Расчет понижающего конденсатора. Расчет конденсатора для светодиодов

16.07.2019

Впринципе то, что я здесь опишу, много раз уже цитировалось в разных местах.

  • Конденсаторный балласт использует реактивное сопротивление емкости для питания относительно низковольтной нагрузки непосредственно от сети переменного тока. То есть, если бы вместо конденсатора использовался подходящий резистор, то все было бы почти также, только на нем выделялось бы много тепла.
  • Специализированный драйвер представляет собой электронный AC-AC/DC преобразователь с гальванической развязкой от сети. Обычно он мало чем отличается от импульсного блока питания.
  • Конденсатор - максимально простое, дешевое и эффективное решение . Но оно означает гальваническую связь нагрузки с сетью, наличие низкочастотных сетевых пульсаций, наличие бросков тока, отсутствие стабилизации напряжения/тока. Есть явные ограничения по мощности и току. Так же конденсатор сдвигает фазу в сети переменного тока, увеличивая потери в проводах.
  • Драйвер - более дорогое и сложное решение. Работает на высокой частоте, легко обеспечивает стабилизация напряжения/тока, обеспечивает гальваническую развязку нагрузки от сети. КПД драйверов обычно высок, но все же не настолько, чтобы его не учитывать.

Схема балласта и доработка

В качестве примера у меня была китайская лампа "кукуруза" E27 42 х 5630 LED 10Вт. Проблема этой лампы (кроме типичных) заключалась в том светодиоды оказались склонны перегорать при включении. Рассмотрим схему

Синим обозначены мои изменения.

Работа балластного конденсатора в нормальном режиме похожа на работу ограничивающего резистора. Но в момент включения ситуация может быть иная - незаряженный конденсатор моментально представляет собой резистор с сопротивлением равным ESR конденсатора. Это сопротивление для пленочного конденсатора C1 такой емкости может быть порядка 0.15 Ом, в то же время ESR сглаживающего электролитического конденсатора C2 может быть более 1 Ом. Это автоматически означает, что большая часть сетевого напряжения (в коротком промежутке времени конечно) уходит на цепочку светодиодов и создает бросок тока. Этот бросок тем выше, чем ближе к амплитудному значению переменное напряжение сети в момент включения.

Для борьбы с этим пагубным явлением я предлагаю дополнить выходной фильтр резистором Rf и конденсатором Cf, получив П-фильтр CRC. Выбор деталей очень прост - емкость конденсатора Cf не менее ёмкости балластного C1, сопротивление резистора Rf - больше ESR добавленного конденсатора Cf, но такой, чтобы мощность на нем не была велика. Так мы получим своеобразный делитель импульсного напряжения Rf - ESR Cf. Так же я добавил небольшой резистор Rx на вход для улучшения его импульсных свойств. Таким образом входной импульс амплитудой до 310в пройдёт 2 делителя: (провода, Rx, диоды, C1) - C2 и далее Rf - Cf. В итоге его амплитуда не должна существенно превышать рабочего напряжения светодиодов. Следует отметить, что резисторы, в особенности, Rx, работают в режиме высоких пиковых токов - некоторые экземпляры на 0.25Вт легко перегорают при включении схемы в "неудачный" момент.

Желающие могут попробовать уменьшить мерцание на основе этой схемы. Для этого предлагаю увеличить емкость Cf до C2,а резистор заменить индуктивностью, получив гораздо более эффективный фильтр CLC. Но учитывая малую частоту, индуктивность, всего скорее, должна быть не менее 10мГн и быть рассчитана на рабочий ток. Я, учитывать тесный корпус решил не заниматься этим.

При желании повысить надежность в момент включения, можно увеличить Rx до 5-15 Ом, используя резистор мощностью от 0.5 Вт, либо, что еще лучше, использовать NTC термистор подобного сопротивления. Также можно установить стабилитрон ZD1 (лучше TVS) с напряжение чуть выше рабочего для гирлянды - так можно защитить "особо нежные" светодиоды от перегрузок. Кроме того, при установке TVS, напряжение на конденсаторе Cf будет ограничено и можно будет несколько снизить его рабочее напряжение.

В моем случае светодиоды были соединены в последовательную гирлянду из 21 групп по 2 диода параллельно. На 7ми гетинаксовых платах размещено по 3 группы (6 светодиодов). Рабочее напряжение гирлянды около 60 - 65 в, ток - 100 ма (50 ма на диод). Соответственно мощность - чуть более 6 вт. Светодиоды, соответственно, выгорали парами.

Среди радиолюбителей сейчас весьма популярны сетевые блоки питания, в которых роль балластного элемента выполняет конденсатор. Выбор конденсатора для этой цели имеет некоторые особенности, и их необходимо учитывать. Основной параметр здесь - допустимое значение амплитуды напряжения частотой 50 Гц.

Как известно, номинальным напряжением конденсатора, предназначенного для применения в радиоэлектронной аппаратуре, называют значение наибольшего постоянного напряжения, при котором конденсатор надежно работает в течение установленного срока службы. При работе конденсатора в цепях переменного тока амплитуда переменного напряжения на нем должна быть всегда меньше (в крайнем случае равна) номинального напряжения, а насколько меньше - зависит всецело от типа конденсатора. Так, например, для конденсатора МБГО на номинальное напряжение 630 В допустимая амплитуда переменного напряжения частотой 50 Гц равна 126 В , а для МБМ на напряжение 1000 В - 250 В .

Надежность балластного конденсатора бестрансформаторного блока питания может быть обеспечена при условии, что значение допустимой для конденсатора амплитуды переменного напряжения больше амплитуды напряжения сети. Если действующее значение напряжения равно 220 В, то амплитудное будет

На указанные в таблице характеристики наложен ряд ограничений.

Во-первых, верхняя граница допустимой амплитуды переменного напряжения выбрана равной 630 В. Больший запас по амплитуде не прибавит блоку надежности, а габариты увеличит значительно. Во-вторых, для емкости установлена нижняя граница - 0,22 мкФ. Выбранный емкостный интервал удовлетворяет большинству практических случаев. Третье ограничение - наибольшая масса 60 г; оно комментариев не требует.

И наконец, в-четвертых, в таблицу внесено не менее трех номиналов однотипных конденсаторов, соответствующих первым трем ограничениям.

Таблица обеспечивает выбор номинала емкости, номинального напряжения и типа балластного конденсатора для бестрансформаторного устройства, рассчитанного на подключение к сети 200 В, 50 Гц и на потребляемый ток 12...100 мА. Ток может быть увеличен параллельным соединением двухтрех конденсаторов.

По таблице возможно сравнение нескольких вариантов выбора из конденсаторов различных типов емкости, близкой к расчетной. Сравнение проводят по знаку и значению отклонения емкости от расчетного значения, запасу электрической прочности изоляции, а также по массе и объему конденсаторов. Объем рассчитан по линейным размерам конденсаторов. Коэффициент запаса по электрической прочности равен отношению допустимой для конденсатора амплитуды напряжения с частотой 50 Гц к амплитуде напряжения сети.

Для внесенных в таблицу типов конденсаторов некоторые значения емкости остались за ее рамками. Направление поиска в справочнике отсутствующих значений емкости в таблице показаны отточиями.

В силу наложенных ограничений некоторые типы конденсаторов не вошли в таблицу. Среди них - МБГЧ, К42-19, К75-10 и К78-2, справочные характеристики которых не соответствуют третьему и четвертому ограничениям. Найти подходящий среди этих конденсаторов можно по справочнику с учетом первого ограничения.

Литература

  1. Электрические конденсаторы и конденсаторные установки. - М.: Энергоатомиздат, 1987, с. 495.
  2. Справочник по электрическим конденсаторам. - М.: Радио и связь, 1983, с. 168.
  3. Бирюков С. Расчет сетевого источника питания с гасящим конденсатором. - Радио, 1997, № 5, с. 48 - 50.

Собрался делать освещение на дача. По прикидкам получалась необходимая мощность для ламп накаливания примерно 300 - 400 Вт. Решил делать на светодиодах это и экономия и приобщение к новым технологиям. Было заказано 4 шт. светодиодных матриц на 20 Вт «теплого» цвета, с расчетом использовать на мощность в 1,5 - 2 раза меньше (на случай если есть «китайская погрешность» на заявленную мощность).
Данные матриц от продавца:
Входное напряжение: 30-34Vdc
Мощность: 20 Вт
Световой поток: 1600LM
Продолжительность времени:> 50,000 часов
Размер: 4.7*4.7 см

Трек отслеживался только по Китаю, доставка около месяца. Пришли в такой упаковке.


.

Сами матрицы выглядят так



Прежде чем переходить к схеме несколько слов о параметрах матриц, что я определил опытным путем.

На небольшом токе светятся неравномерно.


С увеличением тока разница незаметна.


Заявленные 20 Вт матрица достигает при примерно 36 В, что несколько выше заявленных же 34 В. Параметры у всех матриц мало отличаются. Ток довольно сильно зависит от температуры. Так с 20 градусов при фиксированном напряжении с начальным током 400 мА до 60 гр. ток меняется на 90 мА.

Измерения проводились фотодиодом ФД-24К. Результат, естественно, в относительных единицах. Получается, что увеличение тока в два раза не дает увеличение интенсивности в два раза, а немного меньше.

Перейдем теперь к схеме. Подобные схемы тут обсуждалась и не раз. Для примера приведу одну ссылку , найти другие думаю не составит труда. Чем же меня привлекла такая схема, это простотой реализации, надежностью и отсутствием помех. Кроме того все основные компоненты были у меня под рукой… много лет.
Четыре матрицы планирую включать последовательно.

Вот схема, так сказать, «а-ля натюрель».


Да, детали довольно древние, но вполне рабочие. К выбору конденсаторов С1 и С2 надо подойти внимательно, важно не только рабочее напряжение, но и тангенс угла диэлектрических потерь, т. к. реактивная мощность в схеме может достигать 150 Вт. Наверно можно использовать пусковые конденсаторы для асинхронных двигателей. Я использовал конденсаторы типа МБГО и нагрева не обнаружил.

Известные недостатки таких схем:
1. Гальваническая связь с электросетью.
2. Отсутствие стабилизации тока
3. Опасность выхода из строя электролита C3 если в цепи светодиодов произойдет обрыв.
4. Большие габариты по сравнению с импульсным ИП.
Разберем эти пункты.
По первому пункту, проблема решается надежной изоляцией, как и в большинстве бытовых приборов. Есть опасность только при наладке, но что тут налаживать? :) В любом случае надо соблюдать технику безопасности!
По второму пункту , наличие довольно большого балласта уже играет роль стабилизатора тока. Кроме того, в моей схеме еще включены две лампочки, которые имеют нелинейное сопротивление и выполняют роль дополнительного стабилизатора тока (и еще предохранителя). Были проведены испытания светодиодной матрицы на на начальном токе 400 мА. При изменении температуры от 20 градусов до 60, ток увеличился менее чем на 5 мА. Остается проблема нестабильности напряжения электросети (а значит и тока), которую в такой простой схеме не решить.
По третьему пункту , если использовать конденсатор на напряжение 150 В, т. к. сами матрицы будут играть роль стабилизатора на напряжение примерно 140 В, но надо параллельно ставить мощный стабилитрон на напряжение 150 В для защиты от обрыва. Стабилитрону тоже нужен радиатор. Я же просто использовал конденсатор на 350 В, что сняло все эти проблемы.
По четвертому , габариты для моих целей это не принципиально. Планирую поместить в размер 10x8x5 см.

Еще несколько комментариев. В схеме использован электролит на довольно большую емкость - 800 мкФ это сделано для уменьшения пульсаций. Для примера приведу график тока с этой емкостью. График получен в программе симуляторе , т. к. осциллографа под рукой нет. Вопрос, как хорошо соответствуют используемые мной в симуляторе светодиоды реальным, остается открытым. В оправдание могу сказать, что по постоянному току, я соответствия добился с точность процентов 10.

Питать низковольтную электро- и радиоаппаратуру выгоднее и проще от сети. Для этого наиболее приемлемы трансформаторные блоки питания, поскольку они безопасны в эксплуатации. Однако интерес к бестрансформаторным блокам питания (БТБП) со стабилизированным выходным напряжением не ослабевает. Одна из причин - сложность изготовления трансформатора. А вот для БТБП он не нужен - необходим лишь правильный расчет, но как раз это и пугает малоопытных начинающих электриков. Эта статья поможет сделать расчет и облегчит конструирование бестрансформаторного блока питания.

Упрощенная схема БПТП приведена на рис. 1. Диодный мост VD1 подключен к сети через гасящий конденсатор С гас, включенный последовательно с одной из диагоналей моста. Другая диагональ моста работает на нагрузку блока - резистор R н. Параллельно нагрузке подключены фильтрующий конденсатор С ф и стабилитрон VD2.

Расчет блока питания начинают с задания напряжения U н на нагрузке и силы тока I н. потребляемого нагрузкой. Чем больше будет емкость конденсатора С гас, тем выше энергетические возможности БПТП.

Расчет емкостного сопротивления

В таблице приведены данные по емкостному сопротивлению Х с конденсатора С гас на частоте 50 Гц и среднему значению тока I ср, пропускаемого конденсатором С гас, вычисленные для случая, когда R н =0, то есть при коротком замыкании нагрузки. (Ведь к этому аномальному режиму работы БТБП не чувствителен, и в этом еще одно огромное преимущество перед трансформаторными блоками питания.)

Иные значения емкостного сопротивления Х с (в килоомах) и среднего значения тока I ср (в миллиамперах) можно вычислить по формулам:


С гас - емкость гасящего конденсатора в микрофарадах.

Если исключить стабилитрон VD2, то напряжение U н на нагрузке и ток I н через нее будет зависеть от нагрузки R н. Подсчитать эти параметры легко по формулам:



U н - в вольтах, R н и Х н - в килоомах, I н - в миллиамперах, С гас - в микрофарадах. (Далее в формулах используются те же единицы измерения.)

С уменьшением сопротивления нагрузки напряжение на ней тоже уменьшается, причем по нелинейной зависимости. А вот ток, проходящий через нагрузку возрастает, правда, весьма незначительно. Так, например, уменьшение R н с 1 до 0,1 кОм (ровно в 10 раз) ведет к тому, что U н снижается в 9,53 раза, а ток через нагрузку увеличивается всего лишь в 1,05 раза. Эта "автоматическая" стабилизация тока выгодно отличает БТБП.от трансформаторных источников питания.

Мощность Р н на нагрузке, вычисляемая по формуле:



с уменьшением R н снижается почти столь же интенсивно, как и U н. Для того же примера потребляемая нагрузкой мощность уменьшается в 9,1 раза.

Поскольку ток I н нагрузки при сравнительно небольших значениях сопротивления R н и напряжения U н на ней меняется крайне мало, на практике вполне допустимо пользоваться приближенными формулами:



Восстановив стабилитрон VD2, получим стабилизацию напряжения U н на уровне U ст - значения практически постоянного для каждого конкретного стабилитрона. И при небольшой нагрузке (большом сопротивлении R н) станет выполняться равенство U н =U ст.

Расчет сопротивления нагрузки

До каких же пределов можно уменьшать R н, чтобы равенство U н =U ст было справедливо? До тех, пока выполняется неравенство:



Следовательно, если сопротивление нагрузки окажется меньше рассчитанного R н, напряжение на нагрузке уже не будет равно напряжению стабилизации, а окажется несколько меньше, поскольку ток через стабилитрон VD2 прекратится.


Расчет допустимого тока через стабилитрон

А теперь определим, какой ток I н будет течь через нагрузку R н и какой ток - через стабилитрон VD2. Понятно, что



По мере уменьшения сопротивления нагрузки потребляемая ею мощность P н =I н U н =U 2 ст /R н возрастает. А вот средняя потребляемая БПТП мощность, равная



остается неизменной. Объясняется это тем, что ток I ср разветвляется на два - I н и I ст - и, в зависимости от сопротивления нагрузки, перераспределяется между R н и стабилитроном VD2, причем так, что чем меньше сопротивление нагрузки R н, тем меньший ток идет через стабилитрон, и наоборот. Значит, если нагрузка мала (или вовсе отсутствует), стабилитрон VD2 будет находиться в наиболее тяжелых условиях. Вот почему снимать нагрузку с БПТП не рекомендуется, иначе весь ток пойдет через стабилитрон, что может привести к выходу его из строя.

Амплитудное значение напряжения сети равно 220·√2=311(B). Импульсное значение тока в цепи, если условно пренебречь конденсатором С ф, может достигать



Соответственно, стабилитрон VD2 должен надежно выдерживать этот импульсный ток при случайном отключении нагрузки. Не следует забывать и о возможных перегрузках по напряжению в осветительной сети, составляющих 20...25% от номинала, и рассчитывать ток, проходящий через стабилитрон при отключенной нагрузке с учетом поправочного коэффициента 1,2...1,25.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать U ст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В - если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Расчет однополупериодного блока

Наряду с двухполупериодным выпрямителем в БТБП иногда применяют и простейший однополупериодный (рис. 4). В таком случае его нагрузка R н питается лишь положительными полупериодами переменного тока, а отрицательные проходят через диод VD3, минуя нагрузку. Поэтому средний ток I ср через диод VD1 будет вдвое меньше. Значит при расчете блока вместо Х с следует брать в 2 раза большее сопротивление, равное



а средний ток при замкнутой накоротко нагрузке будет равен 9,9·πС гас =31,1 С гас. Дальнейший расчет такого варианта БПТП ведут совершенно аналогично предыдущим случаям.

Расчет напряжения на гасящем конденсаторе

Принято считать, что при напряжении сети 220В номинальное напряжение гасящего конденсатора С гас должно быть не менее 400В, то есть примерно с 30-процентным запасом по отношению к амплитудному сетевому, поскольку 1,3·311=404(В). Однако в некоторых наиболее ответственных случаях его номинальное напряжение должно быть 500 и даже 600В.

И еще. Подбирая подходящий конденсатор С гас, следует учитывать, что применять в БТБП конденсаторы типа МБМ, МБПО, МБГП, МБГЦ-1, МБГЦ-2 нельзя, так как они не рассчитаны на работу в цепях переменного тока с амплитудным значением напряжения, превышающим 150В.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000В.

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора С ф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3...10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10...30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора С ф должно быть не менее U ст ·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:


Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора С ф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм...1МОм, включают параллельно конденсатору С гас. Этот резистор нужен для ускорения разрядки конденсатора С гас после отключения устройства от сети. Другой - балластный - сопротивлением 10...51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором С гас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Какие взять диоды

Функцию двухполупериодного выпрямителя БТБП по схемам на рис. 1...3 могут выполнять диодные сборки серии КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре отдельных диода, включенных по схеме моста, например серий КД105 с индексами Б, В или Г, Д226 Б или В - до 300 мА, КД209 А, Б или В - до 500...700 мА, КД226 В, Г или Д - до 1,7 А.

Диоды VD1 и VD3 в БТБП по схеме на рис. 4 могут быть любыми из перечисленных выше. Допустимо также использовать две диодные сборки КД205К В,Г или Д в расчете на ток до 300 мА либо КД205 А,В,Ж или И - до 500 мА.

И последнее. Бестрансформаторный блок питания, а также аппаратура, подключенная к нему, подключены в сеть переменного тока непосредственно! Поэтому они должны быть надежно за-изолированы снаружи, скажем, размещены в пластмассовом корпусе. Кроме того, категорически запрещается "заземлять" какой-либо из их выводов, а также вскрывать корпус при включенном устройстве.

Предлагаемая методика расчета БПТП опробована автором на практике в течение ряда лет. Весь расчет ведется, исходя из того, что БПТП - это по существу параметрический стабилизатор напряжения, в котором роль ограничителя тока выполняет гасящий конденсатор.

Журнал «САМ» №5, 1998 год

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная - подходит для расчета при произвольном выходном напряжении.
Простая - подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I - выходной ток нашего БП
Uвх - напряжение сети, например 220 Вольт
Uвых - напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С - собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения - радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных - 2,2мкФ, ну или "по импортному" - 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим - небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток - 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов - 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике - Начинающим.