Сетевая модель OSI. Общие сведения о сетевых технологиях Сколько уровней содержит базовая модель открытых систем

14.09.2022

Современный мир ИТ - огромная ветвящаяся сложная для понимания структура. Чтобы упростить понимание и улучшить отладку ещё на этапе проектирования протоколов и систем была использована архитектура модульности. Нам гораздо проще выяснить, что проблема в видеочипе, когда видеокарта идет отдельным от остального оборудования устройством. Или заметить проблему в отдельном участке сети, чем перелопачивать всю сеть целиком.

Отдельно взятый пласт ИТ - сеть - тоже построена модульно. Модель функционирования сети назывется сетевая модель базовой эталонной модели взаимодействия открытых систем ISO/OSI. Кратко - модель OSI.

Модель OSI состоит из 7 уровней. Каждый уровень абстрагирован от других и ничего не знает о их существовании. Модель OSI можно сравнить с устройством автомобиля: двигатель выполняет свою работу, создавая крутящий момент и отдавая его коробке передач. Двигателю абсолютно без разницы что дальше будет происходить с этим крутящим моментом. Будет он крутить колесо, гусеницу или пропеллер. Точно так же как и колесу нет никакого дела откуда к нему пришел этот крутящий момент - от двигателя или рукоятки, которую крутит механик.

Здесь необходимо добавить понятие полезной нагрузки. Каждый уровень несет в себе какое-то количество информации. Часть этой информации является служебной для этого уровня, например, адрес. IP-адрес сайта не несет для нас никакой полезной информации. Нам важны только котики, которых нам показывает сайт. Так вот эта полезная нагрузка переносится в той части уровня, который называется protocol data unit (PDU).

Уровни Модели OSI

Рассмотрим каждый уровень Модели OSI подробнее.

1 уровень. Физический (physical ). Единицей нагрузки (PDU ) здесь является бит. Кроме единиц и нулей физический уровень не знает ничего. На этом уровне работают провода, патч панели, сетевые концентраторы (хабы, которые сейчас уже сложно найти в привычных нам сетях), сетевые адаптеры. Именно сетевые адаптеры и ничего более из компьютера. Сам сетевой адаптер принимает последовательность бит и передает её дальше.

2 уровень. Канальный (data link ). PDU - кадр (frame ). На этом уровне появляется адресация. Адресом является MAC адрес. Канальный уровень ответственен за доставку кадров адресату и их целостность. В привычных нам сетях на канальном уровне работает протокол ARP. Адресация второго уровня работает только в пределах одного сетевого сегмента и ничего не знает о маршрутизации - этим занимается вышестоящий уровень. Соответственно, устройства, работающие на L2 - коммутаторы, мосты и драйвер сетевого адаптера.

3 уровень. Сетевой (network ). PDU пакет (packet ). Наиболее распространенным протоколом (дальше не буду говорить про “наиболее распространенный” - статья для новичков и с экзотикой они, как правило, не сталкиваются) тут является IP. Адресация происходит по IP-адресам, которые состоят из 32 битов. Протокол маршрутизируемый, то есть пакет способен попасть в любую часть сети через какое-то количество маршрутизаторов. На L3 работают маршрутизаторы.

4 уровень. Транспортный (transport ). PDU сегмент (segment )/датаграмма (datagram ). На этом уровне появляются понятия портов. Тут трудятся TCP и UDP. Протоколы этого уровня отвечают за прямую связь между приложениями и за надежность доставки информации. Например, TCP умеет запрашивать повтор передачи данных в случае, если данные приняты неверно или не все. Так же TCP может менять скорость передачи данных, если сторона приема не успевает принять всё (TCP Window Size).

Следующие уровни “правильно” реализованы лишь в RFC. На практике же, протоколы описанные на следующих уровнях работают одновременно на нескольких уровнях модели OSI, поэтому нет четкого разделения на сеансовый и представительский уровни. В связи с этим в настоящее время основным используемым стеком является TCP/IP, о котором поговорим чуть ниже.

5 уровень. Сеансовый (session ). PDU данные (data ). Управляет сеансом связи, обменом информации, правами. Протоколы - L2TP, PPTP.

6 уровень. Представительский (presentation ). PDU данные (data ). Преставление и шифрование данных. JPEG, ASCII, MPEG.

7 уровень. Прикладной (application ). PDU данные (data ). Самый многочисленный и разнообразный уровень. На нем выполняются все высокоуровненвые протоколы. Такие как POP, SMTP, RDP, HTTP и т.д. Протоколы здесь не должны задумываться о маршрутизации или гарантии доставки информации - этим занимаются нижестоящие уровни. На 7 уровне необходима лишь реализации конкретных действий, например получение html-кода или email-сообщения конкретному адресату.

Заключение

Модульность модели OSI позволяет проводить быстрое нахождение проблемных мест. Ведь если нет пинга (3-4 уровни) до сайта, нет смысла копаться в вышележащих слоях (TCP-HTTP), когда не отображается сайт. Абстрагировавшись от других уровней проще найти ошибку в проблемной части. По аналогии с автомобилем - мы ведь не проверяем свечи, когда проткнули колесо.

Модель OSI является эталонной моделью - эдаким сферическим конем в вакууме. Разработка её велась очень долго. Параллельно с ней разрабатывался стек протоколов TCP/IP, акивно применяемый в сетях в настоящее время. Соответственно, можно провести аналогию между TCP/IP и OSI.

В утилите sudo, используемой для организации выполнения команд от имени других пользователей, выявлена уязвимость (CVE-2019-18634), которая позволяет повысить свои привилегии в системе. Проблема […]

Выпуск WordPress 5.3 улучшает и расширяет представленный в WordPress 5.0 редактор блоков новым блоком, более интуитивным взаимодействием и улучшенной доступностью. Новые функции в редакторе […]

После девяти месяцев разработки доступен мультимедиа-пакет FFmpeg 4.2, включающий набор приложений и коллекцию библиотек для операций над различными мультимедиа-форматами (запись, преобразование и […]

  • Новые функции в Linux Mint 19.2 Cinnamon

    Linux Mint 19.2 является выпуском с долгосрочной поддержкой, который будет поддерживаться до 2023 года. Он поставляется с обновленным программным обеспечением и содержит доработки и множество новых […]

  • Вышел дистрибутив Linux Mint 19.2

    Представлен релиз дистрибутива Linux Mint 19.2, второго обновления ветки Linux Mint 19.x, формируемой на пакетной базе Ubuntu 18.04 LTS и поддерживаемой до 2023 года. Дистрибутив полностью совместим […]

  • Доступны новые сервисные релизы BIND, которые содержат исправления ошибок и улучшения функций. Новые выпуски могут быть скачано со страницы загрузок на сайте разработчика: […]

    Exim — агент передачи сообщений (MTA), разработанный в Кембриджском университете для использования в системах Unix, подключенных к Интернету. Он находится в свободном доступе в соответствии с […]

    После почти двух лет разработки представлен релиз ZFS on Linux 0.8.0, реализации файловой системы ZFS, оформленной в виде модуля для ядра Linux. Работа модуля проверена с ядрами Linux c 2.6.32 по […]

    Комитет IETF (Internet Engineering Task Force), занимающийся развитием протоколов и архитектуры интернета, завершил формирование RFC для протокола ACME (Automatic Certificate Management Environment) […]

    Некоммерческий удостоверяющий центр Let’s Encrypt, контролируемый сообществом и предоставляющий сертификаты безвозмездно всем желающим, подвёл итоги прошедшего года и рассказал о планах на 2019 год. […]

    Сетевая модель OSI — это эталонная модель взаимодействия открытых систем, на английском звучит как Open Systems Interconnection Basic Reference Model. Ее назначение в обобщенном представлении средств сетевого взаимодействия.

    То есть модель OSI — то обобщенные стандарты для разработчиков программ, благодаря которым любой компьютер одинаково может расшифровать данные, переданные с другого компьютера. Чтобы было понятно, приведу жизненный пример. Известно, что пчелы видят все окружающее их в утрафиалетовом свете. То есть одну и ту же картинку наш глаз и пчелиный воспринимает абсолютно по-разному и то, что видят насекомые, может быть незаметно для зрения человека.

    То же самое и с компьютерами — если один разработчик пишет приложение на каком-либо программном языке, который понимает его собственный компьютер, но не доступен ни для одного другого, то на любом другом устройстве вы прочитать созданный этим приложением документ не сможете. Поэтому пришли к такой идее, чтобы при написании приложений следовать единому своду правил, понятному для всех.

    Уровни OSI

    Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

    Сетевой протокол — это правила и технические процедуры, позволяющие компьютерам, объединенным в сеть, осуществлять соединение и обмен данными.
    Группа протоколов, объединенных единой конечной целью, называется стек протоколов.

    Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

    Задачи компьютера ОТПРАВИТЕЛЯ:

    • Взять данные из приложения
    • Разбить их на мелкие пакеты, если большой объем
    • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

    Задачи компьютера ПОЛУЧАТЕЛЯ:

    • Принять пакеты данных
    • Удалить из него служебную информацию
    • Скопировать данные в буфер
    • После полного приема всех пакетов сформаровать из них исходный блок данных
    • Отдать его приложению

    Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

    Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

    Разберем их подробнее.

    7. Прикладной уровень (Application Layer)

    Его задача забрать у сетевого приложения данные и отправить на 6 уровень.

    6. Уровень представления (Presentation Layer)

    Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

    5. Сеансовый уровень (Session Layer)

    У него много задач.

    1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
    2. Здесь же происходит распознавание имен и защита:
      • идентификация — распознавание имен
      • аутентификация — проверка по паролю
      • регистрация — присвоение полномочий
    3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
    4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
    5. Сегментация — разбивка большого блока на маленькие пакеты.

    4. Транспортный уровень (Transport Layer)

    Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

    • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
    • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

    3. Сетевой уровень (Network Layer)

    Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть (IP протокол — это протокол межсетевого взаимодействия).

    2. Канальный уровень (Data Link Layer)

    Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

    При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

    При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

    1. Физический уровень (Transport layer)

    Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

    Стеки протоколов

    TCP/IP — это стек протоколов, который управляет передачей данных как в локальной сети, так и в глобальной сети Интернет. Данный стек содержит 4 уровня, то есть по эталонной модели OSI каждый из них объединяет в себе несколько уровней.

    1. Прикладной (по OSI — прикладной, представления и сеансовый)
      За данный уровень отвечают протоколы:
      • TELNET — удаленный сеанс связи в виде командной строки
      • FTP — протокол передачи файлов
      • SMTP — протокол пересылки почты
      • POP3 и IMAP — приема почтовых отправлений
      • HTTP — работы с гипертекстовыми документами
    2. Транспортный (по OSI то же самое) — это уже описанные выше TCP и UDP.
    3. Межсетевой (по OSI — сетевой) — это протокол IP
    4. Уровень сетевых интерфейсов (по OSI — канальный и физический)За работу этого уровня отвечают драйверы сетевых адаптеров.

    Терминология при обозначении блока данных

    • Поток — те данные, которыми оперируются на прикладном уровне
    • Дейтаграмма — блок данных на выходе с UPD, то есть у которого нет гарантированной доставки.
    • Сегмент — гарантированный для доставки блок на выходе с протокола TCP
    • Пакет — блок данных на выходе с протокола IP. поскольку на данном уровне он еще не гарантирован к доставке, то тоже может называться дейтаграммой.
    • Кадр — блок с присвоенными MAC адресами.

    Спасибо! Не помогло

    Данный материал посвящен эталонной сетевой семиуровневой модели OSI . Здесь Вы найдете ответ на вопрос для чего системным администраторам необходимо понимать данную сетевую модель, будут рассмотрены все 7 уровней модели, а также Вы узнаете основы модели TCP/IP, которая и была построена на основе эталонной модели OSI.

    Когда я начал увлекаться различными IT технологиями, стал работать в этой сфере, я, конечно же, не знал не о какой модели, даже не задумывался об этом, но мне более опытный специалист посоветовал изучить, точнее, просто понять эту модель, добавив что «если будешь понимать все принципы взаимодействия, то будет намного проще управлять, конфигурировать сеть и решать всевозможные сетевые и другие проблемы ». Я его, конечно же, послушался и стал лопатить книги, Интернет и другие источники информации, одновременно с этим проверять на существующей сети, правда ли это все так на самом деле.

    В современном мире развитие сетевой инфраструктуры достигло такого высокого уровня, что без построения, даже маленькой сети, предприятие (в т.ч. и маленькое ) не сможет просто на всего нормально существовать, поэтому системные администраторы становятся, все более востребованы. А для качественного построения и конфигурирования любой сети, системный администратор должен понимать принципы эталонной модели OSI, как раз, для того чтобы Вы научились понимать взаимодействие сетевых приложений, да и вообще принципы сетевой передачи данных, я попытаюсь изложить этот материал доступно даже для начинающих админов.

    Сетевая модель OSI (open systems interconnection basic reference model ) – это абстрактная модель взаимодействия компьютеров, приложений и других устройств в сети. Если вкратце, суть данной модели состоит в том, что организация ISO (International Organization for Standardization ) разработала стандарт работы сети, для того чтобы все смогли опираться на него, и происходило совместимость всех сетей и взаимодействие между ними. Один из самых популярных протоколов взаимодействия сети, который применяется во всем мире, это TCP/IP он и построен на базе эталонной модели.

    Ну, давайте перейдем непосредственно к самим уровням этой модели, и для начала ознакомитесь с общей картиной этой модели в разрезе ее уровней.

    Теперь поговорим поподробней о каждом уровне, принято описывать уровни эталонной модели сверху в низ, именно по этому пути, и происходит взаимодействие, на одном компьютере сверху вниз, а на компьютере где идет прием данных снизу вверх, т.е. данные проходят каждый уровень последовательно.

    Описание уровней сетевой модели

    Уровень приложений (7) (прикладной уровень ) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.

    HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.

    Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.

    На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.

    Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.

    На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.

    Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня — это TCP и UDP . TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.

    Сетевой уровень (3) – он предназначен для определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF .

    Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.

    Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы .

    Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.

    Модель TCP IP

    Модель TCP/IP немного отличается от модели OSI, если говорить конкретней в данной модели объединили некоторые уровни модели OSI и их здесь всего 4:

    • Прикладной;
    • Транспортный;
    • Сетевой;
    • Канальный.

    На картинке представлено отличие двух моделей, а также еще раз показано на каких уровнях работают всем известные протоколы.


    Говорить о сетевой модели OSI и конкретно про взаимодействие компьютеров в сети можно долго и в рамках одной статьи это не уместить, да и будет немного не понятно, поэтому здесь я попытался представить как бы основу этой модели и описание всех уровней. Главное понимать, что все это действительно так и файл, который Вы отправили по сети проходит просто «огромный » путь, перед тем как попасть к конечному пользователю, но это происходит на столько быстро, что Вы этого не замечаете, во многом благодаря развитым сетевым технологиям.

    Надеюсь все это, Вам поможет понимать взаимодействие сетей.

    Модель OSI является концептуальной моделью, созданной международной организацией по стандартизации, которая позволяет различным системам связи общаться с использованием стандартных протоколов. Простым языком, OSI обеспечивает стандарт для различных компьютерных систем, чтобы иметь возможность общаться друг с другом.

    Модели OSI можно рассматривать как универсальный язык для компьютерных сетей. Он основан на концепции разделения коммуникационной системы на семь абстрактных слоев, каждый из которых укладывается на последний.
    Каждый уровень модели OSI выполняет определенную работу и взаимодействует со слоями выше и ниже себя. нацелены на определенные уровни сетевого подключения. Уровень приложений атакует целевой уровень 7 и уровень протокола атакует целевые уровни 3 и 4.

    Почему модели OSI имеет значение

    Несмотря на то, что современный интернет не строго соответствует модели OSI (он более точно соответствует более простому набору интернет-протоколов), модель OSI по-прежнему очень полезна для устранения неполадок сети. Будь то один человек, который не может получить свой порт в интернете, или веб-сайт не работает для тысяч пользователей, модель OSI может решить проблему и изолировать ее источник. Если проблему можно сузить до одного конкретного слоя модели, можно избежать большого количества ненужной работы.

    Семь уровней абстракции модели OSI можно определить следующим образом, сверху вниз:

    7. Прикладной уровень

    Это единственный слой, который напрямую взаимодействует с данными пользователя. Программные приложения, такие как веб-браузеры и почтовые клиенты, используют уровень приложений для инициирования связи. Однако следует четко указать, что клиентские программные приложения не являются частью прикладного уровня. Скорее, прикладной уровень отвечает за протоколы и обработку данных, на которые опирается программное обеспечение для представления значимых данных пользователю. Протоколы прикладного уровня включают HTTP, а также SMTP – один из протоколов, который обеспечивает связь по электронной почте.

    6. Уровень представления

    Этот уровень в первую очередь отвечает за подготовку данных, чтобы они могли использоваться прикладным уровнем. Другими словами, уровень 6 делает данные презентабельными для приложений. Уровень представления данных отвечает за перевод, шифрование и сжатие данных.

    Два взаимодействующих устройства могут использовать разные методы кодирования, поэтому уровень 6 отвечает за преобразование входящих данных в синтаксис, понятный прикладному уровню принимающего устройства.
    Если устройства обмениваются данными через зашифрованное соединение, уровень 6 отвечает за добавление шифрования на стороне отправителя, а также за декодирование шифрования на стороне получателя, чтобы он мог представить уровень приложения с незашифрованными, читаемыми данными.

    Наконец, уровень представления также отвечает за сжатие данных, получаемых от прикладного уровня, перед их доставкой на уровень Это помогает повысить скорость и эффективность связи за счет минимизации объема передаваемых данных.

    5. Сеансовый уровень

    Этот слой ответственен за открытие и закрытие связи между двумя устройствами. Время между открытием и закрытием связи называется сеансом. Уровень сеанса гарантирует, что сеанс остается открытым достаточно долго для передачи всех обмениваемых данных, а затем быстро закрывает сеанс, чтобы избежать потери ресурсов.
    Уровень сеанса также синхронизирует передачу данных с контрольными точками. Например, при передаче файла размером 100 мегабайт слой сеанса может устанавливать контрольную точку каждые 5 мегабайт. В случае отключения или сбоя после передачи 52 мегабайт сеанс может быть возобновлен с последней контрольной точки, что означает, что необходимо передать еще 50 мегабайт данных. Без контрольно-пропускных пунктов вся передача должна была бы начаться с нуля.

    4. Транспортный уровень

    Уровень 4 ответственен за сквозную связь между этими двумя устройствами. Это включает в себя получение данных из слоя сеанса и разбиение их на куски, называемые сегментами, перед отправкой на уровень 3. Транспортный уровень на принимающем устройстве отвечает за повторную сборку сегментов в данные, которые может использовать слой сеанса.
    Транспортный уровень отвечает за управление потоком и контроль ошибок. Управление потоком определяет оптимальную скорость передачи, чтобы гарантировать, что отправитель с быстрым соединением не перегружает получателя с медленным соединением. Транспортный уровень выполняет контроль ошибок на принимающей стороне, гарантируя, что полученные данные завершены, и запрашивая повторную передачу, если это не так.

    3. Сетевой уровень

    Сетевой уровень отвечает за облегчение передачи данных между двумя различными сетями. Если два взаимодействующих устройства находятся в одной сети, то сетевой уровень не нужен. Сетевой уровень разбивает сегменты транспортного уровня на более мелкие блоки, называемые пакетами, на устройстве отправителя и повторно собирает эти пакеты на принимающем устройстве. Сетевой уровень также находит наилучший физический путь, по которому данные достигают места назначения. Это называется маршрутизацией.

    2. Уровень канала передачи данных

    Очень похож на уровень сети, за исключением того, что 2 уровень облегчает передачу данных между двумя устройствами в той же сети. Данный канальный уровень принимает пакеты от сетевого уровня и делит их на более мелкие части, называемые фреймами. Как и сетевой уровень, уровень канала передачи данных также отвечает за управление потоками и управление ошибками во внутрисетевой связи (транспортный уровень выполняет только управление потоками и управление ошибками для межсетевой связи).

    1. Физический уровень

    Этот уровень включает физическое оборудование, участвующее в передаче данных, такое как кабели и коммутаторы. Это также слой, на котором данные преобразуются в битовый поток, представляющий собой строку 1s и 0s. Физический уровень обоих устройств должен также согласовать соглашение о сигнале так, чтобы 1s можно было отличить от 0s на обоих устройствах.

    Потоки данных через модель OSI

    Для того чтобы считываемая человеком информация передавалась по сети с одного устройства на другое, данные должны перемещаться вниз по семи уровням модели OSI на передающем устройстве, а затем вверх по семи слоям на принимающей стороне.
    Например, кто-то хочет отправить письмо подруге. Отправитель составляет свое сообщение в приложении электронной почты на своем ноутбуке, а затем нажимает “отправить”. Его почтовое приложение передаст сообщение электронной почты на уровень приложения, который выберет протокол (SMTP) и передаст данные на уровень представления. Затем данные сжимаются и попадают на уровень сеанса, который инициализирует сеанс связи.

    Затем данные попадут на транспортный уровень отправителя, где они будут сегментированы, затем эти сегменты будут разбиты на пакеты на сетевом уровне, которые будут разбиты еще дальше на фреймы на уровне канала передачи данных. Этот уровень доставит их на физический уровень, который преобразует данные в битовый поток 1s и 0s и отправит его через физический носитель, такой как кабель.
    Как только компьютер получателя получит битовый поток через физический носитель (например, wifi), данные будут проходить через ту же серию слоев на его устройстве, но в обратном порядке. Сначала физический уровень преобразует битовый поток из 1s и 0s в кадры, которые передаются на уровень канала передачи данных. Уровень канала передачи данных затем соберет кадры в пакеты для сетевого уровня. Сетевой уровень тогда сделает сегменты из пакетов для транспортного уровня, который соберет сегменты в одну часть данных.

    Дальше данные поступают на уровень сеанса получателя, который передает данные на уровень представления, а затем завершает сеанс связи. Далее слой представления удаляет сжатие и передает необработанные данные на уровень приложения. Затем прикладной уровень будет передавать данные, читаемые человеком, вместе с почтовым программным обеспечением получателя, что позволит читать электронную почту отправителя на экране ноутбука.

    На видео: Модель OSI и стек протоколов TCP IP. Основы Ethernet.