Рентгеновское излучение и его свойства. Рентгеновская трубка и принцип ее работы

16.08.2019

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Получение рентгеновского излучения

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 11), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры.

Рис. 11.

Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74. Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Вскоре после открытия В.-К. Рентгеном нового вида излучения оно стало активно использоваться в медицине с диагностическими целями. Таким образом, родилась новая медицинская специальность, названная рентгенодиагностикой. Само новое излучение, электромагнитное по своей природе, в России и Германии получило название рентгеновского, а в англоязычных странах Х-лучей (Х-гау).

Устройство и принцип работы рентгеновской трубки

Рентгеновское излучение возникает в рентгеновской трубке в момент подачи на нее высокого напряжения. Наиболее распространенная современная модель рентгеновской трубки представляет собой электрический прибор, состоящий из двух электродов: катода, выполненного в виде тонкой спирали, и анода -- в виде пластины или диска, которые запаяны в вакуумной стеклянной колбе. Таким образом, между катодом и анодом имеется безвоздушное пространство. Поскольку процесс получения рентгеновского излучения связан с сильным нагреванием электродов, они конструктивно выполнены из тугоплавкого металла (вольфрама).

Перед подачей на электроды высокого напряжения катод нагревается сильным током низкого напряжения (напряжение 6--14 В, сила тока 2,5-8 А). При этом катод начинает испускать свободные электроны, которые образуют вокруг него так называемое электронное облачко, а процесс отрыва электронов от поверхности катода называется электронной эмиссией.

Схема рентгеновской трубки: 1 - катод, 2 -- поток электронов, 3 - фокусное пятно анода, 4 -- анод, 5 -- двигатель на оси анода

При подаче на электроды высокого напряжения (порядка десятков и сотен киловольт) оторвавшиеся от катода электроны через вакуум начинают устремляться к аноду с огромной скоростью. Встречая на своем пути анод, электроны начинают ударяться о его поверхность. При этом происходит торможение электронов и преобразование их высокой кинетической энергии в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. Небольшое количество энергии, образованной вследствие торможения электронов об анод (примерно 1/1000), покидает рентгеновскую трубку в виде рентгеновского излучения. Таким образом, рентгеновское излучение -- это волновое тормозное электромагнитное излучение. При этом оно направляется перпендикулярно по отношению к оси движения электронов в вакууме рентгеновской трубке. Это становится возможным благодаря особой форме анода, имеющего скошенную поверхность в месте контакта с падающими на него электронами, называемую фокусным пятном. Кроме того, во время подачи на рентгеновскую трубку высокого напряжения анод, выполненный в виде диска, начинает вращаться с высокой частотой. Поэтому в разные моменты времени пучок электронов ударяется о разные участки его поверхности, что предохраняет анод от избыточного нагревания, равномерно распределяя тепловую нагрузку по его поверхности.

Формирование рентгеновского изображения

Принцип получения рентгеновского изображения исследуемого органа основан на неоднородном ослаблении (поглощении) пучка рентгеновского излучения при прохождении его через ткани различной плотности и попадании неоднородно ослабленного излучения на воспринимающую систему (рентгеновскую пленку или флюоресцирующий экран).

Все диагностические изображения, получаемые методами медицинской визуализации, подразделяют на две основные группы - аналоговые и цифровые. Аналоговые изображения получают на специальной рентгенографической пленке или флюоресцирующих экранах с помощью методов классической рентгенодиагностики (рентгенографии, рентгеноскопии, флюорографии, линейной томографии, методик с применением искусственного контрастирования).

Схема формирования рентгеновского изображения за счет неравномерного ослабления рентгеновского излучения: 1 - источник рентгеновского излучения, 2 - тело пациента, 3 -- рентгеновская пленка, флюоресцирующий экран

Существуют негативные и позитивные изображения одного и того же объекта (органов грудной клетки). Органы и ткани, обладающие высокой рентгеновской плотностью (кости, сердце, купола диафрагмы), на негативных изображениях белого цвета, а на позитивных -- черного. При анализе рентгенограмм необходимо также помнить о наличии суммационного эффекта. Суммационный эффект заключается в наслоении изображений различных органов и тканей, расположенных вдоль прохождения пучка рентгеновского излучения.

Рентгеновская трубка - это электровакуумный прибор, предназначенный для получения рентгеновского излучения. Рентгеновское излучение возникает при торможении ускоренных на экране антикатода (анода), изготовленного из тяжелого металла (например, вольфрама). Получение электронов, их ускорение и торможение осуществляется в самой рентгеновской трубке, представляющей вакуумированный стеклянный баллон, в который впаяны металлические электроды: катод (см.) - для получения электронов и анод (см.) - для их торможения (рис. 1). Для ускорения электронов к электродам подводится высокое напряжение.

Рис. 1. Терапевтическая, рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.


Вильгельм Конрад Рентген
(Wilhelm Conrad Röntgen)

Первая рентгеновская трубка, с которой В. К. Рентген сделал свое открытие, была ионной. Рентгеновская трубка этого типа (хрупкие и трудноуправляемые) в настоящее время полностью вытеснены более совершенными электронными трубками. В них электроны получаются путем накаливания катода. Регулируя ток в цепи накала рентгеновской трубки, а следовательно, и температуру катода, можно изменять количество испускаемых катодом электронов. При низком напряжении не все испускаемые катодом электроны участвуют в создании анодного тока и у катода образуется так называемое электронное облако. При повышении напряжения электронное облако рассасывается и, начиная с определенного напряжения (напряжения насыщения), все электроны достигают анода. Через трубку при этом течет максимальный ток (ток насыщения). Напряжение на рентгеновской трубке обычно выше напряжения насыщения, поэтому возможно раздельно регулировать напряжение и ток рентгеновской трубки. Это означает, что жесткость излучения, определяемая напряжением, регулируется независимо от интенсивности, которая обусловлена анодным током.

Анод рентгеновской трубки обычно выполняется в виде массивного медного чехла, обращенного к катоду скошенным торцом, чтобы выходящее было перпендикулярно оси трубки. В толщу анода впаяна вольфрамовая пластинка в 2- (зеркало анода).

Катод электронной рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама, которая выполнена в виде цилиндрической или плоской спирали и окружена металлическим стаканчиком для фокусирования пучка электронов на зеркале анода (фокусе рентгеновской трубки). В двухфокусных рентгеновских трубках катод содержит две нити накала.

При работе рентгеновской трубки на аноде выделяется большое количество тепла. Чтобы предохранить анод от перегрева и повысить мощность рентгеновской трубки, используются охлаждающие анод устройства: воздушное радиаторное, масляное, водяное охлаждение, охлаждение лучеиспусканием. В качестве материала оболочки рентгеновской трубки обычно применяют стекло, которое позволяет прикладывать к электродам достаточно высокое напряжение, пропускает рентгеновское излучение без заметного ослабления (для получения букки-лучей делают бериллиевые окна), достаточно прочно и непроницаемо для газов (вакуум в рентгеновской трубке 10 -6 - 10 -7 мм рт. ст.). Диагностические рентгеновские трубки работают при максимальных напряжениях до 150 кв, терапевтические - до 400 кв.


Рис. 6. Схематическое изображение линейчатого фокуса диагностической рентгеновской трубки: 1 - зеркало анода; 2 - действительный фокус; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.


Рис. 8. Схематическое изображение фокуса трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - его развертка; 3 - мгновенный фокус; 4 - ось трубки; 5 - катод; 6 - оптический фокус; 7 - анод.

Резкость рентгеновского изображения обусловлена величиной фокуса. Основное требование к диагностическим рентгеновским трубкам - большая мощность при малом фокусе. Современные рентгеновские трубки имеют линейчатый фокус размером 10-40 мм 2 , но практическое значение имеет не действительная величина фокуса, а его видимая проекция в направлении пучка, т. е. размеры эффективного оптического фокуса (рис. 2). При угле наклона анода 19° площадь эффективного фокуса в 3 раза меньше действительного, что позволяет увеличить мощность рентгеновской трубки в два раза. Дальнейшее увеличение мощности достигнуто в трубках с вращающимся анодом (рис. 3 и 4).

В настоящее время выпускают рентгеновские трубки различного назначения, отличающиеся как конструктивно, так и мощностью, способами охлаждения, защиты от излучения и высокого напряжения. Условное обозначение рентгеновской трубки представляет собой комбинацию букв и цифр. Первая цифра - мощность трубки в киловаттах; второй знак определяет род защиты (Р - защитная от излучения, Б - защитная от излучения и высокого напряжения, отсутствие буквы указывает на отсутствие защиты); третий знак определяет назначение рентгеновской трубки (Д - диагностика, Т - терапия); четвертый - указывает способ охлаждения (К - воздушное радиаторное, М-масляное, В - воздушное, отсутствие буквы означает охлаждение лучеиспусканием); пятая цифра указывает максимальное анодное напряжение в киловольтах. Так, например, 6-РДВ-110 - шестикиловаттная защитная диагностическая трубка с водяным охлаждением на 110 кв; трубка 1-Т-1-200-терапевтическая, без защиты, охлаждение лучеиспусканием, мощностью 1 кет на напряженно 200 кв (условный номер 1).


Рис. 3. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр - ротор асинхронного электродвигателя.

Каждую новую трубку перед пуском в работу необходимо проверить на вакуум, не включая накала. Если при этом появится розовое свечение или искра, рентгеновская трубка потеряла вакуум и к работе непригодна. Трубку, сохранившую вакуум, подвергают тренировке: устанавливают ток 1-2 ма при высоком напряжении порядка 1/3 от номинального и в течение 30-60 мин. напряжение и ток постепенно повышают до значений длительного режима, указанного в паспорте рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

Рентгеновская трубка - это электровакуумное устройство, применяемое для генерирования рентгеновых лучей путем эмиссии электронов с катода, фокусировки и ускорения их в электрическом поле высокого напряжения с последующим торможением электронного потока на зеркале анода. В результате торможения потока электронов на аноде рентгеновской трубки выделяется большое количество тепла и лишь незначительное количество этой энергии трансформируется в энергию рентгеновского излучения (см.).

Со времени открытия Рентгеном икс-лучей и до начала первой мировой войны для рентгенодиагностики и рентгенотерапии применялись так называемые ионные газосодержащие рентгеновские трубки (рис. 1), хрупкие и трудноуправляемые. Лилиенфельд (L. Lilienfeld) предложил более совершенную рентгеновскую трубку с промежуточным электродом, накаливаемым катодом и водяным охлаждением (рис. 2). Однако высоковакуумная двухэлектродная рентгеновская трубка, предложенная американцем Кулиджем (W. D. Coolidge), постепенно вытеснила все другие рентгеновские трубки и применяется в разных модификациях до настоящего времени.


Рис. 1. Ионная рентгеновская трубка с воздушным охлаждением и газовым регенератором.

Рис. 2. Рентгеновская трубка Лилиенфельда.

Современная рентгеновская трубка представляет собой высоковольтный вакуумный диод (с двумя электродами - катодом и анодом). Катод рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама. В двухфокусных диагностических рентгеновских трубках, предназначенных для разных режимов работы, катод содержит две нити накала для каждого из фокусов. Нити накала, как правило, выполнены в виде цилиндрической или плоской спирали (рис. 3, 1 и 2) соответственно для линейчатого или круглого фокуса.


Рис. 3. Катоды двухфокусных электронных рентгеновских трубок: 1 - с двумя цилиндрическими спиралями нити накала; 2 - с двумя плоскими спиралями нити накала.

Анод рентгеновской трубки обычно выполнен в виде массивного медного чехла, обращенного к катоду скошенным торцом, в толщу которого впаяна вольфрамовая пластинка толщиной 2-2,5 мм (зеркало анода), являющаяся мишенью, куда фокусируется поток электронов с катода, и представляющая, таким образом, рентгенооптический фокус трубки. Имеются рентгеновские трубки для специальных целей, например для внутриполостной рентгенотерапии (рис. 4), в которых анод является дном полого цилиндра, вводимого в соответствующую полость.


Рис. 4. Безопасная рентгеновская трубка для внутриполостной рентгенотерапии: 1 - катод; 2 - анодная трубка; 3 - окно выхода рентгеновых лучей; 4 - анодный цоколь; 5 - водяная рубашка; 6 - патрубки охлаждения.

С целью повышения разрешающей способности современных диагностических трубок фокусу рентгеновской трубки уделяется большое внимание, так как чем острее фокус, тем резче рентгеновское изображение.

При оценке рентгенооптических свойств рентгеновской трубки следует учитывать, что решающее значение имеет не величина действительного фокуса на зеркале анода, а видимая проекция фокусного пятна в направлении центрального луча, т. е. размеры эффективного оптического фокуса. Уменьшение размеров оптического фокуса достигается уменьшением угла скашивания анода по отношению к центральному лучу.

В отличие от терапевтических рентгеновских трубок (рис. 5), снабженных круглым или в форме эллипса оптическим фокусом, современные диагностические трубки имеют так называемый линейчатый фокус (рис. 6). В трубках с линейчатым фокусом площадь эффективного фокуса, имеющего форму квадрата, примерно в 3 раза меньше площади действительного фокуса, имеющего форму прямоугольника. При одинаковых рентгенооптических свойствах мощность рентгеновской трубки с линейчатым фокусом примерно в 2 раза больше, чем у рентгеновской трубки с круглым фокусом.

Дальнейшее повышение мощности диагностических рентгеновских трубок достигнуто в трубках с вращающимся анодом (рис. 7 и 8). В этих рентгеновских трубках массивный вольфрамовый анод с линейчатым фокусом, растянутым по всей окружности, укреплен на оси, вращающейся в подшипниках, а катод трубки смещен относительно ее оси так, чтобы фокусированный пучок электронов попадал всегда на скошенную поверхность зеркала анода. При вращении анода пучок фокусированных электронов попадает на меняющийся участок фокуса анода, эффективная величина которого, т. е. оптический фокус, имеет благодаря этому весьма малые размеры (порядка 1X1 мм, 2,5X2,5 мм). Так как скорость вращения анода достаточно велика (анод является продолжением оси двигателя, вращающегося с угловой скоростью 2500 об/мин), мощность трубки при выдержках в 0,1 сек. может достигать 40-50 кВт.

Значительное количество тепла, образующегося на аноде работающей трубки, требует ее охлаждения путем отвода тепла с анода в окружающую среду. Это достигается путем воздушного радиаторного охлаждения (рис. 9), водяного охлаждения (рис. 10 и 11) или масляного охлаждения (рис. 12); масло является одновременно и изолирующей средой; масляное охлаждение обычно применяется в так называемых блок-аппаратах (см. Рентгенотехника).


Рис. 9. Трубка с радиаторным воздушным охлаждением.


Рис. 10. Анод трубки с водяным охлаждением: 1 - стержень анода; 2 - резервуар с охлаждающей водой.


Рис. 11. Анод трубки, охлаждаемой проточной водой: 1 - соединительные трубки водяного охлаждения.


Рис. 12. Миниатюрная рентгеновская трубка с масляным охлаждением для рентгенографии зубов.

В связи с многообразными запросами рентгенодиагностики и рентгенотерапии в настоящее время выпускаются рентгеновские трубки самого различного назначения, отличающиеся как конструктивным оформлением, так и величиной, мощностью, способами охлаждения и защиты от неиспользуемого излучения. Условные обозначения различных типов трубок состоят из комбинаций цифр и букв. Первая цифра - предельно допустимая мощность трубки (в кВт); первая буква определяет защиту от излучения (Р - самозащитная; Б - в защитном кожухе; отсутствие буквы означает отсутствие защиты); вторая буква определяет назначение рентгеновской трубки (Д - диагностика; Т - терапия); третья буква указывает систему охлаждения (К - воздушное радиаторное охлаждение, М - масляное, В - водяное, отсутствие буквы означает охлаждение лучеиспусканием); последняя цифра соответствует предельно допустимому анодному напряжению в киловольтах. Так, например, 3-БДМ-2-100 - трехкиловаттная диагностическая трубка с масляным охлаждением (радиаторным) на 100 кв для работы в защитном кожухе (условный номер типа - 2); трубка - 1-Т-1-200 - терапевтическая без защиты с охлаждением лучеиспусканием, мощностью 1 кет на напряжение 200 кв (условный номер типа - 1).

Независимо от типа рентгеновской трубки общий принцип их работы состоит в следующем. Накал катода рентгеновской трубки вызывает термоэлектронную эмиссию с образованием у катода так называемого электронного облака. С включением высокого напряжения на электродах рентгеновской трубки свободные электроны под действием электрического поля устремляются к аноду, тормозятся на его зеркале, причем часть энергии торможения преобразуется в рентгеновское излучение.

При повышении напряжения на рентгеновской трубке эмиссионный ток вначале круто возрастает за счет постепенного уменьшения плотности электронного облака. Когда же число электронов, образующихся на катоде, становится равным числу электронов, достигающих анода, дальнейшее повышение напряжения не вызывает увеличения тока, проходящего через рентгеновскую трубку, а лишь увеличивает кинетическую энергию электронов, достигающих анода. Режим работы рентгеновской трубки, при котором происходит использование всех электронов, образующихся на катоде, а дальнейшее повышение напряжения не вызывает увеличения анодного тока, называется током насыщения. Практически ток насыщения i достигается в диагностических рентгеновских трубках при разности потенциалов σ порядка 10-20 кв (рис. 13). Поэтому обычно рентгеновские трубки большей частью работают в режиме тока насыщения. При необходимости увеличить анодный ток следует соответственно увеличить ток накала катода и, подняв напряжение, снова создать режим тока насыщения.


Рис. 13. Анодные характеристически электронной рентгеновской трубки: S"- при токе накала 3,8 a; S-при токе накала 3,4 а.

В процессе промышленного производства из рентгеновских трубок удаляют газ до остаточного давления 10 -6 -10 -7 мм рт. ст. При этой степени вакуума прохождение тока через рентгеновскую трубку практически обусловлено только термоэлектронной эмиссией с катода. Однако при чрезмерном нагреве деталей трубки, а также при включении ее после длительного перерыва в работе в ней может появиться газ; при этом возникает эффект ионизации; рентгеновская трубка начинает пропускать ток в обоих направлениях. Измерительные приборы на пульте управления обнаруживают резкие колебания анодного тока. Если такую «газящую» рентгеновскую трубку включить под высокое напряжение без накала катода, в ней создается устойчивый газовый разряд, сопровождающийся характерным свечением трубки. Такая трубка к работе непригодна и подлежит замене.

Каждую новую рентгеновскую трубку перед пуском в работу необходимо проверить на вакуум под высоким напряжением, не включая накала, затем подвергнуть «тренировке». Для этого при анодном напряжении порядка 1/3 от номинального устанавливают ток 1-2 мА. Затем в течение 30-60 мин. напряжение и ток постепенно повышают до номинальных значений длительного режима в соответствии с паспортом рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

См. также Рентгеновские аппараты, Рентгеновское излучение.

Открыв « - лучи», Рентген тщательными опытами выяснил условия их образования. Он установил, что эти лучи возникают в том месте трубки, где летящие электроны, составляющие катодный пучок, задерживаются, ударяясь о стенку трубки. Исходя из этого обстоятельства, Рентген сконструировал и построил специальную трубку, удобную для получения рентгеновских лучей. В своих существенных чертах конструкция трубки Рентгена сохранилась и до нашего времени.

На рис. 302 изображена современная рентгеновская трубка. Катодом служит толстая накаливаемая вольфрамовая нить, испускающая интенсивный поток электронов (см. г. II, § 100), которые ускоряются приложенным электрическим напряжением. Катод снабжен колпачком из тантала, фокусирующим электроны, так как электроны вылетают перпендикулярно поверхности катода. Мишенью служит пластинка из вольфрама, платины или другого тяжелого металла, впрессованная в анод (зеркало анода), который для отвода тепла изготовляется из красной меди. Ударяясь о поверхность мишени, электроны задерживаются и дают рентгеновские лучи. Напряжение между катодом и анодом достигает нескольких десятков тысяч вольт. Для того чтобы электроны могли беспрепятственно достигать мишени, рентгеновскую трубку откачивают до высокого вакуума. Анод обычно охлаждают водой.

Рис. 302. Современная рентгеновская трубка; цепь накала катода не показана

Действуя на газы, рентгеновские лучи способны вызвать их ионизацию (см. т. II, § 92). Так, поместив около рентгеновской трубки заряженный электроскоп, мы обнаружим, что он быстро разряжается, если трубка приведена в действие (рис. 303). Причина потери заряда электроскопом состоит в том, что окружающий воздух ионизуется действием рентгеновских лучей и становится проводником. Ионизующее действие рентгеновских лучей также используется для их обнаружения и регистрации.

Рис. 303. Ионизующее действие рентгеновских лучей: 1 - рентгеновская трубка, 2 - электроскоп. Опыт удается как с положительно, так и отрицательно заряженным электроскопом. Под действием рентгеновских лучей в воздухе создаются ионы обоих знаков

Кафедра онкологии, лучевой терапии и лучевой диагностики

Зав. кафедрой: проф., д.м.н. Редькин Александр Николаевич

Преподаватель: к.м.н. Черкасова Ирина Ивановна

Реферат на тему: «Устройство рентгеновской трубки и рентгендиагностических аппаратов. Аналоговые и цифровые технологии. Виды рентгенологических комплексов.»

Выполнила: Васильева Ирина Александровна


Устройство рентгеновской трубки.

Принципы получения рентгеновских лучей.

Классификация рентгеновских трубок

  1. По назначению

1. Диагностические

2. Терапевтические

3. Для структурного анализа

4. Для просвечивания

  1. По конструкции

1. По фокусности

§ Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)

§ Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)

2. По типу анода

§ Стационарный (неподвижный)

§ Вращающийся

§ Открытый или закрытый анод

§ Выносимый анод

  1. По мощности: от 0,2 до 100 кВт;
  2. По способу охлаждения:

· с водяным охлаждением

· калориферным

· непроточным масляным

· с комбинированными видами охлаждения (лучеиспускание и масляное, проточное водяное и масляное).

Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство.

Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению. Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода. Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45-70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода - участок 10-15 мм2, где в основном и образуются рентгеновы лучи.



Процесс образования рентгеновых лучей . Нить накала рентгеновской трубки - вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4-15 В, 3-5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов - катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения). По желанию врача и техника можно регулировать как количество рентгеновых лучей (интенсивность), так и качество их (жесткость). Повышая степень накала вольфрамовой нити катода можно добиться увеличения количества электронов, что обусловливает интенсивность рентгеновых лучей. Повышение напряжения, подаваемого к полюсам трубки, ведет к увеличению скорости полета электронов, что является основой проникающего качества лучей. Выше уже было отмечено, что фокус рентгеновской трубки - это тот участок на аноде, куда попадают электроны и где генерируются рентгеновы лучи. Величина фокуса влияет на качество рентгеновского изображения: чем меньше фокус, тем резче и структурней рисунок и наоборот, чем он больше, тем более расплывчатым становится изображение исследуемого объекта. Практикой доказано, чем острее фокус, тем быстрее трубка приходит в негодность - происходит расплавление вольфрамовой пластинки анода. Поэтому в современных аппаратах трубки конструируются с несколькими фокусами: малым и большим, или линейным в виде узкой полосы с коррекцией угла скошенности анода в 71°, что позволяет получать оптимальную резкость изображения при наибольшей электрической нагрузке на анод. Удачной конструкцией рентгеновской трубки является генератор с вращающимся анодом, что позволяет делать фокус незначительных размеров и удлинить тем самым срок эксплуатации аппарата. Из потока катодных лучей только около 1% энергии превращается в рентгеновы лучи, остальная энергия переходит в тепло, что приводит к перегреванию анода.

Для целей охлаждения анода используются различные способы: водяное охлаждение, калориферно-воздушное, масляное охлаждение под давлением и комбинированные способы.

Рентгеновская трубка помещается в специальный просвинцованный футляр или кожух с отверстием для выхода рентгеновского излучения из анода трубки.

На пути выхода рентгеновского излучения из трубки устанавливаются фильтры из различных металлов (алюминиевые,медные,железные,комбинированные) , которые отсеивают мягкие лучи и делают более однородным излучение рентгеновского аппарата. Во многих конструкциях рентгеновских аппаратов в футляр наливается трансформаторное масло, которое со всех сторон обтекает рентгеновскую трубку.

Все это: металлический футляр, масло, фильтры экранируют персонал кабинета и больных от воздействия рентгеновского облучения.