Сборка ядра linux под определенную плату. Конфигурирование и компиляция ядра Linux

02.04.2019

Пересборка ядра Linux дело очень интересное и почему-то часто отпугивает новичков. Но ничего сложного в этом нет, и скомпилировать ядро Linux бывает не сложнее, чем собрать (скомпилировать) любую другую программу из исходников. Пересборка ядра может понадобиться, когда вам требуются какие-нибудь функции, не включенные в текущее ядро, или же, наоборот, вы хотите что-то отключить. Все дальнейшие действия мы будем выполнять в Ubuntu Linux.

Установка утилит

Для настройки и сборки ядра Linux вам потребуется установить несколько пакетов, которые понадобятся для сборки и настройки ядра:  kernel-package , build-essential , libncurses-dev . Сделать это можно командой:

sudo apt-get install build-essential kernel-package libncurses-dev

Скачиваем исходный код ядра

Теперь нужно скачать исходный код ядра. Мы будем скачивать ядро для Ubuntu. Вы можете скачать определенную версию ядра, например, ту, которую вы в данный момент используете или же скачать самую последнюю версию. Для того, чтобы определить версию ядра Linux, которую вы используете, выполните команду uname с параметром -r:

Uname -r

Вывод команды будет примерно следующим:

$uname -r 2.6.27-11-generic

Имя пакета, содержащего исходные коды ядра обычно имеет следующий вид: linux-source-Версия. Например, для ядра версии 2.6.24: linux-source-2.6.24. Самая последняя версия ядра в репозиториях Ubuntu называется просто linux-source, без указания версии на конце. Для установки исходных кодов последней версии ядра Ubuntu Linux, выполните команду:

sudo apt-get install linux-source

Эта команда скачивает исходники ядра и размещает их в директории /usr/src . На момент написания заметки последняя версия ядра, которая была скачана — 2.6.27, ее мы и будем использовать. Если мы теперь перейдем в директорию /usr/src и выполним команду ls , то увидим, что среди файлов присутствует файл linux-source-2.6.27.tar.bz2. Это и есть исходные коды ядра Linux (ядра Ubuntu).

Распаковываем исходный код ядра

Перейдем в директорию /usr/src и разархивируем ядро. Для этого выполните следующие команды:

Cd /usr/src sudo tar xjf linux-source-2.6.27.tar.bz2 sudo ln -s linux-source-2.6.27 linux

Конфигурация ядра

Теперь перейдем к конфигурированию ядра. Чтобы не создавать конфигурацию с нуля, возьмем за основу конфигурацию ядра, которая в данный момент используется. Получить текущую конфигурацию можно выполнив команду make oldconfig . Выполните в терминале:

Cd /usr/src/linux sudo make oldconfig

В результате выполнения команды make oldconfig создастся файл.config , содержащий параметры конфигурации ядра.

Получить справку по всем параметрам make для ядра Linux вы можете, выполнив команду make help .

Для изменения конфигурации ядра мы воспользуемся консольной утилитой menuconfig . Для ее запуска выполните:

Sudo make menuconfig

Перед вами появится интерфейс, в котором вы можете включать или отключать определенные опции ядра:

Для примера я включу опцию «NTFS write support». Для этого, нажимая кнопку Вниз, найдите пункт «File systems» и нажмите Enter .

Вы окажетесь в меню настройки файловых систем. Найдите в этом списке пункт «DOS/FAT/NT Filesystems» и нажмите Enter .

Перейдите к пункту «NTFS write support» и нажмите Пробел, рядом с пунктом появится звездочка, означающая, что данная опция будет включена в ядро.

Теперь выберите «Exit» (нажав кнопку Вправо и затем Enter) и выйдите из утилиты. Перед выходом из утилиты выскочит сообщение с вопросом — сохранить проделанные изменения, выберите Yes.

Компиляция ядра

Пришло время скомпилировать ядро с теми изменениями, которые мы внесли на предыдущем шаге. Для начала выполним команду, которая удалит файлы (если они имеются), оставшиеся от предыдущей компиляции:

Sudo make-kpkg clean

Наконец, чтобы запустить компиляцию ядра, выполним команду:

Sudo make-kpkg --initrd --append-to-version=-mykernel kernel_image kernel_headers

Ключ -append-to-version используется, чтобы добавить к имени файла образа ядра, который мы получим после компиляции, строку -mykernel , чтобы было проще идентифицировать свое ядро. Вместо -mykernel вы можете использовать любой префикс.

Компиляция ядра занимает довольно много времени и может длиться от нескольких десятков минут до нескольких часов, в зависимости от мощности вашего компьютера.

Установка (инсталляция) ядра

После компиляции ядра вы получили на выходе два файла: linux-image-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb, linux-headers-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb. Мы воспользуемся командной dpkg -i , которая автоматически установит ядро и пропишет его в ваш загрузчик GRUB (в файл  /boot/grub/menu.lst). Отмечу, что ядро будет установлено, как ядро по умолчанию, поэтому если оно у вас не загрузится вам нужно будет загрузиться, используя ваше предыдущее ядро (оно должно быть в списке меню GRUB при загрузке компьютера) и вручную изменять файл menu.lst . Итак, для установки ядра выполните команды:

Dpkg -i linux-image-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb dpkg -i linux-headers-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb

Запуск системы с новым ядром

Проверим работоспособность системы с новым ядром. Перезагрузите компьютер. В меню загрузчика GRUB вы должны будете увидеть новый пункт, соответствующей вашему новому ядру, которое должно загрузиться по умолчанию. Если все пройдет успешно, то система запустится с новым ядром.

Ядро Linux содержит более 13 миллионов строк кода и является одним из самых крупных проектов с открытым исходным кодом в мире. Так что такое ядро Linux и для чего оно используется?

Ядро - это самый низкий уровень программного обеспечения, которое взаимодействует с аппаратными средствами компьютера. Оно отвечает за взаимодействие всех приложений, работающих в пространстве пользователя вплоть до физического оборудования. Также позволяет процессам, известным как сервисы получать информацию друг от друга с помощью системы IPC.

Виды и версии ядра

Что такое ядро Linux вы уже знаете, но какие вообще бывают виды ядер? Есть различные способы и архитектурные соображения при создании ядер с нуля. Большинство ядер могут быть одного из трех типов: монолитное ядро, микроядро, и гибрид. Ядро Linux представляет собой монолитное ядро, в то время как ядра Windows и OS X гибридные. Давайте сделаем обзор этих трех видов ядер.

Микроядро

Микроядра реализуют подход, в котором они управляют только тем, чем должны: процессором, памятью и IPC. Практически все остальное в компьютере рассматривается как аксессуары и обрабатывается в режиме пользователя. Микроядра имеют преимущество в переносимости, они могут использоваться на другом оборудовании, и даже другой операционной системе, до тех пор, пока ОС пытается получить доступ к аппаратному обеспечению совместимым образом.

Микроядра также имеют очень маленький размер и более безопасны, поскольку большинство процессов выполняются в режиме пользователя с минимальными привилегиями.

Плюсы

  • Портативность
  • Небольшой размер
  • Низкое потребление памяти
  • Безопасность

Минусы

  • Аппаратные средства доступны через драйверы
  • Аппаратные средства работают медленнее потому что драйверы работают в пользовательском режиме
  • Процессы должны ждать свою очередь чтобы получить информацию
  • Процессы не могут получить доступ к другим процессам не ожидая

Монолитное ядро

Монолитные ядра противоположны микроядрам, потому что они охватывают не только процессор, память и IPC, но и включают в себя такие вещи, как драйверы устройств, управление файловой системой, систему ввода-вывода. Монолитные ядра дают лучший доступ к оборудованию и реализуют лучшую многозадачность, потому что если программе нужно получить информацию из памяти или другого процесса, ей не придется ждать в очереди. Но это и может вызвать некоторые проблемы, потому что много вещей выполняются в режиме суперпользователя. И это может принести вред системе при неправильном поведении.

Плюсы:

  • Более прямой доступ к аппаратным средствам
  • Проще обмен данными между процессами
  • Процессы реагируют быстрее

Минусы :

  • Большой размер
  • Занимает много оперативной памяти
  • Менее безопасно

Гибридное ядро

Гибридные ядра могут выбирать с чем нужно работать в пользовательском режиме, а что в пространстве ядра. Часто драйвера устройств и файловых систем находятся в пользовательском пространстве, а IPC и системные вызовы в пространстве ядра. Это решение берет все лучшее из обоих предыдущих, но требует больше работы от производителей оборудования. Поскольку вся ответственность за драйвера теперь лежит на них.

Плюсы

  • Возможность выбора того что будет работать в пространстве ядра и пользователя
  • Меньше по размеру чем монолитное ядро
  • Более гибкое

Минусы

  • Может работать медленнее
  • Драйверы устройств выпускаются производителями

Где хранятся файлы ядра?

Где находится ядро Linux? Файлы ядра Ubuntu или любого другого Linux-дистрибутива находятся в папке /boot и называются vmlinuz-версия. Название vmlinuz походит с эпохи Unix. В шестидесятых годах ядра привыкли называть просто Unix, в 90-х годах Linux ядра тоже назывались - Linux.

Когда для облегчения многозадачности была разработана виртуальная память, перед именем файла появились буквы vm, чтобы показать что ядро поддерживает эту технологию. Некоторое время ядро называлось vmlinux, но потом образ перестал помещаться в память начальной загрузки, и был сжат. После этого последняя буква x была изменена на z, чтобы показать что использовалось сжатие zlib. Не всегда используется именно это сжатие, иногда можно встретить LZMA или BZIP2, поэтому некоторые ядра называют просто zImage.

Нумерация версии состоит из трех цифр, номер версии ядра Linux, номер вашей версии и патчи или исправления.

В паке /boot можно найти не только ядро Linux, такие файлы, как initrd.img и system.map. Initrd используется в качестве небольшого виртуального диска, который извлекает и выполняет фактический файл ядра. Файл System.map используется для управления памятью, пока еще ядро не загрузилось, а конфигурационные файлы могут указывать какие модули ядра включены в образ ядра при сборке.

Архитектура ядра Linux

Так как ядро Linux имеет монолитную структуру, оно занимает больше и намного сложнее других типов ядер. Эта конструктивная особенность привлекла много споров в первые дни Linux и до сих пор несет некоторые конструктивные недостатки присущие монолитным ядрам.

Но чтобы обойти эти недостатки разработчики ядра Linux сделали одну вещь - модули ядра, которые могут быть загружены во время выполнения. Это значит что вы можете добавлять и удалять компоненты ядра на лету. Все может выйти за рамки добавления функциональных возможностей аппаратных средств, вы можете запускать процессы сервера, подключать виртуализацию, а также полностью заменить ядро без перезагрузки.

Представьте себе возможность установить пакет обновлений Windows без необходимости постоянных перезагрузок.

Модули ядра

Что, если бы Windows уже имела все нужные драйвера по умолчанию, а вы лишь могли включить те, которые вам нужны? Именно такой принцип реализуют модули ядра Linux. Модули ядра также известные как загружаемые модули (LKM), имеют важное значение для поддержки функционирования ядра со всеми аппаратными средствами, не расходуя всю оперативную память.

Модуль расширяет функциональные возможности базового ядра для устройств, файловых систем, системных вызовов. Загружаемые модули имеют расширение.ko и обычно хранятся в каталоге /lib/modules/. Благодаря модульной природе вы можете очень просто настроить ядро путем установки и загрузки модулей. Автоматическую загрузку или выгрузку модулей можно настроить в конфигурационных файлах или выгружать и загружать на лету, с помощью специальных команд.

Сторонние, проприетарные модули с закрытым исходным кодом доступны в некоторых дистрибутивах, таких как Ubuntu, но они не поставляются по умолчанию, и их нужно устанавливать вручную. Например, разработчики видеодрайвера NVIDIA не предоставляют исходный код, но вместо этого они собрали собственные модули в формате.ko. Хотя эти модули и кажутся свободными, они несвободны. Поэтому они и не включены во многие дистрибутивы по умолчанию. Разработчики считают что не нужно загрязнять ядро несвободным программным обеспечением.

Теперь вы ближе к ответу на вопрос что такое ядро Linux. Ядро не магия. Оно очень необходимо для работы любого компьютера. Ядро Linux отличается от OS X и Windows, поскольку оно включает в себя все драйверы и делает много вещей поддерживаемых из коробки. Теперь вы знаете немного больше о том, как работает ваше программное обеспечение и какие файлы для этого используются.

История и архитектурная организация

Поскольку цель данной статьи - познакомить вас с ядром Linux и дать обзор его архитектуры и основных компонентов, давайте начнем с краткого обзора истории ядра Linux, затем рассмотрим архитектуру ядра Linux "с высоты птичьего полета", и, наконец, обсудим его основные подсистемы. Ядро Linux насчитывает свыше шести миллионов строк, поэтому данное введение не может быть исчерпывающим. Для получения более подробной информации пользуйтесь ссылками на дополнительные ресурсы.

Краткий обзор истории Linux

Хотя Linux, по всей видимости, является самой популярной операционной системой с открытым исходным кодом, на самом деле ее история в сравнении с другими операционными системами относительно коротка. На заре компьютерной эры программисты разрабатывали свои программы для "голой" аппаратуры, используя языки, понятные для этой аппаратуры. В отсутствие операционной системы использовать всю большую и дорогую вычислительную машину в каждый конкретный момент времени могло только одно приложение (и один пользователь). Первые операционные системы были разработаны в 1950-е годы, чтобы облегчить жизнь разработчиков. В качестве примера можно назвать General Motors Operating System (GMOS), разработанную для IBM 701, и FORTRAN Monitor System (FMS), созданную North American Aviation для IBM 709.

В 1960-е годы в Массачусетском Технологическом институте (MIT) и в ряде компаний была разработана экспериментальная операционная система Multics (Multiplexed Information and Computing Service) для машины GE-645. Один из разработчиков этой ОС, компания AT&T, отошла от Multics и в 1970 году разработала свою собственную систему Unics. Вместе с этой ОС поставлялся язык C. При этом C был разработан и написан так, чтобы обеспечить переносимость разработки операционной системы.

Двадцать лет спустя Эндрю Танненбаум (Andrew Tanenbaum) создал микроядерную версию UNIX® под названием MINIX (minimal UNIX), которая могла работать на небольших персональных компьютерах. Эта операционная система с открытым исходным кодом вдохновила Линуса Торвальдса (Linus Torvalds) на разработку первой версии Linux в начале 1990-х (см. Рис. 1).

Рис. 1. Краткая история основных выпусков ядра Linux

Linux быстро превратился из инициативы энтузиаста-одиночки во всемирный проект, в котором участвуют тысячи разработчиков. Одним из важнейших решений в судьбе Linux стало принятие лицензии GNU General Public License (GPL). GPL защитила ядро Linux от коммерческой эксплуатации и одновременно открыла путь к использованию разработок сообщества пользователей проекта GNU, основанного Ричардом Столлменом (Richard Stallman), объемы кода которого значительно превосходят даже объем ядра Linux. Это позволило использовать в Linux такие полезные приложения, как комплекс компиляторов GNU Compiler Collection (GCC) и различные командные оболочки.

Введение в ядро Linux

Перейдем к общему обзору архитектуры операционной системы GNU/Linux. Операционную систему можно условно разделить на два уровня, как показано на Рис. 2.

Рис. 2. Фундаментальная архитектура операционной системы GNU/Linux

На верхнем уровне находится пользовательское пространство (пространство приложений). Здесь исполняются приложения пользователя. Под пользовательским пространством располагается пространство ядра. Здесь функционирует ядро Linux.

Имеется также библиотека GNU C (glibc). Она предоставляет интерфейс системных вызовов, который обеспечивает связь с ядром и дает механизм для перехода от приложения, работающего в пространстве пользователя, к ядру. Это важно, поскольку ядро и пользовательское приложение располагаются в разных защищенных адресных пространствах. При этом, в то время как каждый процесс в пространстве пользователя имеет свое собственное виртуальное адресное пространство, ядро занимает одно общее адресное пространство. Более подробную информацию можно найти в литературе, ссылки на которую приведены в разделе " ".

Ядро Linux можно, в свою очередь, разделить на три больших уровня. Наверху располагается интерфейс системных вызовов, который реализует базовые функции, например, чтение и запись. Ниже интерфейса системных вызовов располагается код ядра, точнее говоря, архитектурно-независимый код ядра. Этот код является общим для всех процессорных архитектур, поддерживаемых Linux. Еще ниже располагается архитектурно-зависимый код, образующий т.н. BSP (Board Support Package - пакет поддержки аппаратной платформы). Этот код зависит от процессора и платформы для конкретной архитектуры.

Свойства ядра Linux

Обсуждая архитектуру большой и сложной системы, можно рассматривать ее со многих разных точек зрения. Одна из целей архитектурного анализа может состоять в том, чтобы лучше понять исходный код системы. Именно этим мы здесь и займемся.

В ядре Linux реализован целый ряд важных архитектурных элементов. И на самом общем, и на более детальных уровнях ядро можно подразделить на множество различных подсистем. С другой стороны, Linux можно рассматривать как монолитное целое, поскольку все базовые сервисы собраны в ядре системы. Такой подход отличается от архитектуры с микроядром, когда ядро предоставляет только самые общие сервисы, такие как обмен информацией. ввод/вывод, управление памятью и процессами, а более конкретные сервисы реализуются в модулях, подключаемых к уровню микроядра. Каждая из этих точек зрения имеет свои достоинства, но я здесь не буду вдаваться в это обсуждение.

С течением времени ядро Linux стало более эффективным с точки зрения использования памяти и процессорных ресурсов и приобрело исключительную стабильность. Однако самый интересный аспект Linux, учитывая размер и сложность этой системы - это ее переносимость. Linux можно откомпилировать для огромного количества разных процессоров и платформ, имеющих разные архитектурные ограничения и потребности. Например, Linux может работать на процессоре как с блоком управления памятью (MMU), так и без MMU. Поддержка процессоров без MMU реализована в версии ядра uClinux. Более подробную информацию см. в разделе " ".

Основные подсистемы ядра Linux

Давайте рассмотрим некоторые основные компоненты ядра Linux, следуя структуре, изображенной на рис. 3.

Рис. 3. Один из возможных взглядов на архитектуру ядра Linux

Интерфейс системных вызовов

SCI - это тонкий уровень, предоставляющий средства для вызова функций ядра из пространства пользователя. Как уже говорилось, этот интерфейс может быть архитектурно зависимым, даже в пределах одного процессорного семейства. SCI фактически представляет собой службу мультиплексирования и демультиплексирования вызова функций. Реализация SCI находится в./linux/kernel, а архитектурно-зависимая часть - в./linux/arch. Более подробные сведения об этом компоненте можно найти в разделе .

Управление процессами

Управление процессами сконцентрировано на исполнении процессов. В ядре эти процессы называются потоками (threads); они соответствуют отдельным виртуализованным объектам процессора (код потока, данные, стек, процессорные регистры). В пространстве пользователя обычно используется термин процесс , хотя в реализации Linux эти две концепции (процессы и потоки) не различают. Ядро предоставляет интерфейс программирования приложений (API) через SCI для создания нового процесса (порождения копии, запуска на исполнение, вызова функций Portable Operating System Interface ), остановки процесса (kill, exit), взаимодействия и синхронизации между процессами (сигналы или механизмы POSIX).

Еще одна задача управления процессами - совместное использование процессора активными потоками. В ядре реализован новаторский алгоритм планировщика, время работы которого не зависит от числа потоков, претендующих на ресурсы процессора. Название этого планировщика - O(1) - подчеркивает, что на диспетчеризацию одного потока затрачивается столько же времени, как и на множество потоков. Планировщик O(1) также поддерживает симметричные многопроцессорные конфигурации (SMP). Исходные коды системы управления процессами находятся в./linux/kernel, а коды архитектурно-зависимой части - в./linux/arch). Более подробную информацию об этом алгоритме см. в разделе .

Управление памятью

Другой важный ресурс, которым управляет ядро - это память. Для повышения эффективности, учитывая механизм работы аппаратных средств с виртуальной памятью, память организуется в виде т.н. страниц (в большинстве архитектур размером 4 КБ). В Linux имеются средства для управления имеющейся памятью, а также аппаратными механизмами для установления соответствия между физической и виртуальной памятью.

Однако управление памятью - это значительно больше, чем просто управление буферами по 4 КБ. Linux предоставляет абстракции над этими 4 КБ буферами, например, механизм распределения slab allocator. Этот механизм управления базируется на 4 КБ буферах, но затем размещает структуры внутри них, следя за тем, какие страницы полны, какие частично заполнены и какие пусты. Это позволяет динамически расширять и сокращать схему в зависимости от потребностей вышележащей системы.

В условиях наличия большого числа пользователей памяти возможны ситуации, когда вся имеющаяся память будет исчерпана. В связи с этим страницы можно удалять из памяти и переносить на диск. Этот процесс обмена страниц между оперативной памятью и жестким диском называется подкачкой . Исходные коды управления памятью находятся в./linux/mm.

Виртуальная файловая система

Еще один интересный аспект ядра Linux - виртуальная файловая система (VFS), которая предоставляет общую абстракцию интерфейса к файловым системам. VFS предоставляет уровень коммутации между SCI и файловыми системами, поддерживаемыми ядром (см. Рис. 4).

Рис. 4. VFS предоставляет коммутационную матрицу между пользователями и файловыми системами

На верхнем уровне VFS располагается единая API-абстракция таких функций, как открытие, закрытие, чтение и запись файлов. На нижнем уровне VFS находятся абстракции файловых систем, которые определяют, как реализуются функции верхнего уровня. Они представляют собой подключаемые модули для конкретных файловых систем (которых существует более 50). Исходные коды файловых систем находятся в./linux/fs.

Ниже уровня файловой системы находится кэш буферов, предоставляющий общий набор функций к уровню файловой системы (независимый от конкретной файловой системы). Этот уровень кэширования оптимизирует доступ к физическим устройствам за счет краткосрочного хранения данных (или упреждающего чтения, обеспечивающего готовность данных к тому моменту, когда они понадобятся). Ниже кэша буферов находятся драйверы устройств, реализующие интерфейсы для конкретных физических устройств.

Сетевой стек

Сетевой стек по своей конструкции имеет многоуровневую архитектуру, повторяющую структуру самих протоколов. Вы помните, что протокол Internet Protocol (IP) - это базовый протокол сетевого уровня, располагающийся ниже транспортного протокола Transmission Control Protocol, TCP). Выше TCP находится уровень сокетов, вызываемый через SCI.

Уровень сокетов представляет собой стандартный API к сетевой подсистеме. Он предоставляет пользовательский интерфейс к различным сетевым протоколам. Уровень сокетов реализует стандартизованный способ управления соединениями и передачи данных между конечными точками, от доступа к "чистым" кадрам данных и блокам данных протокола IP (PDU) и до протоколов TCP и User Datagram Protocol (UDP). Исходные коды сетевой подсистемы ядра находятся в каталоге./linux/net.

Драйверы устройств

Подавляющее большинство исходного кода ядра Linux приходится на драйверы устройств, обеспечивающие возможность работы с конкретными аппаратными устройствами. В дереве исходных кодов Linux имеется подкаталог драйверов, в котором, в свою очередь, имеются подкаталоги для различных типов поддерживаемых устройств, таких как Bluetooth, I2C, последовательные порты и т.д. Исходные коды драйверов устройств находятся в./linux/drivers.

Архитектурно-зависимый код

Хотя основная часть Linux независима от архитектуры, на которой работает операционная система, в некоторых элементах для обеспечения нормальной работы и повышения эффективности необходимо учитывать архитектуру. В подкаталоге./linux/arch находится архитектурно-зависимая часть исходного кода ядра, разделенная на ряд подкаталогов, соответствующих конкретным архитектурам. Все эти каталоги в совокупности образуют BSP. В случае обычного настольного ПК используется каталог i386. Подкаталог для каждой архитектуры содержит ряд вложенных подкаталогов, относящихся к конкретным аспектам ядра, таким как загрузка, ядро, управление памятью и т.д. Исходные коды архитектурно-зависимой части находятся в./linux/arch.

Помимо переносимости и эффективности, ядро Linux обладает целым рядом других интересных функций, которые не были освещены в вышеприведенном рассмотрении.

Linux, как широко используемая на практике операционная система с открытым исходным кодом, является отличной испытательной площадкой для новых протоколов и их усовершенствований. Linux поддерживает большое количество сетевых протоколов, включая традиционный TCP/IP и его высокоскоростные расширения (для сетей быстрее Gigabit Ethernet и 10 GbE). Linux также поддерживает такие протоколы, как Stream Control Transmission Protocol (SCTP), реализующий множество дополнительных функций, отсутствующих в TCP (применяется в качестве альтернативного протокола транспортного уровня).

Следует отметить, что ядро Linux является динамическим (поддерживает добавление и удаление программных компонентов без остановки системы). Эти компоненты называются динамически загружаемыми модулями ядра. Их можно вводить в систему при необходимости, как во время загрузки (если найдено конкретное устройство, для которого требуется такой модуль), так и в любое время по желанию пользователя.

Еще одно недавнее усовершенствование Linux - возможность ее использования в качестве операционной системы для других операционных систем (т.н. гипервизора). Недавно в ядро было внесено усовершенствование, получившее название Kernel-based Virtual Machine (KVM, виртуальная машина на базе ядра). В результате этой модификации в пространстве пользователя был реализован новый интерфейс, позволяющий исполнять поверх ядра с поддержкой KVM другие операционные системы. В таком режиме можно не только исполнять другие экземпляры Linux, но и виртуализовать Microsoft® Windows®. Единственное ограничение состоит в том, что используемый процессор должен поддерживать новые инструкции виртуализации. Более подробную информацию см. в разделе .

Дальнейшее изучение

В этой статье мы лишь в самых общих чертах рассказали об архитектуре ядра Linux и его особенностях и возможностях. Подробную информацию о содержимом ядра можно найти в каталоге с документацией, который имеется в любом дистрибутиве Linux. Обязательно ознакомьтесь с разделом в конце данной статьи, где имеются ссылки на более подробную информацию по многим обсуждаемым здесь темам.

Иногда может потребоваться собрать своё собственное ядро Linux . Причины для этого могут быть следующими:

  • вам нужно чистое ядро, без дистрибутивных патчей;
  • вы хотите наложить собственные патчи (коих очень много);
  • вы хотите собрать ядро под свою конфигурацию железа, выкинуть из него лишнее и/или заточить под определённые задачи;
  • вы хотите включить в состав ядра эксперементальный драйвер или файловую систему, которой нет в "ванильном" ядре (например ZFS или Raiser 4 );
В сборке ядра нет ничего сложного. Важно лишь понимать, для чего это делается, а также не трогать те параметры, которые вам непонятны. В этой заметке я опишу два примера сборки ядра в Debian-based дистрибутивах. В первом примере я покажу как просто собрать чистое, что называется "ванильное" ядро (такое, каким его выпускает Линус Торвальдс ), а во втором - как применить собственные патчи и провести оптимизацию ядра. Сразу напишу два предупреждения:
  • вам нужно будет пересобирать ядро при каждом его обновлении (качать "обновляющий патч", накладывать его и собирать ядро);
  • пересобранное ядро может не заработать, если в вашей системе используются какие-нибудь хаки для обеспечения работоспособности того или иного оборудования;
  • при неправильном конфигурировании ядра, особенно в случае неграмотного или бездумного наложения патчей, вы можете получить либо тормозящую до ужаса систему, либо лишиться её вовсе.
ВСЕ ДЕЙСТВИЯ ВЫ ПРОИЗВОДИТЕ НА СВОЙ СТРАХ И РИСК!

Простая сборка ядра без применения патчей.

Исходные коды ядра Linux находятся на сайте kernel.org . Там же находятся "обновляющие патчи" . Что нам нужно? Качаем с сайта тарболл (архив) с последней стабильной версией ядра (на момент написания статьи, это версия 4.3 ). Качаем любым удобным способом. Далее нам потребуются инструменты для сборки:

sudo apt install build-essential gcc kernel-package patch
sudo apt-get build-dep linux

После того как установятся все необходимые инструменты, распакуйте архив с кодом ядра в любую удобную директорию. Пусть это будет /home/user/KERNEL , где "user" - имя пользователя системы. Далее откройте терминал и перейдите туда:

cd /home/user/KERNEL

Осталось собрать ядро:

fakeroot make-kpkg -j 3 --initrd --append-to-version=-custom kernel_image kernel_headers #-j 3

Цифра 3 после j - это количество ядер вашего процессора + 1. То есть для двухядерного это 3, для 4-х ядерного это 5 и так далее.
-custom - здесь можете указать удобное имя для ядра, чтобы было легче его отличить от дистрибутивного.
kernel_image и kernel_headers - это само ядро и его заголовочные файлы соответственно. Headers необходимы для сборки драйверов и модулей ядра, а также для некоторых других целей. После выполнения этой команды, начнут появляться несколько вопросов по конфигурированию ядра. Так как мы всё оставляем по умолчанию, просто жмите Enter пока не начнётся сборка. В зависимости от мощности вашего компьютера, сборка может занять от 15-20 минут до нескольких часов. После сборки, в директории /home/user появятся два deb-пакета : ядро и заголовки. Установите их командой:

sudo dpkg -i linux-image-4.3*deb linux-headers-4.3*deb
sudo update-grub

И перезагрузитесь. В меню GRUB теперь можно будет выбрать для загрузки системы другое ядро.

Сборка ядра с применением патчей и дополнительной конфигурации.

В этот раз мы соберём оптимизированное ядро для работы со звуком и видео, а также для большей отзывчивости системы. Для этого мы применим два патча: так называемый патч для режима реального времени (PREEMPT RT ) и патч для компилятора GCC , чтобы добавить дополнительные опции для процессорных оптимизаций. Для начала, что такое патч? Патч - это текстовый файл, который создаётся программой diff , содержащий в себе изменения кода в определённых частях, которые при применении патча, заносятся в нужные места. Так как RT-патч выходит с большим запаздыванием, последняя его версия - для ядра 4.1 . Впрочем это не так важно. По той же схеме, качаем ядро 4.1 с kernel.org и распаковываем в директорию /home/user/KERNEL-CUSTOM . Теперь качаем патчи. PREEMPT_RT и GCC Patch . Из скачанных архивов, нам нужны файлы с расширением.patch, которые необходимо положить в каталог с исходным кодом ядра. То есть в /home/user/KERNEL-CUSTOM . Перед применением патчей нужно убедиться, что не будет никаких ошибок. Открываем терминал:

cd /home/user/KERNEL-CUSTOM
patch -p1 -i patch-4.1.13-rt15.patch --dry-run


Опция --dry-run позволяет симулировать применение патча, без внесения изменений в файлы. Если ошибок не обнаружено (см. скриншот) - примните патч уже без опции --dry-run . Аналогичные действия проведите и со вторым патчем. Не применяйте одновременно больше одного патча! Теперь нам нужно сконфигурировать наше ядро. На выбор нам предлагаются следующие варианты:

make config - в терминал будут поочерёдно выводиться вопросы о конфигурации той или иной подсистемы ядра. Крайне долгий и утомительный процесс. Забудем о нём:)
make oldconfig - будет задействована конфигурация работающего в данный момент ядра. Так как мы собираем своё с нуля, этот способ также бесполезен.
make defconfig - аналогично предыдущему, только значения будут по умолчанию. Такими, какими его задали разработчики ядра. Аналог первого способа сборки.
make menuconfig - псевдографический интерфейс на основе библиотеки Ncurses . На экран будет выводиться интерфейс с удобным иерархическим меню. Управления с помощью клавиш направления, пробела и клавиши TAB. Рекомендуется если вы собираете ядро в системе, не имеющей графической оболочки.
make gconfig GTK , рекомендуется в окружениях GNOME, Mate, Xfce, Cinnamon, Unity и прочих, использующих GTK.
make xconfig - графический интерфейс на основе Qt . Рекомендуется в KDE. Так как в моей системе используется KDE, я воспользуюсь этим способом. Помимо этого есть ещё пара способов, но их применения ни чем особенным не отличается. Итак, после применения патчей, запускаем make xconfig и перед нами предстаёт вот это:


Первым делом выключаем dynticks . Для этого идём в Timers subsystem и выбираем Periodic timer ticks


Теперь самое вкусное. Идём в Processors type and features , ищем пункт Processor famaly и указываем вашу серию процессора. К примеру если у вас Intel Core i5-4xxx , указывайте Hasswell (4 поколение процессора). Если вы точно не уверены, то можете выбрать пункт Native optimizations autodetected by GCC . В этом случае, при сборке, компилятор сам определит что поддерживает ваш процессор, и включит все его фичи.


Идём ниже и включаем параметр Full preemptible kernel (RT) . Режим жёсткого реального времени.


Листаем ниже и в пункте Timer frequency выставляем частоту системных прерываний на 1000 Гц


Полностью выключаем любое энергосбережение. Это важно! Слева ищем пункт Power management and ACPI options и снимаем галочку с ACPI. Также выключаем энергосбережение процессора

Вот и всё. При желании (и тщательном изучении документации), вы можете внести дополнительные изменения в конфигурацию (отключить лишние драйверы, задействовать дополнительные подсистемы и так далее). Теперь сохраняем конфиг через File - Save , закрываем конфигуратор и собираем ядро:

fakeroot make-kpkg -j 3 --initrd --append-to-version=-rt-custom kernel_image kernel_headers #-j 3
sudo update-grub

На моём компьютере с процессором Intel Core i3-550 (3.2 ГГц), прирост производительности был довольно ощутимый. Но самое главное - при работе в LMMS и Kdenlive , исчезли периодические заикания рассинхронизация звуковой и видеодорожек, а также подвисания при сильной нагрузке на жёсткий диск. Вывод - работает! Напоследок опишу два модифицированных ядра, которые весьма популярны в кругах линуксоидов:

PF-kernel - самый популярный набор патчей от украинца Александра Наталенко (aka post-factum) . Это набор патчей, которые не входят в основное ядро, но обеспечивают повышенную отзывчивость системы, предоставляют альтернативную подсистему гибернации, более быструю, нежели основная, а также уменьшают использование памяти с помощью техники объединения одинаковых страниц. В набор входят:

  • планировщик процессов BFS от Кона Коливаса (Con Kolivas) с дополнительными исправлениями от Альфреда Чена (Alfred Chen);
  • планировщик ввода-вывода BFQ от Паоло Валенте (Paolo Valente), Арианны Аванзини (Arianna Avanzini) и Мауро Маринони (Mauro Marinoni);
  • подсистема гибернации TuxOnIce от Найджела Каннингема (Nigel Cunningham);
  • реализация техники слияния одинаковых страниц в памяти UKSM от Най Ся (Nai Xia);
  • патч от Graysky, расширяющий список процессоров для оптимизации ядра компилятором (тот, что мы применили выше)
Репозиторий модифицированного ядра . Официальный сайт .

Zen-kernel - второй по популярности, но первый по количеству патчей набор. Zen Kernel использует комбинацию нескольких проектов, обновляет код через git-репозиторий, а также имеет несколько специфичных для Zen вещей, стремящихся удовлетворить большинство потребностей пользователей, реализовав их в одном ядре. Некоторые возможности патча: drm-next, wireless-testing, выбор планировщиков CPU (CFS/BFS), BFQ-планировщик ввода-вывода, aufs, unionfs, reiser4, tuxonice, PHC и многие другие вещи, которые замечательно подойдут для оптимизации настольных систем или ноутбуков. Всё это доступно в виде одного патча к ванильному ядру. Официальный сайт . GIT- репозиторий . Пакеты для Debian/Ubuntu .

На сегодня, пожалуй, всё. Больше информации вы можете найти в ссылках к статье. Всё описанное в статье проверено мной на многих конфигурациях.

Сегодня постараюсь максимально понятно и сжато рассказать о управлении ядром Linux/UNIX. В теме постараюсь разобрать, как: с помощью шелла получать информацию о ядре и модулях ядра, загружать и удалять модули ядра в ходе работы, узнать, нужен ли вообще подключенный/отключенный модуль, настраивать операционную систему для загрузки необходимых модулей.

Общая информация

Просмотреть список подключенных модулей в данный момент возможно с помощью команды :

Print-server:/tmp/123# lsmod Module Size Used by ipv6 235396 10 loop 12748 0 parport_pc 22500 0 parport 31084 1 parport_pc snd_pcm 62660 0 snd_timer 17800 1 snd_pcm snd 45636 2 snd_pcm,snd_timer soundcore 6368 1 snd snd_page_alloc 7816 1 snd_pcm psmouse 32336 0 serio_raw 4740 0 pcspkr 2432 0 i2c_piix4 7216 0 i2c_core 19828 1 i2c_piix4 ac 4196 0 button 6096 0 evdev 8000 0 ext3 105576 5 jbd 39476 1 ext3 mbcache 7108 1 ext3 sd_mod 22200 7 ide_cd_mod 27684 0 cdrom 30176 1 ide_cd_mod ata_generic 4676 0 ahci 23596 6 libata 140448 2 ata_generic,ahci scsi_mod 129548 2 sd_mod,libata dock 8304 1 libata e1000 102656 0 piix 6568 0 ide_pci_generic 3908 0 ide_core 96168 3 ide_cd_mod,piix,ide_pci_generic thermal 15228 0 processor 32576 1 thermal fan 4196 0 thermal_sys 10856 3 thermal,processor,fan

В приведенном примере видно, что в системе загружено множество модулей. Большинство из них поставляются вместе с ядром и имеют свободную лицензию. Бывают так же модули и проприетарные (например драйвера видеоадаптеров NVIDIA). Соответственно, модульный подход позволяет включать в ядро несвободные компоненты, если проприетарная лицензия позволяет это, что избавляет от необходимости получать данные модули от производителя железа.

В примере также можно видеть, что соответствующими модулями осуществляется поддержка таких устройств как видео, SATA, SCSI, дискеты и звуковые карты, а также сетевые устройства, например, IPV6, поддержка файловых систем, такой как ext3, и Remote Procedure Call (RPC) компании Sun.

Помимо имени модуля , команда lsmod показывает также размер, число пользователей модуля и имена пользователей.

Команда modinfo выдает информацию об одном или нескольких модулях.

Kernel-server:/tmp/123$ /sbin/modinfo ipv6 filename: /lib/modules/2.6.26-2-686/kernel/net/ipv6/ipv6.ko alias: net-pf-10 license: GPL description: IPv6 protocol stack for Linux author: Cast of dozens depends: vermagic: 2.6.26-2-686 SMP mod_unload modversions 686

В приведенном примере видно, что команда modinfo показывает информацию о модуле ipv6, которая включает такие параметры как имя файла и путь, лицензия, описание, автор модуля и др. Параметры модуля могут различаться в зависимости от модуля.

Отдельно хотелось бы затронуть параметр filename, содержащий путь к файлу модуля и имя файла. Имя файла модуля ipv6 оканчивается на .ko , это говорит нам, что данный модуль относится к версии ядра 2.6 . В более ранней версии ядра - 2.4 , имена модулей оканчивались на .o ). Как видно, модуль расположен в подкаталогах каталога /lib/modules/2.6.26-2-686/, в данном пути, каталог 2.6.26-2-686 соответствует версии ядра (а так же выводу команды uname -r, что активно используется в написании скриптов). Структура подкаталогов указанного каталога отражает взаимосвязь модулей ядра и назначения модулей, думаю пример ниже это наглядно покажет:

Kernel-server:/tmp/123# ls -l /lib/modules/2.6.26-2-686/kernel/ итого 12 drwxr-xr-x 3 root root 1024 Окт 1 15:40 arch drwxr-xr-x 3 root root 4096 Окт 1 18:02 crypto drwxr-xr-x 54 root root 1024 Окт 1 15:40 drivers drwxr-xr-x 51 root root 3072 Окт 1 18:02 fs drwxr-xr-x 6 root root 1024 Окт 1 18:02 lib drwxr-xr-x 37 root root 1024 Окт 1 15:40 net drwxr-xr-x 11 root root 1024 Окт 1 18:02 sound

В примере видно, что модули ядра расположены по подкаталогам: fs , что наводит на мысль, что тут расположены модули файловой системы, sound - модули звуковых карт и так далее.

Как же нам узнать, какие модули ядра нужны , а какие можно удалить?

А все просто: если счетчик Used By равен нулю, то модуль ядра никем и ничем не используется. Соответственно, его можно удалить.

Удаление модуля ядра происходит командой rmmod module_name .

Удаленный модуль может понадобиться в процессе работы, для загрузки модуля необходимо выполнить команду: insmod /path/to/module.ko

Интересный пример использования insmod в купе с другими командами:

# uname -r 2.6.27-ovz-smp-alt9 # insmod /lib/modules/`uname -r`/kernel/drivers/block/floppy.ko # rmmod floppy # modinfo -F filename floppy /lib/modules/2.6.27-ovz-smp-alt9/kernel/drivers/block/floppy.ko # insmod $(modinfo -F filename floppy) # lsmod | grep floppy floppy 58244 0

Существует так же и другая команда для управления модулями : . Особенность данной команды в том, что она удаляет/добавляет модули с учетом зависимостей между модулями (зависимости между модулями прописаны в файле /lib/modules/версия/modules.dep ). Пример использования:

# modprobe -r vfat vfat: Device or resource busy # lsmod | grep fat vfat 13132 1 fat 38744 1 # umount /windows/D # modprobe -r vfat # modprobe -v --show vfat /sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o /sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o # lsmod | grep fat # modprobe -v vfat /sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o Using /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o Symbol version prefix "" /sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o Using /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o # lsmod | grep fat vfat 13132 0 (unused) fat 38744 0

Как уже выше было сказано, модули ядра имеют зависимости друг от друга, которые прописаны в файле /lib/modules/версия/modules.dep. Данный файл формируется командой depmod , которая при выполнении просматривает структуру каталогов /lib/modules/текущая_версия_ядра/ и формирует информацию о зависимостях.

Так же хочу отметить, что в Linux существует конфигурационный файл /etc/modules.conf, к которому обращается и modprobe и debmod . Данный файл в большинстве своем используется для корректировки алиасов модулей. Некоторые ОС используют другие конфигурационные файлы, таки как /etc/modprobe.conf или каталог с конфигурационными файлами - /etc/modprobe.d/.

Еще отличным источником информации о действующем ядре Linux является , который расположен в /boot/config-2.6.... Используя можно получить достаточно информации (например, поддерживает ли ядро файловую систему cifs):

Samba-server:~# grep CONFIG_SMB_FS /boot/config-2.6.32-5-686 # CONFIG_SMB_FS is not set samba-server:~# grep CONFIG_CIFS /boot/config-2.6.32-5-686 CONFIG_CIFS=m # CONFIG_CIFS_STATS is not set CONFIG_CIFS_WEAK_PW_HASH=y CONFIG_CIFS_UPCALL=y CONFIG_CIFS_XATTR=y CONFIG_CIFS_POSIX=y # CONFIG_CIFS_DEBUG2 is not set CONFIG_CIFS_DFS_UPCALL=y CONFIG_CIFS_EXPERIMENTAL=y

На сегодня все. Как всегда - буду очень рад Вашим комментариям! В мы научимся собирать свое ядро.

С Уважением, Mc.Sim!