Решение систем линейных уравнений методом жордана-гаусса. Преобразование Жордана-Гаусса и симплекс-метод в Excel

03.05.2019

Для начала работы требуется, чтобы заданная система ограничений выражалась равенствами, причём в этой системе ограничений должны быть выделены базисные неизвестные. Решение задачи симплекс-методом распадается на ряд шагов. На каждом шаге от данного базиса Б переходят к другому, новому базису Б 1 с таим расчётом, чтобы значение функции Z уменьшилось, т.е. . Для перехода к новому базису из старого базиса удаляется одна из переменных и вместо нее вводится другая из числа свободных. После конечного числа шагов находится некоторый базис Б (k) , для которого есть искомый минимум для линейной функцииZ, а соответствующее базисное решение является оптимальным либо выясняется, что задача не имеет решения.

4.1 Алгоритм симплекс-метода.

Рассмотрю систему ограничений и линейную форму вида:

(4.1)

Используя метод Жордана-Гауса, приведём записанную систему к виду, где выделены базисные переменные.

Введём условные обозначения:

–базисные переменные;

–свободные переменные.

(4.4)

По последней системе ограничений построим табл. 4.1.

Таблица 4.1

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

Данная таблица называется симплекс-таблицей. Все дальнейшие преобразования связаны с изменением содержания этой таблицы.

Алгоритм симплекс-метода сводится к следующему.

1. В последней строке симплекс-таблицы находится наименьший положительный элемент, не считая свободного члена. Столбец, соответствующий этому элементу, считается разрешающим.

2. Вычисляют отношение свободных членов к положительным элементам разрешающего столбца (симплекс-отношение). Находят наименьшее из этих симплекс-отношений, оно соответствует разрешающей строке.

3. На пересечении разрешающих строки и столбца находится разрешающий элемент.

4. Если имеется несколько одинаковых по величине симплекс-отношений, то выбирают любое из них, то выбирают любое из них. То же самое относится к положительным элементам последней строки симплекс-таблицы.

5. После нахождения разрешающего элемента переходят к следующей таблице. Неизвестные переменные, соответствующие разрешающей стоке и столбцу, меняют местами. При этом базисная переменная становится свободной переменной, и наоборот. Симплекс таблица преобразована следующим образом

Таблица 4.2

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

6. Элемент табл. 4.2 соответствующий разрешающему элементу табл. 4.1, равен обратной величине разрешающего элемента.

7. Элементы строки табл. 4.2, соответствующие элементам разрешающей стоки табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент.

8. Элементы столбца табл. 4.2, соответствующие элементам разрешающего столбца табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент и берутся с противоположным знаком.

9. Остальные элементы вычисляются по правилу прямоугольника: мысленно вычерчиваем прямоугольник в табл.4.2, одна вершина которого совпадает с разрешающим элементом, а другая – с элементом, образ которого мы ищем; остальные две вершины определяются однозначно. Тогда искомый элемент табл. 4.2 будет равен соответствующему элементу табл. 4.1 минус дробь в знаменателе который стоит разрешающий элемент, а в числителе произведение элементов из двух неиспользованных вершин прямоугольника.

10. Как только получится таблица, в которой в последней стоке все элементы отрицательны, считается, что минимум найден. Минимальное значение функции равно свободному члену в строке целевой функции, а оптимальное решение определяется свободными членами при базисных переменных. Все свободные переменные в этом случае равны нулю.

11. Если в разрешающем столбце все элементы отрицательны, то задача не имеет решений (минимум не достигается).

5. Методы нахождения опорного решения задачи линейного программирования.

5.1. Метод искусственного базиса.

Сформулированный выше алгоритм Симплекс-метода можно применять лишь в том случае, если выделено первое допустимое решение, т.е. исходная задача линейного программирования приведена к виду

При этом , тогда, положив свободные неизвестныеравными нулю, получаем опорное решение.

Рассмотрю метод нахождения опорного решения, основанный на введении искусственных переменных. Для этого запишем задачу линейного программирования в общем виде. Будем рассматривать задачу с числом неизвестных иограничениями:

(5.1)

Перепишем систему (5.1) в другом виде. Для этого введём искусственные переменные так, чтобы был выделен базис. Тогда система примет вид

(5.2)

Системы (5.1) и (5.2) будут эквивалентны в том случае, если все , длябудут равны 0. Кроме того, считаю, что вседля. В противном случае соответствующие ограничения из системы (5.1) умножим на – 1. Для того чтобыбыли равны 0, мы должны преобразовать задачу таким образом, чтобы все искусственные переменныеперешли в свободные неизвестные.

В этом случае система (5.2) после преобразования примет вид:

(5.3)

От системы (5.2) к системе (5.3) всегда можно перейти шагами симплекс-метода. При таком переходе в качестве линейной формы рассматривают функцию

равную сумме искусственных переменных. Переход заканчивают, когда и все искусственные переменныепереведены в свободные неизвестные.

Анализ вариантов решений

1. Если , а всепереведены в свободные переменные, то задача не имеет положительного решения.

2. Если , а частьосталась в базисе, то для перевода их в свободные необходимо применять специальные приёмы.

В симплекс-таблице, соответствующей системе (5.3), после того как , а все- свободные, вычёркивают строку дляи столбцы дляи решают задачу для исходной линейной формы.

5.2. Второй алгоритм отыскания опорного плана.

Пусть задача линейного программирования записана в каноническом виде:

(5.5)

Построим первую таблицу Жордана-Гаусса для задач (5.5) и (5.6). Для единообразия вычислительной процедуры к исходной таблице приписываем строку целевой функции:

После приведения системы ограничений к единичному базису целевая функция, как и базисные переменные, будет выражена через свободные переменные. Аналогичным приёмом я пользовался, когда решали задачи графическим методом с числом переменных более двух.

Алгоритм метода

1. Запишем задачу в форме (5.7), при этом все элементы столбца свободных членов должны быть неотрицательны,. Уравнения системы (5.5), в которых свободные члены отрицательны, предварительно нужно умножить на – 1.

2. Таблицу (5.7) преобразуем шагами Жордана-Гаусса исключений. При этом на каждом шаге разрешающим может быть выбран любой столбец, содержащий хотя бы один положительный элемент. Строка целевой функции на выбор разрешающих столбцов влияние не оказывает.

3. Разрешающая строка определяется по наименьшему из отношений свободных членов к элементам разрешающего столбца.

4. В процессе преобразований вычёркиваем строки, состоящие из одних нулей.

5. Если в процессе преобразований встречается строка, все элементы которой нули, а свободный член отличен от нуля, то задача не имеет решения. Если встретится строка, в которой, кроме свободного члена, других положительных элементов нет, то говорят, что задача не имеет положительных решений.

Пояснение. В п.1.1 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование необязательно. В случае когда в столбце свободных членов встречаются отрицательные числа, будем пользоваться теоремой.

Теорема. Если разрешающий элемент выбирать по наименьшему положительному симплекс-отношению, то после шага Жордана-Гаусса свободный член в разрешающей строке становится положительным, а остальные члены сохраняют свой знак.

Выбор разрешающего элемента производят иначе, а именно.

1. Просматривают строку, соответствующую какому-либо отрицательному свободному члену. Выбирают в ней какой-либо отрицательный элемент – соответствующий этому элементу столбец будет разрешающим.

2. Выбор разрешающего элемента производится по минимальному положительному симплекс-отношению. Если задача разрешима, то через конечное число шагов получают первое допустимое решение и можно применять симплекс-метод.

В некоторых случаях найденное таким образом первое допустимое решение является также и оптимальным решением.

    При условии отсутствия “0-строк” (ограничений-равенств) и “сво­бодных” перемен­ных (т.е. переменных, на которые не наложено требование неотри­цатель­ности).

2. В случае присутствия ограничений-равенств и “свободных” переменных поступают следующим образом.

    Выбирают разрешающий элемент в “0-строке” и делают шаг модифицированного жорданова исключения, после чего вычеркивают этот разрешающий столбец. Данную последовательность действий продолжают до тех пор, пока в симплексной таблице остается хотя бы одна “0-строка” (при этом таблица сокращается).

    Если же присутствуют и свободные переменные, то необходимо данные переменные сделать базисными. И после того, как свободная переменная станет базисной, в процессе определения разрешающего элемента при поиске опорного и оптимального планов данная строка не учитывается (но преобразуется).

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно
положительных компонент, где
– число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда
(число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида
. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку.

Аналогично при
в вы­рож­денной задаче в одной вершине пересекается более 3-х плоскостей
.

В предположении о невырож­ден­ности задачи находилось только одно значение
, по кото­рому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В вырожденной задаче
может достигаться на нескольких индек­сах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми.

Если задача линейного програм­ми­рования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Так называемое, явление зацик­ливания. Хотя в практических задачах линейного программирования зацикливание явление крайне редкое, возможность его не исключена.

Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем “незначительного” изменения вектора правых частей системы ограничений на величины , таким образом, чтобы задача стала невырож­денной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи.

Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления.

Пусть переменную необходимо сделать базисной. Рассмотрим мно­жество индексов, состоящее из тех, для которых достигается
. Множество индексов, для которых выполняется данное условие обозначим через. Еслисостоит из одного элемента, то из базиса исключается вектор условий(переменнаяделается небазисной).

Если состоит более чем из одного элемента, то составляется множество, которое состоит из
, на которых достигается
. Еслисостоит из одного индекса, то из базиса выводится переменная. В противном случае составляется множествои т.д.

Практически правилом надо пользоваться, если зацикливание уже обнаружено.

Для разрешения выполнения апплета на вашем компьютере надо сделать следующее - нажать кнопку Пуск>Панельуправления>Программы>Java. В окне Java Control Panel выбираем вкладку Security (Безопастность) нажимаем кнопку Edit Site List, кнопку add и вставляем в свободное поле путь к этой страницы из адресной строки браузера. Далее нажимаем кнопки ОК, после этого перезагружаем компьютер.

Для запуска апплета нажмите на кнопку "Simplex". Если над этой строкой не видна кнопка "Simplex", то на компьютере не установлена Java.

    После нажатия на кнопку « Simplex » выводится первое окно для ввода числа переменных и числа ограничений задачи на симплекс-метод.

    После нажатия на кнопку « ok » выводится окно для ввода остальных данных задачи на симплекс-метод: режима отображения (десятичные дроби или обыкновенные), тип критерия задачи min или max , ввод коэффициентов целевой функции и коэффициентов системы ограничений со знаками « ≤ », « ≥ » или « = », ограничения вида х i ≥ 0 вводить не надо, их учитывает в своем алгоритме.

    После нажатия на кнопку «Решить» выводится окно с результатами решения задачи на . Окно состоит из двух частей, в верхней части находится текстовое поле, содержащее описание приведения исходной задачи к канонической форме, которая используется для составления первой симплекс-таблицы. В нижней части окна в панели со вкладками расположены симплекс-таблицы каждой итерации с небольшим текстовым полем внизу с указанием разрешающего столбца, разрешающей строки и другой информации, что делает программу обучающей. Во вкладке с оптимальной (последней) таблицей в текстовом поле приведено полученное оптимальное решение задачи.

Замеченные ошибки и комментарии по работе апплета присылайте на [email protected] или звоните 8 962 700 77 06, за что мы будем Вам очень благодарны.

Программа М-метод

Программа для решения транспортной задачи

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами:
-система ограничений должна быть системой уравнений с базисом;
-свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод. Составим первую симплекс-таблицу (Итерация 0), т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

итерация 0

БП

Решение Отношение

Для улучшения решения перейдем к следующей итерации, получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации переменная x 2 заменит в базисе s 3 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0 , цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 2 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z -строки имеем:

Старая z-строка (-4 -6 0 0 0 0)
-(-6)*Новая разрешающая строка -(0
-6 0 0 -6 -120)
=Новая z-строка
(-4 0 0 0 6 120) .

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

итерация 1

Решение Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

Итерация 2

Решение Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

Итерация 3

Решение Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Симплекс-метод, решение задачи с искусственным базисом

2) Решим задачу с искусственным базисом (хотя бы один знак неравенств-ограничений " ≥ " или " = ").

Запишем задачу в канонической форме (в виде системы уравнений, что требует симплекс-метод), для этого введем две переменные х 3 ≥ 0 и х 4 ≥ 0 получим:

Система ограничений предлагает только одну допустимую базисную переменную x 4 , только она входит только в одно уравнение в третье с коэффициентом 1, поэтому в первое и второе уравнения добавляем искусственные переменные R 1 ≥ 0 и R 2 ≥ 0 Чтобы можно было примененить симплекс-метод система уравнений-ограничений должна быть системой с базисом, т.е. в каждом уравнении должна быть переменная с коэффициентом 1, которая входит только в одно уравнение системы, в нашем случае это R 1 , R 2 и x 4 . Получили, так называемую, М-задачу:

Данная система является системой с базисом, в которой R 1 , R 2 и x 4 базисные переменные, а x 1 , x 2 и x 3 свободные переменные, свободние члены всех уравнений неотрицательны. Следовательно, для решения задачи можно применить симплекс-метод. Запишем начальную симплекс-таблицу:

итерация 0

Решение Отношение
-16

В таблицу для задач с искусственным базисом добавлена строка «Оценка». Она получается суммированием соответствующих коэффициентов строк с искусственными переменными (R) с обратным знаком. Она будет присутствовать в таблице до тех пор, пока хотя бы одна из искусственных переменных есть в базисе. По наибольшему по модулю отрицательному коэффициенту строки "Оценка" определяется разрешающий столбец пока она есть в таблице. Когда строка "Оценка" выйдет из таблицы (в базисе нет искусственных переменных) разрешающий столбец будет определяться по z-строке, как и в задаче с начальным базисом. В данной таблице разрешающий столбец х 2 , он выбран по наибольшей по модулю отрицательной оценке (-7). Разрешающая строка R 2 выбрана по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца, как и в задаче без искусственных переменных. Это значит, что на следующей итерации переменная х 2 из свободной перейдет в базисную, а переменная R 2 из базисной – в свободную. Запишем следующую симплекс-таблицу:

Разрешающий столбец х 1 , разрешающая строка R 1 , R 1 выходит из базиса, x 1 входит в базис. После этого в базисе не остается искусственных переменных, поэтому строки «Оценка» в следующей таблице нет:

итерация 2

Решение Отношение

Далее разрешающий столбец выбирается по z-строке. В z-строке все коэффициенты неотрицательны кроме коэффициента при искусственной переменной R 1 , который не влияет на оптимальность, когда искусственные переменные вышли из базиса. Следовательно, получено оптимальное решение x 1 = 6/5; x 2 = 3/5; z max = 72/5.

Особые случаи применения симплекс-метода

1) Когда прямая (если рассматривается двухмерная задача линейного программирования, а в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей одному из неравенств-ограничений (которое в точке оптимума выполняется, как точное равенство) целевая функция принимает одно и тоже оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями . Наличие альтернативных решений можно определить по оптимальной симплекс-таблице. Если в z-строке оптимальной таблицы есть нулевые коэффициенты небазисных переменных, то есть альтернативные решения.

2) Если в разрешающем столбце симплекс-таблицы все коэффициенты меньше или равны нуль, то нельзя выбрать разрешающую строку, в этом случае решение неограничено.

3) Если ограничения задачи линейного программирования несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип " ≤ " с неотрицательными правыми частями, т.к. в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений использются искусственные переменные. Если задача имеет решение, то в оптимальной таблице в базисе нет искусственных переменных (R i). Если они там есть, то задача не имеет решений.


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).