SAS-диски: назначение, описание, технические характеристики устройства. Разница между SAS и SATA

21.07.2019

В современных компьютерных системах для подключения основных жестких дисков используются интерфейсы SATA и SAS. Как правило, первый вариант устраивает домашние рабочие станции, второй – серверные, поэтому технологии между собой не конкурируют, отвечая разным требованиям. Значительная разница в стоимости и объеме памяти заставляет пользователей задаваться вопросом, чем отличается SAS от SATA, и искать компромиссные варианты. Посмотрим, так ли это целесообразно.

SAS (Serial Attached SCSI) – последовательный интерфейс подключения устройств хранения данных, разработанный на основе параллельного SCSI для исполнения того же набора команд. Используется преимущественно в серверных системах.

SATA (Serial ATA) – последовательный интерфейс обмена данными, базирующийся на основе параллельного PATA (IDE). Применяется в домашних, офисных, мультимедийных ПК и ноутбуках.

Если говорить о HDD, то, несмотря на различающиеся технические характеристики и разъемы, кардинальных расхождений между устройствами нет. Обратная односторонняя совместимость дает возможность подключать к серверной плате диски и по одному, и по второму интерфейсу.

Стоит заметить, что оба варианта подключения реальны и для SSD, но весомое отличие SAS от SATA в этом случае будет в стоимости накопителя: первый может быть дороже в десятки раз при сопоставимом объеме. Поэтому сегодня такое решение если уже и не редкое, то в достаточной мере взвешенное, и предназначено для быстрых центров обработки данных корпоративного уровня.

Разница между SAS и SATA

Как мы уже знаем, SAS находит применение в серверах, SATA – в домашних системах. На практике это означает, что к первым одновременно обращается много пользователей и решается множество задач, со вторыми же имеет дело один человек. Соответственно, серверная нагрузка намного выше, поэтому диски должны быть достаточно отказоустойчивыми и быстрыми. Протоколы SCSI (SSP, SMP, STP), реализованные в SAS, позволяют обрабатывать больше операций ввода/вывода одновременно.

Непосредственно для HDD скорость обращения определяется в первую очередь скоростью вращения шпинделя. Для desktop-систем и ноутбуков необходимо и достаточно 5400 – 7200 RPM. Соответственно, найти SATA-диск с 10000 RPM почти невозможно (разве что посмотреть серию WD VelociRaptor, предназначенную, опять же, для рабочих станций), а все, что выше, – абсолютно недостижимо. SAS HDD раскручивает минимум 7200 RPM, стандартом можно считать 10000 RPM, а достаточным максимумом – 15000 RPM.

Считается, что диски с последовательным SCSI надежнее, у них выше показатели наработки на отказ. На практике стабильность достигается больше за счет функции проверки контрольных сумм. Накопители SATA же страдают от «тихих ошибок», когда данные записываются частично либо повреждены, что приводит к появлению .

На отказоустойчивость системы работает и главное достоинство SAS – два дуплексных порта, позволяющих подключить одно устройство по двум каналам. Обмен информацией в этом случае будет вестись одновременно в обоих направлениях, а надежность обеспечивается технологией Multipath I/O (два контроллера страхуют друг друга и разделяют нагрузку). Очередь помеченных команд выстраивается глубиной до 256. У большинства дисков SATA один полудуплексный порт, а глубина очереди по технологии NCQ – не более 32.

Интерфейс SAS предполагает использование кабелей длиной до 10 м. К одному порту через расширители можно подключить до 255 устройств. SATA ограничивается 1 м (2 м для eSATA), и поддерживает подключение только одного устройства по типу «точка – точка».

Перспективы дальнейшего развития – то, в чем разница между SAS и SATA тоже ощущается достаточно остро. Пропускная способность интерфейса SAS достигает 12 Гбит/с, а производители анонсируют поддержку скорости обмена данными 24 Гбит/с. Последняя ревизия SATA остановилась на 6 Гбит/с и эволюционировать в этом отношении не будет.

Накопители SATA в пересчете на стоимость 1 Гб обладают очень привлекательным ценником. В системах, где скорость доступа к данным не имеет решающего значения, а объем хранимой информации велик, целесообразно использовать именно их.

Сравнительная таблица

SAS SATA
Для серверных систем Преимущественно для настольных и мобильных систем
Использует набор команд SCSI Использует набор команд ATA
Минимальная скорость вращения шпинделя HDD 7200 RPM, максимальная – 15000 RPM Минимум 5400 RPM, максимум 7200 RPM
Поддерживается технология проверки контрольных сумм при записи данных Большой процент ошибок и bad-секторов
Два дуплексных порта Один полудуплексный порт
Поддерживается Multipath I/O Подключение по типу «точка – точка»
Очередь команд до 256 Очередь команд до 32
Можно использовать кабели до 10 м Длина кабелей не более 1 м
Пропускная способность шины до 12 Гбит/с (в перспективе – 24 Гбит/с) Пропускная способность 6 Гбит/с (SATA III)
Стоимость накопителей выше, иногда значительно Дешевле в пересчете на цену за 1 Гб

Звоните или прямо на сайте! Наши специалисты с удовольствием помогут Вам!

Высокопроизводительные серверные накопители для решения ответственных задач редко попадают в поле зрения IT-изданий. Ничего удивительного, ведь мы в большей степени ориентируемся на массового покупателя, чем на системных администраторов и поставщиков серверного оборудования. Между тем проводить тесты серверных HDD даже важнее, чем тесты десктопных, - по нескольким причинам. Во-первых, из-за более высокой стоимости накопителей и более высокой чувствительности серверных задач к производительности. После массового распространения твердотельных накопителей различия между десктопными дисками перестали иметь большое значение, а в сервере замена HDD на SSD еще далеко не всегда целесообразна. Следующее обстоятельство вытекает из первого: HDD для десктопа или домашнего NAS вполне можно выбирать по базовым техническим характеристикам (объем, скорость вращения шпинделя, емкость пластин). В случае с серверным HDD многое зависит от оптимизации микропрограммы, которая проявляет себя в сложной нагрузке и, соответственно, требует специальных тестов, чтобы уловить эти особенности. Наконец, при больших масштабах вступает в игру такой параметр, как отношение производительности к энергопотреблению накопителя.

За последние несколько лет выбор жестких дисков корпоративного назначения, определенно, стал проще. Перестали производиться модели с интерфейсами Fibre Channel и SCSI. Накопители разделились на два класса: модели в форм-факторе 3,5 дюйма ограничиваются скоростью вращения 7200 об/мин, обладают интерфейсом SAS или SATA - на выбор и предназначены для хранения «холодных» данных (nearline storage). Диски со скоростью 10 000-15 000 об/мин пользуются интерфейсом SAS и в большинстве своем перешли в форм-фактор 2,5 дюйма (SFF - Small Form Factor), который позволяет увеличить количество шпинделей на юнит в стойке. Только у HGST еще остались накопители класса 15К в форм-факторе 3,5 дюйма и с портами Fibre Channel.

Nearline-дискам в конфигурации SATA мы уже постоянно уделяем внимание, а вот тест SAS/SCSI-накопителей впервые публикуется на 3DNews.

⇡ Участники тестирования

В сравнении приняли участие следующие устройства:

  • HGST Ultrastar C10K1800 1,8 Тбайт (HUC101818CS4200);
  • HGST Ultrastar C15K600 600 Гбайт (HUC156060CSS200);
  • Seagate Savvio 10K.6 900 Гбайт (ST900MP0006);
  • Seagate Enterprise Performance 10K HDD v7 1,2 Тбайт (ST1200MM0017);
  • Seagate Enterprise Performance 15K HDD v5 600 Гбайт (ST600MP0035);
  • Toshiba AL13SEB 900 Гбайт (AL13SEB900);
  • Toshiba AL13SXB 600 Гбайт (AL13SXB600N);
  • WD VelociRaptor 1 Тбайт (WD1000DHTZ).

В противоположность жесктим дискам для настольных ПК и NAS, SAS-накопители не так сильно отличаются друг от друга. Все участники:

а) выпускаются в форм-факторе 2,5 дюйма с толщиной 15 мм;

б) обладают двумя портами SAS для повышения отказоустойчивости;

в) подготовлены для работы в режиме 24/7 в условиях телекоммуникационной стойки;

г) позволяют пользователю конфигурировать размер сектора для записи дополнительных метаданных;

д) характеризуются одинаковыми показателями надежности (MTBF, число циклов парковки головок);

е) продаются с пятилетней гарантией производителя.

Для тестирования были выбраны модели максимального объема в соответствующих линейках. Представлена продукция всех компаний, которые сегодня выпускают HDD, за одним исключением. Мы исчерпали все возможности получить на тест диск WD Xe (кроме как просто купить его за немалые деньги), а недавно эта марка и вовсе пропала с корпоративного сайта Western Digital - видимо, снимается с производства. В итоге из всех дисков со скоростью вращения шпинделя 10-15 тыс. об/мин у WD остался только VelociRaptor - по сути, производная от WD Xe, но с интерфейсом SATA. Чтобы WD хоть как-то была представлена в обзоре, мы включили VelociRaptor в число участников. Конечно, 100-процентной заменой SAS-накопителям его считать нельзя, однако масса серверов работает на SATA-накопителях, так что и VelociRaptor можно пустить в дело. Кроме того, если посмотреть с другой стороны, любой из дисков для SAS можно использовать в рабочей станции с соответствующим HBA (Host Bus Adapter) вместо VelociRaptor, что также оправдывает участие этого диска в сегодняшнем тесте.

Производитель HGST HGST Seagate Seagate Seagate Toshiba Toshiba Western Digital
Серия Ultrastar C10K1800 Ultrastar C15K600 Savvio 10K.6 Enterprise Performance 10K HDD v7 Seagate Enterprise Performance 15K HDD v5 AL13SEB AL13SXB VelociRaptor
Модельный номер HUC101818CS4200 HUC156060CSS200 ST900MM0006 ST1200MM0017 ST600MP0035 AL13SEB900 AL13SXB600N WD1000CHTZ/WD1000DHTZ
Форм-фактор 2,5 дюйма 2,5 дюйма 2,5 дюйма 2,5 дюйма 2,5 дюйма 2,5 дюйма 2,5 дюйма 3,5/2,5 дюйма
Интерфейс SAS 12 Гбит/с SAS 12 Гбит/с SAS 6 Гбит/с SAS 6 Гбит/с SAS 12 Гбит/с SAS 6 Гбит/с SAS 6 Гбит/с SATA 6 Гбит/с
Dual-port Да Да Да Да Да Да Да Нет
Емкость, Гбайт 1 800 600 900 1 200 600 900 600 1000
Конфигурация
Скорость вращения шпинделя, об/мин 10 520 15 030 10 000 10 000 15 000 10 500 15 000 10 000
Плотность записи данных, Гбайт/пластину 450 200 300 300 200 240 НД 334
Число пластин/головок 4/8 3/6 3/6 4/8 3/6 4/8 НД 3/6
Объем буфера, Мбайт 128 128 64 64 128 64 64 64
Размер сектора, байт 4096-4224 512-528 512-528 512-528 4096-4224 512-528 512-528 512
Производительность
Макс. устойчивая скорость последовательного чтения, Мбайт/с 247 250 195 195 246 195 228 200
Макс. устойчивая скорость последовательной записи, Мбайт/с 247 250 195 195 246 195 228 200
Burst rate, чтение/запись, Мбайт/с 261 267
Внутренняя скорость передачи данных, Мбайт/с 1307-2859 1762-3197 1440-2350 1440-2350 НД НД НД НД
Average seek time: чтение/запись, мс 3,7/4,4 2,9/3,1 НД НД НД 3,7/4,1 2,7/2,95 НД
Track-to-track seek time: чтение/запись, мс НД НД НД НД НД 0,2/22 НД НД
Full stroke seek time: чтение/запись, мс 7,3/7,8 7,3/7,7 НД НД НД НД НД НД
Надежность
MTBF (среднее время наработки на отказ), ч 2 000 000 2 000 000 2 000 000 2 000 000 2 000 000 2 000 000 2 000 000 1 400 000
AFR (annualized failure rate), % НД 0,44 0,44 0,44 0,44 НД 0,44 НД
Число циклов парковки головок 600 000 600 000 НД НД НД НД 600 000 600 000
Физические характеристики
Потребляемая мощность: бездействие/чтение-запись, Вт 5,4/7,6 5,8/7,5 3,9/7,8 4,6/8,1 5,3/8,7 3,9/НД 5,0/9,0 4,2/5,8
Типичный уровень шума: бездействие/поиск 34/38 дБA 32/38 дБA 30 дБA / НД 31 дБA / НД 32,5/33,5 дБA 30 дБA /НД 33 дБA /НД 30/37 дБА
Максимальная температура, °C: диск включен/диск отключен 55/70 55/70 60/70 60/70 55/70 55/70 55/70 55/70
Ударопрочность: диск включен (чтение) /диск отключен 30 g (2 мс) - запись / 300 g (2 мс) 25 g (2 мс) / 400 g (2 мс) 25 g (2 мс) / 400 g (2 мс) 25 g (2 мс) / 400 g (2 мс) 100 g (1 мс) / 400 g (2 мс) 100 g (1 мс) / 400 g (2 мс) 30 g (2 мс) / 300 g (2 мс)
Габаритные размеры: Д × В × Г, мм 101 × 70 × 15 100 × 70 × 15 101 × 70 × 15 101 × 70 × 15 101 × 70 × 15 101 × 70 × 15 101 × 70 × 15 101 × 70 × 15/ 147 × 102 × 26
Масса, г 220 219 212 204 230 240 230 230/500
Гарантийный срок, лет 5 5 5 5 5 5 5 5
Средняя розничная цена, руб.* 161 000 36 000 20 000 26 900 49 600 17 800 24 100 14 000 / 12 600

⇡ Описание участников тестирования

HGST Ultrastar C10K1800 1,8 Тбайт (HUC101818CS4200)

Это самый емкий диск в новейшей линейке десятитысячников HGST. Серия Ultrastar C10K1800 примечательна в нескольких отношениях. В моделях, наименование которых заканчивается на S420x, благодаря высокой плотности записи с применением форматирования секторами по 4 Кбайт (нативным или с эмуляцией 512-байтовых секторов) достигнута емкость 450 Гбайт на пластину. Поэтому диск вмещает до 1,8 Тбайт, а скорость последовательного чтения/записи вышла на уровень HDD класса 15 тыс. об/мин.

Остальная часть линейки состоит из дисков с разметкой по 512-528 байт, обладающих менее выдающимся быстродействием и объемом вплоть до 1,2 Тбайт.

Все модели в линейке C10K1800 имеют так называемый media cache. В нескольких местах на поверхности пластин выделены области, служащие энергонезависмым кешем. Вместо того чтобы нести данные к запрошенному сектору, записывающая головка диска сбрасывает их в ближайшую кеширующую область, а в простое диска они перемещаются на нужное место.

Между прочим, это самый дорогой диск в тесте, просто фантастически дорогой - в среднем 161 тыс. рублей в московских интернет-магазинах. А в Америке, кстати, намного дешевле - $800 на newegg.com .

HGST Ultrastar C10K1800 1,8 Тбайт (HUC101818CS4200)

HGST Ultrastar C15K600 600 Гбайт (HUC156060CSS200)

Единственная линейка 2,5-дюймовых дисков со скоростью вращения шпинделя 15 тыс. об/мин в ассортименте HGST. Диски Ultrastar C15K600 одновременно обладают предельной на текущий момент скоростью последовательного чтения/записи и низкой латентностью. Физическое форматирование пластин выполняется секторами по 512-528 либо 4096-4224 байт (с нативным доступом или эмуляцией 512 байт). В тестировании участвует самая емкая модель в линейке - 600 Гбайт с секторами по 4 Кбайт.

HGST Ultrastar C15K600 600 Гбайт (HUC156060CSS200)

Seagate Savvio 10K.6 900 Гбайт (ST900MP0006)

Это довольно-таки старые диски - позапрошлого поколения по сравнению с актуальной линейкой Enterprise Performance 10K от Seagate. Поэтому производительность Savvio 10K.6 уже не передовая в данном классе. Форматирование пластин выполнено секторами по 512-528 байт. Впрочем, эти диски все еще есть в продаже, имеют неплохой объем (вплоть до 900 Гбайт) и относительно недороги.

Seagate Savvio 10K.6 900 Гбайт (ST900MP0006)

Seagate Enterprise Performance 10K HDD v7 1,2 Тбайт (ST1200MM0017)

Эта серия тоже успела формально устареть к моменту выхода теста, уступив место Enterprise Performance 10K HDD v8. От Savvio 10K.6 данные диски отличаются только повышенным до 1,2 Тбайт объемом, но это достигнуто путем увеличения числа пластин, а не плотности записи, поэтому в отношении заявленной производительности с предыдущим поколением разницы нет. Участвующая в тестировании модель ST1200MM0017 обладает встроенным шифрованием.

Мы останавливаемся перед выбором: какой вид винчестеров установить. Наиболее популярными являются следующие типы жестких дисков: SAS, SATA и NL-SAS. Эти три вида относятся к самым быстрым носителям информации, на них хранится большая часть данных в мире. Наша статья посвящена первому типу. Мы рассмотрим, что представляют собой SAS-диски, каковы их параметры, и в чем заключается разница между основными типами упомянутых устройств.

Технические характеристики

SAS-диски пришли на смену SCSI-типу. Они стали новым стандартом в хранении информации корпоративного класса. Из трех перечисленных видов SAS-диски считаются наиболее надежными, они способны поддерживать производительность в весьма сложных эксплуатационных условиях. Жесткие диски SASработают намного лучше винчестеров типа NL или SATA. Показателем их надежности выступает такой параметр, как коэффициент ошибок. Он определяет, с какой вероятностью один бит ошибки может возникнуть в медиа-данных. Коэффициент ошибок для винчестеров типа SAS обычно составляет единицу из 10 16 бит. То есть это значит, что вероятность ошибки может возникнуть в одном из десяти квадрильонов бит. Для примера можно сравнить этот показатель со значением ошибки в жестких дисках типа SATA, где он составляет единицу из 10 15 (или на один квадрильон). Как видно, защита SATA-винчестеров тоже довольно высока, однако, когда встает вопрос о защите сохраняемой информации, то разница на один порядок весьма существенна.

SAS-диски производят, придерживаясь более строгих стандартов, чем при разработке других типов винчестеров. Так, данная технология характеризуется средним временем наработки на отказ, составляющим 1,6 миллиона часов, а SATA-технология - 1,2 миллиона. Кроме перечисленных параметров, контроллеры и диски рассматриваемого типа имеют много дополнительных команд, предназначенных для диагностики. Эти функции делают эту технологию более эффективной, чем SATA. Особенно это проявляется в форс-мажорных ситуациях.

NL-винчестеры

Это технология является "новым игроком" на рынке. NL-диски представляют собой гибрид: SATA-винчестер с разъемом типа SAS. То есть скорость, начинка и головка взяты от SATA-технологии, а интерфейс полностью совместим с SAS. NL-технология уступает рассматриваемым дискам в производительности (из-за относительно низкой скорости вращения). Однако она полностью соответствует им в очередности команд, а также многопоточной передаче данных и поддержке нескольких хостов.

Тагированная очередность отправки команд и многопоточная передача

Одновременная координация нескольких комплектов инструкций хранения, а также упорядоченная контроллером хранения информация передается наиболее эффективно. SAS-технология предусматривает несколько полнодуплексных каналов которые обеспечивают быстрый доступ к сохраняемой информации. Одним винчестером SAS-типа можно управлять сразу с нескольких персональных компьютеров без применения свитчей.

Заключение

По сути, технологии SAS и SATA предназначены для различных целей: первая для отказоустойчивости и производительности, а вторая - для обеспечения емкости. Поэтому они не должны конкурировать между собой.

Второй интерфейс внешней памяти – SCSI (Small Computer System Interface – системный интерфейс малых компьютеров) был разработан и принят ANSI в 1986 г. (он получил позднее название SCSI-1). Скорость передачи данных при использовании этого 8-разрядного параллельного интерфейса составляла (при тактовой частоте шины 5 МГц) 4 Мбайта/с в асинхронном режиме и 5 Мбайт/с в синхронном режиме. В отличие от интерфейса IDE/ATA, к интерфейсу SCSI можно подключать не только внутренние, но и внешние устройства: принтеры, сканеры и т.д. Максимальное количество подключаемых к шине SCSI устройств было равно 8, а максимальная длина кабеля – 6 м.

Разработкой стандартов и поддержкой интерфейса SCSI занимается комитет T10 INCITS, т.е. той же организации, которая разрабатывает стандарты IDE (ATA). В 1996 г. для продвижения стандарта SCSI была создана Торговая ассоциация SCSI – STA (SCSI Trade Association). В эту ассоциацию входят около тридцати фирм-производителей компьютерной техники.

В следующих стандартах SCSI – SCSI-2 (1994 г.) и SCSI-3 (1995 г.) введен общий набор команд CCS (Common Command Set) – 18 базовых команд, необходимых для поддержки любого устройства SCSI, добавлена возможность хранения в устройстве очередей команд, полученных с компьютера и их обработка в соответствии с заданными приоритетами. Кроме этого, в этих стандартах, наряду с 8-разрядной, определена и 16-разрядная шина, тактовая частота увеличена до 20 МГц и скорость передачи данных – до 20 Мбайт/с.

Развитием стандарта SCSI-3 являются используемые в настоящее время стандарты Ultra3 SCSI (1999 г.), для которого определена частота шины 40 МГц и скорость передачи 160 Мбайт/с и Ultra320 SCSI (2002 г.) – частота шины 80 МГц и скорость передачи 320 Мбайт/с.

Обмен данными по этим стандартам реализуется с помощью метода LDVS (так же, как в шине PCI Express). Максимальное количество подключаемых устройств для Ultra3 SCSI и Ultra320 SCSI равно 16, а максимальная длина кабеля – 12 м.

Разработан также стандарт Ultra640 SCSI (2003 г.) с частотой шины 160 МГц и со скоростью 640 Мбайт/с, но этот стандарт не получил широкого распространения, в связи с тем, что из-за малой длины кабеля к нему нельзя подключить более двух устройств.

Связь между устройством SCSI и шиной ввода/вывода выполняется с помощью специального адаптера (контроллера) SCSI, вставляемого в разъем PCI, или встроенного в материнскую плату. Кроме адаптера SCSI (рис. 1.3.8а), называемого хост-адаптером (host adapter) каждое устройство имеет свой встроенный адаптер, который позволяет ему взаимодействовать с шиной SCSI. Если устройство – последнее в цепочке устройств шины SCSI, после него подключается специальное устройство – терминатор (terminator) для того чтобы исключить отражение сигналов, передающихся по шине (рис. 1.3.8б).


В Ultra3 SCSI и Ultra320 SCSI используются два типа разъемов: 68-контактный (рис. 1.3.8в) и 80-контактный (рис. 1.3.8г). Второй тип разъема, помимо линий передачи данных и команд, содержит также линии электропитания устройств и обеспечивает возможность «горячего» подключения устройства к компьютеру.

Рис. 1.3.8. Устройства SCSI: а) адаптер SCSI: 1 – разъемы для подключения внешних устройств; 2 – разъем для подключения внутреннего устройства; 3 – контроллер SCSI;

б) шина SCSI: 1 – разъем для подключения адаптера; 2 – разъемы для подключения устройств; 3 – терминатор; в) 68-контактный разъем SCSI; г) 80-контактный разъем SCSI

Данные при использовании SCSI передаются параллельно, так же, как и в IDE (ATA). По тем же причинам, что и в IDE (ATA), была начата разработка последовательно подключаемого SCSI – SAS (Serial Attached SCSI). Интерфейс SAS является совместимым с интерфейсом SATA и в тоже время использует команды SCSI, возможность «горячего» подключения внешних устройств, а также возможность подключения, помимо жестких и оптических дисководов, других периферийных устройств, например, принтера или сканера. В настоящее время интерфейс SAS постепенно заменяет интерфейс SCSI в компьютерах и периферийных устройствах.

Первая спецификация SAS – SAS 1.0 была выпущена Комитетом T10 в 2003 году. В ней была определена скорости передачи данных 1,5 и 3 Гбита/с для подключения устройств внутри системного блока компьютера с максимальной длиной кабеля 1 м и внешнего подключения устройств с максимальной длиной кабеля 8 м.

В 2005 году была выпущена спецификация SAS 1.1, в которой были исправлены ошибки спецификации SAS 1.0.

В спецификации SAS 2.0 (2009 г.) добавлена скорость 6 Гбит/с и максимальная длина кабеля увеличена до 10 м.

Обмен данными в SAS, так же, как и в SCSI, реализуется с помощью метода LDVS.

Две дифференциальные сигнальные пары (приемная и передающая) образуют в SAS физический канал. Один или несколько физических каналов, в свою очередь, образуют порт. Количество физических каналов в порту обозначается с помощью цифры, за которой следует символ «x». Так, обозначение 4x означает, что порт содержит 4 канала (8 сигнальных пар). Каждый порт имеет уникальный 64-битовый адрес, присваиваемый производителем оборудования SAS. Устройство с интерфейсом SAS может иметь один или несколько портов. Порт, имеющий только один канал, называется узким портом (narrow port), а порт, имеющий два и более каналов, называется широким портом (wide port).

Так два порта со скоростью по 3 Гбит/с можно использовать либо как два отдельных каналов связи с разными устройствами, либо как единый канал связи со скоростью 6 Гбит/с. Кроме того, в спецификации SAS 2.0 добавлена возможность разбиения порта со скоростью 6 Гбит/с на два канала со скоростью по 3 Гбит/с.

При подключении устройств в SAS используются разъемы, стандартизированные Комитетом по малым форм-факторам – Small Form Factor (SFF) Committee. Этот комитет разрабатывает и готовит спецификации по разъемам, используемым в различных устройствах. Каждый разъем идентифицируется префиксом «SFF-», за которым следует четырехзначный номер разъема, начинающийся с цифры 8.

Основными разъемами, используемыми в SATA являются:

· разъем SFF-8482 для подключения внутреннего устройства (рис. 1.3.9а);

· разъем SFF-8484 – разъем 4x для подключения внутренних устройств (рис. 1.3.9б);

· разъем SFF-8087 – разъем 4x (miniSAS) для подключения внутренних устройств (рис. 1.3.9в);

· разъем SFF-8470 – разъем 4x для подключения внешних устройств (рис. 1.3.9г);

· разъем SFF-8088 – разъем 4x (miniSAS) для подключения внешних устройств (рис. 1.3.9д).

Интерфейс SAS поддерживает набор команд, совместимый с набором команд SATA, поэтому к расширителю SAS можно подключать устройства SATA (для этого обычно используется разъем SFF-8482).

Наиболее распространенный кабель для подключения внешних устройств SAS с разъемами SFF-8088 на концах кабеля приведен на рис. 1.3.9е. Для подключения внешних устройств по интерфейсу eSATA можно использовать кабель, на одном конце которого разъем SFF-8088, а на другом – 4 разъема eSATA (рис. 1.3.9ж).

Рис. 1.3.9. Разъемы SAS: а) 29-контактный штекер разъема SAS для внутреннего устройства (SFF-8482) б) 32-контактный 4x штекер разъема SAS для подключения внутренних устройств (SFF-8484); в) 26-контактный 4x штекер разъема mini-SAS для внутренних устройств (SFF-8087); г) 26-контактный 4x штекер разъема SAS для внешнего устройства (SFF-8470); д) 26-контакный 4x штекер разъема mini-SAS для внешнего устройства (SFF-8088); е) кабель SFF-8088 – SFF-8088; ж) кабель SFF-8088 – 4 eSATA

Система с интерфейсом SAS состоит из следующих компонент:

· инициатор (Initiator) – порождает запросы на обслуживание для целевых устройств и получает подтверждения об исполнении запросов (реализуется в виде микросхемы на материнской плате или на карте, подключенной к шине материнской платы);

· целевое устройство (Target Device) – содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса (может быть как отдельным жёстким диском, так и целым набором дисков).

· подсистема доставки данных (Service Delivery Subsystem) – осуществляет передачу данных между инициаторами и целевыми устройствами (состоит из кабелей и расширителей SAS).

· расширитель SAS (SAS Expander) – подключает несколько устройств SAS к одному порту инициатора.

В настольных компьютерах расширитель SAS выполняется в виде карты, которая подключается к шине PCI Express, и содержит контроллер SAS, выполняющий функции инициатора, а также один или несколько внутренних и/или внешних гнезд разъемов SAS, к которым подключаются устройства с интерфейсом SAS или SATA (eSATA) (рис. ?????а и рис. ?????б).

Дисководы SAS (eSATA) могут быть помещены в корпус (рис. ?????в). Такое устройство называется дисковым массивом. Помимо дисководов, дисковый массив содержит встроенную плату расширителя SAS (рис. ?????г), разъем электропитания, а также гнездо для подключения к управляющему компьютеру (входного гнезда) и 1 или 2 гнезда для подключения к другим компьютером (входные гнезда). Наличие этих гнезд позволяет нескольким компьютером совместно использовать данные на дисководах дискового массива.

Пример подключения дисководов eSATA к компьютеру с использованием кабеля, изображенного на рис. 1.3.9ж, и компьютеров к дисковому массиву с использованием кабеля, изображенного на рис. 1.3.9е, приведен на рис. рис. ?????д.

Рис. ??????. Средства SAS: а) карта для подключения двух внутренних устройств:

1 – контроллер (инициатор) SAS; 2 – гнезда SF-8087; б) карта для подключения двух внешних устройств: 2 – гнезда SF-8088; 1 – контроллер (инициатор) SAS; в) дисковый массив на 15 дисководов SAS (eSATA); г) расширитель SAS дискового массива;

д) пример использования SAS для подключения внешних дисководов: 1 – дисководы eSATA; 2 – дисковый массив, подключенный к двум компьютерам

Аппаратная реализация SAS, как и ранее SCSI, на компьютере обходится дороже, чем реализация ATA и SATA (eSATA). Это связано, во-первых, с тем, что контроллер ATA и SATA, как правило, встроен в материнскую плату, а материнские платы для настольных компьютеров с встроенным интерфейсом SCSI и SAS практически не выпускаются, поэтому необходимо приобретение карты контроллера SCSI или SAS. Во-вторых, устройства с интерфейсом SAS имеют большие возможности, чем устройства ATA и SATA (eSATA). Например, дисководы SAS могут быть двухпортовыми, т.е. их можно либо подключить к двум компьютерам, либо выполнять обмен данными с компьютером на вдвое болей скорости по сравнению с использованием одного порта. Однако это приводит к более высокой стоимости дисководов SAS.

Поэтому основной областью применения SAS, как и SCSI, являются мощные компьютеры (сервера) с повышенными требованиями к скорости обмена, надежности и безопасности данных.

За счет использования расширителей, подсистема доставки данных SAS предлагает больше возможностей, чем система SATA (eSATA). Кроме того, в этой подсистеме можно использовать и более дешевые устройства SATA (eSATA).

Отдельная система, состоящая из связанных между собой компьютеров, периферийных устройств, расширителей SAS и кабелей SAS, SATA и eSATA, называется доменом. Максимальное количество расширителей и устройств в домене равно 16256. Система SAS может состоять из нескольких доменов, причем отдельные инициаторы и устройства могут входить в два соседних домена.

В домене могут использоваться два типа расширителей: расширитель-коммутатор и оконечный расширитель.

Расширитель-коммутатор (fanout expander) (рис. ?????а) выполняет в домене SAS маршрутизацию потоков данных от инициаторов к целевым устройствам домена. В домене должен быть только один расширитель-коммутатор.

Оконечный расширитель (edge expander) (рис. ?????б) подключается либо к расширителю-коммутатору, либо к другому оконечному расширителю и используется для маршрутизации потоков данных подключенных к нему устройств и расширителей. Максимальное количество обслуживаемых оконечным расширителем устройств равно 128.

Устройства могут подключаться как к расширителю-коммутатору, так и к оконечному расширителю. Если в домене не задействован расширитель-коммутатор, то количество оконечных расширителей должно быть не более 2.

При включении электропитания все устройства системы SAS обмениваются друг с другом своими адресами, и система переходит в активное состояние, при котором выполняется обмен командами, пакетами данных и управляющими сообщениями. Добавление в систему нового устройства («горячее» подключение) или отключение устройства приводит к генерации управляющего сообщения, при получении которого все расширители перестраивают свою схему маршрутизации и оповещают инициаторы об изменении конфигурации системы.

Пример конфигурации доменов SAS приведен на рис. рис. ?????в.

Рис. ?????. Использование SAS в серверах: а) 12-портовый расширитель-коммутатор с гнездами SFF-8470 (вид спереди и сзади); б) 12-портовый оконечный расширитель с гнездами SFF-8470 (вид спереди и сзади); в) пример доменов SAS:

1 – серверы-инициаторы с картами расширения SAS; 2 - оконечные расширители SAS;

3 – однопортовые дисководы с интерфейсом SAS; 4 – расширитель-коммутатор SAS;

5 – дисководы с интерфейсом eSATA; 6 – двухпортовые дисководы с интерфейсом SAS;

7 – дисковый массив с встроенным расширителем SAS

Интерфейс SAS.

Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA , устройств, управляемых набором команд SCSI . Обладая обратной совместимостью с SATA , он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.

Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).

Рис. 1.

Некоторые команды сопровождаются дополнительно "блоком параметров", который следует за блоком дескриптора команды, но передается уже как "данные".

Типичная система с интерфейсом SAS состоит из следующих компонентов:

1) Инициаторы. Инициатор - это устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов.

2) Целевые устройства . Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом.

3) Подсистема доставки данных . Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS.

3.1) Расширители. Расширители SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS, например, позволяет соединить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

SAS поддерживает подключение устройств с интерфейсом SATA. SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий. SAS использует команды SCSI для управления и обмена данными с целевыми устройствами. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом. В отличии от SCSI, SAS не нуждается в терминации шины пользователем. Интерфейс SCSI использует общую шину - все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. В SCSI скорость передачи информации по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка. SAS поддерживает очень большое количество устройств, в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине. SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с). Такая скорость может быть достигнута при передаче информации на каждом соединении, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.

SATA использует набор команд ATA и поддерживает жёсткие диски и накопители на оптических дисках, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры и принтеры. SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN идентификаторами (World Wide Name). Устройства SATA (версии 1) не поддерживали очередей команд, в то время как устройства SAS поддерживают теггированные очереди команд. Устройства SATA с версии 2 поддерживают Native Command Queuing (NCQ).

Аппаратура SAS поддерживает связь с целевыми устройствами по нескольким независимым линиям , что повышает отказоустойчивость системы (интерфейс SATA такой возможности не имеет). В то же время, интерфейс SATA версии 2 использует дубликаторы портов для достижения аналогичной возможности.

SATA преимущественно используется в некритических приложениях, например в домашних компьютерах. Интерфейс SAS, благодаря своей надёжности, может быть использован в критически важных серверах. Выявление ошибок и обработка ошибочных ситуаций определено в SAS гораздо лучше чем в SATA. SAS считают надмножеством SATA, и не конкурирует с ним.

Разъёмы SAS гораздо меньше разъёмов традиционного параллельного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей типоразмером 2,5 дюйма. SAS поддерживает передачу информации со скоростью от 3 Гбит/с до 10 Гбит/с. Существует несколько вариантов разъёмов SAS:

SFF 8482 - вариант, совместимый с разъёмом интерфейса SATA;

SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств; позволяет подключить до 4 устройств;

SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств; поддерживает скорость 10 Гбит/с;

SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств; поддерживает скорость 10 Гбит/с.

Разъём SFF 8482 позволяет подключать устройства SATA к контроллерам SAS, что избавляет от необходимости устанавливать дополнительный контроллер SATA только потому, что необходимо, к примеру, подключить устройство для записи дисков DVD. Наоборот, устройства SAS не могут подключаться к интерфейсу SATA, и на них устанавливается разъём, предотвращающий их подключение к интерфейсу SATA.