляет собой совокупность взаимосвязанных таблиц. Однако данные этих таблиц, как правило, содержатся в одном общем файле. Как и в случае с локальной БД, для таблиц удаленной БД могут устанавливаться связи (отношения), ограничения ссылочной целостности, огра­ничения на значения столбцов и т. д. Для удаленных БД поле называется столбцом. Для управления БД сервер использует:

· триггеры;

· генераторы;

· хранимые процедуры;

· функции, определяемые пользователем;

· механизм транзакций;

· механизм кэшированных изменений;

Многие из перечисленных элементов обеспечиваются возможностями языка SQL сервера, в котором, по сравнению с локальной версией, имеются сущест­венные особенности, рассматриваемые ниже.

Система Delphi обеспечивает разработку приложений для различных серверов, предоставляя для этого соответствующие средства. Отметим, что многие опи­санные ранее принципы разработки приложений и средства для работы с ло­кальными БД относятся и к работе с удаленными БД. В частности, для разра­ботки приложений используются такие компоненты, как источник данных DataSource,_наборыданныхTable,ADOTable, SQLTable, IBTable, Query, ADOQuery, SQLQuery, сетка DBGrid и др.

Для реализации реляционного способа доступа к удаленной БД с помощью BDE не­обходимо использовать только средства языка SQL. Поэтому в качестве компонен­тов должны выбираться такие как Query, StoredProc, UpdateSQL. Кроме того, для набора данных нельзя использовать методы, характерные для навигационного способа доступа.

Напомним, что если при выполнении модифицирующего БД запроса с помо­щью компонента Query не нужен результирующий набор данных, то этот за­прос предпочтительнее выполнять с помощью метода ExecSQL. Для работы с таблицами и запросами по-прежнему можно использовать такие программы, как Database Desktop и SQL Explorer.

Средства Delphi, предназначенные для работы с удаленными БД, можно разде­лить на два вида: инструменты и компоненты.

К инструментам относятся специальные программы и пакеты, обеспечивающие обслуживание БД вне разрабатываемых приложений. Среди них:

· InterBase Server Manager - программа управления запуском сервера InterBase;

· IBConsole - консоль сервера InterBase;

· SQL Monitor - программа отслеживания порядка выполнения SQL-запросов к удаленным БД.

Компоненты предназначены для создания приложений, выполняющих операции с удаленной БД. Перечислим наиболее важные из них:

· Database (соединение с БД);

· Session (текущий сеанс работы с БД);

· StoredProc (вызов хранимой процедуры);

· UpdateSQL (модификация набора данных, основанного на SQL-запросе);

· DCOMConnection(DСОМ-соединение);

· компоненты страниц АDО, dbExpress, Interbase Палитры компонентов.

Отметим, что многие из названных компонентов, например, Database, Session, UpdateSQL, используются также при работе с локальными БД. Так, компонент Database позволяет, реализовать механизм транзакций при навигационном способе доступа к данным с помощью механизма ВDЕ. Однако наиболее часто эти компоненты применяются именно при работе с удаленными базами. Часть компонентов, например, клиентский набор данных ClientDataSet и со­единение с сервером DCOMConnection, предназначена для работы в трехуровне­вой (трехзвенной) архитектуре "клиент-сервер" ("тонкий" клиент) и используется для построения сервера приложений.

В основе операций, выполняемых с удаленными БД как с помощью инструмен­тов, так и программно, лежит язык SQL. Например, при создании таблицы с помощью программы IBConsole необходимо набрать и выполнить SQL-запрос (инструкцию) Create Table. Если создание таблицы с помощью механизма ВDЕ осуществляется из приложения пользователя, то для этой цели используется набор данных Query, который выполняет такой же за­прос. Основное различие заключается в том, каким образом выполняется SQL-запрос к удаленной БД.

Итак, для удаленных БД разница между средствами, используемыми в приложении, и инструментами намного меньше, чем для локальных баз данных.

Сервер InterBase. Все серверы имеют похожие принципы организации данных и управления ими. В качестве примера рассмотрим работу с сервером InterBase 6.x, который явля­ется "родным" для_Delphi. Совместно с Delphi поставляются две части сервера InterBase 6.x: серверная и клиентская. Серверная часть InterBase является локальной версией сервера InterBase и ис­пользуется для отладки приложений, предназначенных для работы с удаленны­ми БД, позволяя на одном компьютере проверить их в сетевом варианте. После отладки на локальном компьютере приложение можно перенести на сетевые компьютеры без изменений, для чего нужно:

· скопировать БД на сервер;

· установить для приложения новые параметры соединения с удаленной БД.

Скопировать БД можно с помощью программ типа Проводник Windows. Клиентская часть нужна для обеспечения доступа приложения к удаленной БД.При разработке БД и приложений с использованием локальной версии сервера InterBase нужно иметь в виду, что она имеет ряд ограничений и может не под­держивать, например, механизм событий сервера или определяемые пользовате­лем функции. Полнофункциональная версия сервера InterBase приобретается и устанавливается отдельно от Delphi.Как упоминалось, в основе работы с удаленной БД лежат возможности языка SQL, обеспечивающие соответствующие операции. Назначение и возможности языка SQL для удаленных БД в принципе совпадают с назначением и возмож­ностями этого языка для локальных БД.

Бизнес-правила . Как отмечалось, бизнес-правила представляют собой механизмы управления БД и предназначены для поддержания БД в целостном состоянии. Кроме того, они нужны для реализации ограничений БД, а также для выполнения ряда других действий, например, накапливания статистики работы с БД.

Бизнес-правила можно реализовывать на физическом и программном уровнях. В первом случае эти правила (например, ограничение ссылочной целостности для связанных таблиц) задаются при создании таблиц и входят в структуру БД. Для этого в синтаксис инструкции Create Table включаются соответствующие операнды, например, Default (значение по умолчанию). В дальнейшей работе нельзя нарушить или обойти ограничение, заданное на физическом уровне.

На программном уровне бизнес-правила можно реализовать в сервере и в при­ложении. Причем эти бизнес-правила не должны быть определены на физиче­ском уровне. Для реализации бизнес-правил в сервере обычно используются триггеры. Достоинствами такого подхода является то, что вычислительная на­грузка по управлению БД целиком ложится на сервер, что снижает нагрузку на приложение и сеть, а также то, что действие ограничений распространяется на все приложения, осуществляющие доступ к БД. Однако одновременно снижается гибкость управления БД. Кроме того, нужно учитывать, что средства отладки триггеров и хранимых процедур сервера развиты недостаточно хорошо.

Для программирования бизнес-правил в приложении используются компоненты и их средства. Достоинство такого подхода заключается в легкости изменения бизнес-правил и возможности определить правила "своего" приложения. Недос­татком является снижение безопасности БД, связанное с тем, что каждое при­ложение может устанавливать свои правила управления БД.

Информация всей БД сервера InterBase хранится в одном файле с расширением gdb. Размер этого файла может составлять единицы и даже десятки гигабайт. Отметим, что аналогичный размер БД имеет СУБД Microsoft SOL Server, в то время как для более мощных СУБД Oracle и SyBase размер БД достигает десят­ков и сотен гигабайт.

В отличие от локальной БД, структуру которой составляли таблицы (отдельные или связанные), удаленная БД имеет более сложную структуру, которая включа­ет в свой состав следующие элементы: таблицы, триггеры,индексы, функции пользователя. ограничения, хранимые процедуры, домены, просмотры, генераторы, исключения, привилегии.

Элементы структуры удаленной БД также называют метаданными. Слово "мета" имеет смысл "над", т. е. метаданные представляют собой данные, которые опи­сывают структуру БД. Для InterBase максимальное число таблиц в БД равно 65 536, а максимальное число столбцов в таблице - 1000. Отметим, что таблицы InterBaseимеют мень­шее число допустимых типов столбцов (полей), чем таблицы локальных БД Paradox.

Домен представляет собой именованное описание столбца. После определения домена его имя можно использовать для описания других столбцов.Аналогом домена является тип данных.

Просмотр является логической (виртуальной) таблицей, записи в которую отобраны с помощью инструкции Select. Преимущество просмотра в том, что один раз отобрав записи их можно использовать в дальнейшем без повторного выполнения Select. Это выгодно при частом выполнении одинаковых запросов.

Хранимая процедура представляет собой подпрограмму, расположенную на сервере и вызываемую из приложения клиента. Использование этих объектов увеличивает скорость доступа к БД по следующим причинам:

· вместо текста запроса серверу передается по сети короткое обращение к хранимой процедуре;

· хранимая процедура не требует предварительной синтаксической проверки.

Триггер представляет собой процедуру, которая находится на сервере БД и вызывается автоматически при модификации записей БД, т.е. при изменении столбцов или при их удалении и добавлении. В отличие от хранимых процедур триггеры нельзя вызвать из приложения клиента, а также передавать им параметры и получать от них результаты.

Функция, определяемая пользователем, представляет собой обычную функцию, написанную на алгоритмическом языке, например, Pascal. Созданная функция оформляется в виде динамической библиотеки DLL, откуда может быть вызвана обычным способом. Для обеспечения вызова функции системе Windows должен быть известен путь к соответствующей библиотеке. Использование таких функций расширяет состав функций языка SQL.

Механизм кэшированных изменений заключается в том, что на компьютере клиента в кэше (буфере) создается локальная копия данных, и все изменения в данных выполняются в этой копии. Для хранения локальной копии используется специальный буфер (кэш). Сделанные изменения можно подтвердить, перенеся их в основную БД, хранящуюся на сервере, или отказаться от них. Этот меха­низм напоминает механизм транзакций, но, в отличие от него, снижает нагрузку на сеть, т. к. все изменения передаются в основную БД одним пакетом. Следует иметь к виду, что для всех записей локальной копии отсутствуют блокировки на изменение их значений. Блокировки могут быть установлены другими приложе­ниями для основной БД, находящейся на сервере.Механизм кэшированных изменений реализуется в приложении, для чего компоненты, в первую очередь Database, Table и Query (используемые при доступе с помощью BDE), имеют соответствующие средства. Кроме того, механизм кэшированных изменений поддерживается предназначенным для этого компонен­том UpdateSQL.Основные достоинства рассматриваемого механизма проявляются для удален­ных БД, но его можно использовать и при работе с локальными БД.

Привилегии представляют собой права доступа к БД. Управление привилегиями заключается в их установке и удалении. После создания объекта БД (например, таблицы) доступ к ней разрешен только создателю и системному администрато­ру, имеющему имя SYSDBA. Для доступа к БД остальных пользователей им нуж­но назначить соответствующие привилегии. Сразу после появления нового пользователя, созданного например, с помощью программы InterBase Manager Server , этот пользователь имеет минимальные права доступа: ему разрешено только войти в БД (соединиться с ней), указав свое имя и пароль, однако ни один объект этой БД ему не доступен. Чтобы обеспечить возможность активной работы с БД, нужно определить (переопределить) привилегии.

Установку привилегий выполняет инструкция Grant. Привилегии позволяют разграничить доступ к таблицам и просмотрам со сторо­ны пользователей. При этом под "пользователем" понимается любой объект, обращающийся к данным. Кроме собственно пользователя (приложения), таки­ми объектами могут быть таблицы, просмотры, хранимые процедуры и тригге­ры. Если привилегия предоставляется одновременно нескольким пользователям, то их имена перечисляются через запятую.

Являются неравноправными составляющими информационной сети. Одни владеют каким-то ресурсом, поэтому называются серверами, другие обращаются к этим ресурсам и называются клиентами. Рассмотрим, как же они взаимодействуют между собой и что собой представляет клиент-серверная архитектура.

Клиент-серверная архитектура

Архитектура «Клиент-Сервер» представляет собой взаимодействие структурных компонентов в сети на основе определенных данной сети, где структурными компонентами являются сервер и узлы-поставщики определенных специализированных функций (сервисов), а также клиенты, которые пользуются данным сервисом. Специфические функции принято делить на три группы на основе решения определенных задач:

  • функции ввода и представления данных предназначены для взаимодействия пользователя с системой;
  • прикладные функции - для каждой имеется собственный набор;
  • функции управления ресурсами предназначены для управления файловой системой, различными базами данных и прочими компонентами.

Например, компьютер без сетевого подключения, представляет компоненты представления, прикладного назначения и управления на различных уровнях. Такого рода уровнями считаются операционная система, прикладное и служебное программное обеспечение, различные утилиты. Точно так же и в сети представлены все вышеуказанные компоненты. Главное - правильно обеспечить сетевое взаимодействие между этими составляющими.

Принцип работы клиент-серверной архитектуры

Клиент-серверная архитектура наиболее часто используется для создания корпоративных баз данных, в которых информация не только хранится, но и периодически поддается обработке различными методами. Именно база данных является главным элементом любой корпоративной информационной системы, а на сервере располагается ядро этой базы. Так, на сервере происходят наиболее сложные операции, касающиеся ввода, хранения, обработки и модификации данных. Когда пользователь (клиент) обращается к базе данных (серверу), происходит обработка запроса: непосредственно обращение к базе данных и возврат ответа (результата обработки). Результат обработки - это сообщение сети об успешном проведении операции или ошибке. Серверные компьютеры могут обрабатывать одновременно обращение нескольких клиентов к одному и тому же файлу. Такая работа и по сети позволяет ускорить работу используемых приложений.

Клиент-серверная архитектура: применение технологии

Данная архитектура используется для доступа к различным ресурсам с использованием сетевых технологий: баз данных, почтовые серверы, файрволы, прокси-серверы. Разработка клиент-серверных приложений позволяет повысить безопасность, надежность и производительность используемых приложений и сети в целом. Наиболее часто клиент-серверные приложения используются для автоматизации бизнеса.

Департамент общего и профессионального образования Брянской области

Государственное образовательное учреждение

Клинцовский текстильный техникум

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Технология «Клиент – сервер»

Студент гр. А-90______________________(Петроченко А.О.)

Преподаватель _______________________ (Широкова А.Л.)

Клинцы – 2011

1. Серверы. Основные понятия серверов

2. Модель клиент-сервер

3. Классификация стандартных серверов

4. Вывод

1. Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

2. Модель клиент-сервер

Клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети.

Процессы, реализующие некоторую службу, например службу файловой системы или базы данных, называются серверами (servers). Процессы, запрашивающие службы у серверов путем посылки запроса и последующего ожидания ответа от сервера, называются клиентами (clients) .

По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов. Обратите внимание - файлов, а не базы данных. Система управления базами данных расположена на рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)


Рис. Сравнение файл-серверной и клиент-серверной моделей

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Что дает архитектура клиент-сервер?

Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему?

Надежность

Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

  • атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;
  • независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;
  • устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Безопасность

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

Гибкость

В приложении, работающем с данными, можно выделить три логических слоя:

  • пользовательского интерфейса ;
  • правил логической обработки (бизнес-правил);
  • управления данными (не следует только путать логические слои с физическими уровнями, о которых речь пойдет ниже).

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент-серверном приложении, показанном на рисунке выше, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте.

В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения )

Рис. Трехуровневая модель клиент-серверного приложения

Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент-серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.