Сетевые архитектуры. Сетевая архитектура

07.08.2019


Лекция 13-14. 7. СЕТЕВЫЕ АРХИТЕКТУРЫ

Сетевая архитектура – это комбинация стандартов, топологий и протоколов , необходимых для создания работоспособной сети. В соответствии со стандартными протоколами физического уровня выделяют три основные сетевые архитектуры: Ethernet (протокол 802,3) и Fast Ethernet (протокол 802,30); ArcNet (протокол 802,4); Token Ring (протокол 802.5). Рассмотрим каждую из сетевых архитектур более подробно.

7.1. Ethernet

Это самая популярная в настоящее время сетевая архитектура. Она использует:


  • физические топологии «шина», «звезда» или «звезда –шина»;

  • логическую топологию «шина»;

  • узкополосную передачу данных со скоростями 10 и 100 Мбит/с;

  • метод доступа – CSMA/CD.
Среда передачи является пассивной, т. е. получает питание от РС. Сеть прекратит работу из-за физического повреждения или неправильного подключения терминатора. Передает информацию кадрами, формат которых представлен на рис. 7.1.

Рис. 7.1. Формат кадра в Ethernet

Поле «Тип протокола» используется для идентификации протокола сетевого уровня (IPX и IP) – маршрутизируемый или нет. Спецификация Ethernet выполняет функции физического и канального уровня модели OSI. Различают несколько стандартов сетевых архитектур Ethernet:


  • 10BaseT – на основе витой пары;

  • 10Base2 – на тонком коаксиале;

  • 10Base5 – на толстом коаксиале;

  • 10BaseFL – на оптоволокне;

  • 10BaseX – со скоростью передачи 100 Мбит/с, который включает в себя ряд спецификаций в зависимости от среды передачи.
Рассмотрим наиболее распространенные стандарты данной архитектуры, применяемые при построении ЛВС.

7.1.1. Стандарт 10BaseT

Физическая топология представляет собой «звезду» на основе витой пары, соединяющей все узлы сети с концентратором, используя две пары проводов: одну для передачи, другую – для приема (рис. 7.2).

Логически (т.е. по системе передачи сигналов) данная архитектура представляет собой «шину» как и все архитектуры Ethernet. Концентратор выступает как многопортовый репитер. Длина сегмента от 2,5 до 100 м. ЛВС стандарта 10BaseT может обслуживать до 1024 компьютеров.

Концентратор

Концентратор

РС
   


РС
   

2,5 – 100 м сегмент
(витая пара UTP категории 3, 4, 5)
  

Рис. 7.2. Сеть стандарта 10BaseT

Достоинством является возможность использования распределительных стоек и панелей коммутации, что позволяет легко перекоммутировать сеть или добавить новый узел без остановки работы сети. Новейшие концентраторы позволяют расширять топологию сети, соединив отдельные концентраторы между собой магистралью на основе коаксиального или оптоволоконного кабеля и получить топологию «звезда – шина».

7.1.2. Стандарт 10Base2

С
до 30 рабочих станций mmdf
еть такого типа ориентирована на тонкий коаксиальный кабель с максимальной длиной сегмента 185 м и возможностью подключения к одному сегменту до 30 ЭВМ (рис. 7.3).

  … 

Рис. 7.3. Архитектура сети стандарта 10Base2

Эта сетевая архитектура физически и логически представляет собой «шину». С использованием репитеров может быть увеличена общая протяженность сети введением дополнительных сегментов. Однако при этом необходимо учитывать правило 5-4-3 . Сеть на тонком коаксиале может состоять максимум из 5 сегментов кабеля, соединенных 4 репитерами. При

этом только к 3 сегментам можно подключать рабочие станции. Два из пяти сегментов являются межрепитерными связями и служат только для увеличения длины сети (рис. 7.4). Максимальное число компьютеров до 1024, а общая длина сети до 925м.

… … 

Рис. 7.4. Правило 5-4-3 для сети стандарта 10Base2.

7.1.3. Стандарт 10Base5

Сетевая архитектура на толстом Ethernet логически и физически представляет собой «шину» (рис. 7.5). Магистральный сегмент (т. е. главный кабель, к которому подключаются трансиверы для связи с РС) имеет длину до 500 м и возможность подключения до 100 компьютеров. С использованием репитеров, которые также подключаются к магистральному сегменту через трансиверы, общая длина сети может составить 2500 м.

Трансивер

Трансивер


до 100 РС

. . . 

Рис. 7.5. Сеть стандарта 10Base5

При расширении сети справедливо правило 5–4–3 и возможно комбинирование тонкого и толстого кабеля. В этом случае в качестве магистрали, способной передавать данные не большие расстояния, используется толстый кабель, а в качестве ответвляющих сегментов используют тонкий.

7.1.4. Стандарт 10BaseFL

Данная архитектура строится на оптоволоконном кабеле, доступ к которому со стороны компьютеров и репитеров осуществляется с помощью трансиверов (рис. 7.6). На сегодняшний день в основном используются внешние трансиверы.

оптический ответвитель

 

Рис. 7.6. Сеть стандарта 10BaseFL

Особенность этих трансиверов в том, что их передатчики преобразуют электрические сигналы от ЭВМ в световые импульсы, а приемники – световые в электрические. Популярность использования 10BaseFL обусловлена:


  • высокой помехозащищенностью;

  • возможностью прокладки кабеля между репитерами на большие расстояния, т. к. длина сегмента до 2 – 4 км;

  • использование повторителей позволяющих реализовать «каскадные звезды» путем соединения оптических ответвителей.
На рынке предлагаются ответвители типа коаксиал-волокно и ответвители типа волокно-коаксиал.

7.1.5. Стандарт 100BaseX Ethernet

Этот стандарт, иногда называемый Fast Ethernet, является расширением существующей сетевой архитектуры Ethernet и соответствует протоколу физического уровня IEEE 802.30. Его особенностью является то, что он сохранил стандартный для Ethernet метод доступа CSMA/CD, от которого отходили разработчики других технологий повышенной скорости передачи в сети. Сохранение метода доступа означает, что имеющиеся в наличие драйверы для Ethernet будут работать без изменений.

Преимуществом этой технологии, появившейся в конце 1993 года, является то, что степень ее совместимости с Ethernet–сетями, позволяет интегрировать ее в эти сети с помощью двухскоростных сетевых адаптеров или мостов. Данная сетевая архитектура использует физическую топологию «звезда» или «звезда – шина» (подобно 10BaseT), где все кабели подключаются к концентратору (рис. 7.7). Различают три спецификации среды:


  • 100BaseT4 (UTR категории 3, 4 или 5 с 4-мя парами);

  • 100BaseTX (UTR или STP категории 5 с 2-мя парами);

  • 100BaseFX (двужильный оптоволоконный кабель).
Для реализации этой технологии необходимо две пары проводов или двужильный оптокабель, чтобы организовать дуплексную передачу сигналов по традиционной CSMA/CD, используя одну пару для передачи, а другую – для приема.


7.1.6. Сегментация сети

Мы уже рассматривали задачу построения сети из нескольких сегментов. В частности, если не хватает длины одного сегмента для соединения всех пользователей сети, то можно через репитер подключить еще один сегмент. Но иногда возникает и другая задача. Пусть имеем сегмент сети с очень интенсивным трафиком, который снижает производительность всей сети. Повысить ее производительность можно, если разделить перегруженный сегмент на два и соединить их с помощью моста или маршрутизатора (рис. 7.8). Тогда трафик в каждом сегменте уменьшится, т.к. меньшее число компьютеров в каждом из сегментов попытается осуществить передачу, и время доступа к кабелю сокращается. Сегментация может помочь и при ограничении доступа к конфиденциальной информации.


7.2. Сетевые архитектуры ArcNet и ArcNet Plus

Это простая, гибкая и недорогая сетевая архитектура, поддерживающая протокол физического уровня IEEE 802.4:


  • физическая топология - «звезда», «шина», «звезда – шина»;

  • логическая топология – упорядоченное «кольцо»;

  • широкополосная передача данных 2,5 Мбит/с и 20 Мбит/с (для ArcNet Plus);

  • метод доступа маркерный;

  • средой передачи может быть:

  • коаксиальный кабель (длиной 600 м при «звезде» и 300 м при «шине»);

  • витая пара (максимальная длина 244 м – при «звезде» и «шине»);
К
Рис. 7.9. Архитектура Arc Net
омпьютеры могут быть коаксиальным кабелем связаны в шину или в иных случаях подключены к концентраторам, которые могут быть: пассивными; активными; интеллектуальными. Пассивные концентраторы просто осуществляют коммутацию кабельных соединений сети. Активные – восстанавливают и ретранслируют сигнал. Интеллектуальные - обнаруживают изменения в сети и удаленно управляют работой сетевых устройств.

Особенность маркерного доступа ArcNet (рис.7.9) состоит в том, что:


  • все компьютеры имеют свои сетевые адреса;

  • маркер передается между компьютерами согласно их номерам;

  • маркер двигается от компьютера с меньшим номером к компьютеру с более высоким номером, хотя тот может находиться на другом конце сети;

  • приемник, получив маркер, добавляет к нему свой пакет, который, дойдя до адресата, освобождает маркер.
Формат пакета ArcNet Plus имеет вид, представленный на рис. 7.10.

Рис. 7.10. Пакт передачи информации в ArcNet

Общее количество узлов: 255 – ArcNet; 2047 – Arc Net Plus. ArcNet – это одна из самых старых сетевых архитектур, реализованная недавно фирмой DataPoint в более современную ArcNet Plus. Однако на смену этим архитектурам приходят более современные и производительные. Одной из таких архитектур является FDDI, которая будет рассмотрена ниже. А сейчас познакомимся с давно используемой и хорошо зарекомендовавшей себя архитектурой.

7.3. Token Ring (Маркерное кольцо)

Данная сетевая архитектура была разработана и внедрена фирмой IBM еще в 1984 г. как часть предложенного ею способа объединить в сеть весь ряд выпускаемых IBM компьютеров: персональные компьютеры; средние ЭВМ и мейнфреймы. Разрабатывая эту технологию, IBM ставила задачу обеспечить простоту монтажа кабеля – витой пары – соединяющего компьютер с сетью через розетку. Token Ring является реализацией протокола физического уровня IEEE 802.5:


  • физическая топология – «звезда»;

  • логическая топология – «кольцо»;

  • узкополосный тип передачи;

  • скорость передачи 4 и 16 Мбит/с;

  • соединение неэкранированной и экранированной витой пары;

  • метод доступа – маркерное кольцо.
Формат кадра имеет вид, представленный на рис. 7.11.

Указывается: передается кадр маркера или кадр данных

Содержит информацию: кадр – для всех РС;

кадр - для одной РС

Сообщает: был ли распознан и скопирован кадр (доступен ли адрес приемника)

Рис. 7.11. Формат кадра, используемый в сетях Token Ring

7.3.1. Аппаратные компоненты

Логическое кольцо в этой сетевой архитектуре организуется концентратором, который называется модулем множественного доступа (MSAU – MultyStation Access Unit) или интеллектуальным модулем множественного доступа (SMAU – Smart Multystation Access Unit). Кабели (витые пары) соединяют клиентов и серверов с MSAU, который работает по принципу других концентраторов.


Рис. 7.12. Логическое кольцо

При соединении компьютеров он включается в кольцо (рис. 7.12). IBM MSAU имеет 10 портов соединения. К нему можно подключить до 8 компьютеров. Каждое кольцо может содержать до 33 концентраторов.

Общее число компьютеров – 72 при использовании UTP и 260 при использовании STP. Другие производители выпускают MSAU большей емкости (в зависимости от модели). Расширение логического кольца на базе концентраторов позволяет увеличить общее количество узлов в сети (рис. 7.13).

При этом расстояние между концентраторами до 45м (152м), а каждая РС соединяется с MSAU: при UTP - сегментом до 45м; при STR - сегментом до 100м. Расстояние между MSAU можно увеличить до 365, установив репитер.


     

     

     

Репитер

Рис. 7.13. Расширение логического кольца

Известны две модели сетевых плат на 4 и 16 Мбит/с. Платы на 16Мбит/с могут обеспечить передачу более длинных кадров, что сокращает количество передач для одного и того же объема данных.

7.3.2. Мониторинг системы

Компьютер, который первым начал работу, наделяется системой Token Ring особыми функциями. Этот компьютер:


  • должен наблюдать за работой всей системы;

  • осуществляет текущий ее контроль;

  • проверяет корректность отправки и получения кадров;

  • отслеживает кадры, проходящие по кольцу более одного раза;

  • гарантирует, что в кольце одновременно находится лишь один маркер.
После появления в сети нового компьютера система инициирует его, чтобы он стал частью кольца. Это включает в себя: проверку уникальности адреса; уведомление всех узлов сети о появлении нового узла.

В «теоретической» кольцевой топологии вышедший из строя компьютер останавливает движение маркера, что в свою очередь останавливает работу всей сети. В реальных сетевых архитектурах Token Ring используются интеллектуальные концентраторы, которые в состоянии обнаружить отказавшую сетевую плату (РС) и во время отключить ее.

Эта процедура позволяет “обойти” отказавший компьютер, поэтому маркер продолжает свое движение. Таким образом, отказавший компьютер не влияет на работу сети.

7.4. FDDI - распределенный волоконно-оптический интерфейс

передачи данных

7.4.1. Общие характеристики

Одной из современных сетевых архитектур является архитектура FDDI (Fiber Distributed Data Interface), которая определяет:


  • двухкольцевую топологию на основе оптоволокна;

  • с маркерным методом доступа;

  • со скоростью передачи 100 Мбит/с;

  • при общей длине колец до 200 км.
Эта архитектура обеспечивает совместимость с Token Ring, поскольку у них одинаковые форматы кадров. Однако есть и различия. В сети FDDI компьютер:

  • захватывает маркер на определенный интервал времени;

  • за этот интервал передает столько кадров, сколько успеет;

  • завершает передачу либо по окончании выделенного интервала времени, либо из-за отсутствия передаваемых кадров.
Поскольку компьютер, завершив передачу, сразу освобождает маркер, могут остаться несколько кадров, одновременно циркулирующих по кольцу. Этим объясняется более высокая производительность FDDI, чем Token Ring, которая позволяет циркулировать в кольце только одному кадру.

FDDI основана на технологии совместного использования сети. Это означает, что передавать данные одновременно могут несколько компьютеров. Хотя FDDI работает со скоростью 100 Мбит/с, технология совместного использования может стать причиной ее перегрузки. Так, если 10 компьютеров начнут передавать данные со скоростью 10 Мбит/с каждый, общий поток будет равен 100 Мбит/с. А при передачи видеоинформации или данных мультимедиа среда передачи окажется потенциально узким местом системы.

7.4.2. Топология и аппаратные компоненты

F
Рис. 7.14. Топология FDDI
DDI использует передачу маркера в двойном кольце. Трафик сети состоит из двух похожих потоков, движущихся в противоположных направлениях по двум кольцам: основному и дополнительному (рис. 7.14). Обычно данные передаются по основному кольцу. Если в основном происходит сбой, сеть автоматически реконфигурируется, и данные начинают передаваться по второму кольцу в другом направлении. Одно из достоинств FDDI – избыточность: одно кольцо является резервным.

При отказе кольца или разрыве кабеля сеть автоматически переконфигурируется и передача продолжится. Существуют ограничения:


  • длина кабеля объединенных колец до 200 км;

  • общее количество компьютеров до 1000 штук;

  • через каждые 2 км необходима установка репитера.

Так как второе кольцо предназначено для защиты от сбоев, то для высоконадежной передачи эти показатели надо делить на два (500 компьютеров при длине каждого кольца в 100 км). Компьютеры могут подключаться к одному или обоим кольцам (рис. 7.15): станции класса А подключены к обоим кольцам; станции класса В только к основному. Если происходит сбой сети, станции класса А участвуют в переконфигурации, а станции класса В – не участвуют.

Ф
концентратор


Рис. 7.15. Подключение РС к кольцам в FDDI
изически FDDI имеет топологию «звезда». При этом отдельные компьютеры могут иметь соединение «точка-точка» с концентратором. Такое решение позволяет использовать интеллектуальные концентраторы для сетевого управления и поиска неисправностей.

7.4.3. Мониторинг системы

Все компьютеры в среде FDDI отвечают за мониторинг передачи маркера. Чтобы изолировать серьезные сбои в кольце, используется метод, который называется «испускание маяка» («beaconing») (рис. 7.16). Суть метода заключается в следующем:


  1. Компьютер, обнаруживший сбой, посылает в сеть сигнал, который получил название «маяк».

  2. Он посылает его до тех пор, пока не примет маяк предшествующего ему компьютера в кольце.

  3. Процесс продолжается до тех пор, пока в кольце не останется только один компьютер, испускающий маяк (т.е. тот, который находится за неисправным).

  4. Когда компьютер примет свой собственный маяк, он «понимает», что неисправность устранена, восстанавливает маркер кольца и сеть возвращается к нормальной работе.
Рассмотрим пример (рис. 7.16) функционирования FDDI при сбое в работе одного из компьютеров сети. Предположим, что произошел сбой в работе компьютера 1.

  • Компьютер 1 отказал. Компьютер 3 обнаружил сбой, изъял из кольца маркер (обозначен символом "м" на рисунке) и посылает маяк (обозначен символом "с" на рисунке). Он будет посылать маяк до тех пор, пока не примет свой сигнал или маяк от компьютера 2 (рис.7.16а).




Обнаружен сбой




Рис. 7.16. Мониторинг передачи маркера


  • Компьютер 2, не получив нормального маркерного сообщения, обнаруживает сбой и посылает новый сигнал - свой маяк - в сеть. Компьютер 3, получив маяк от компьютера 2, прекращает передавать свой маяк (рис.7.16б).

  • Так как компьютер 1 неисправен, то компьютер 2 продолжает посылать маяк. Этот сигнал указывает на то, что сбой произошел на компьютере 1 (рис.7.16в).

  • Если компьютер 1 восстановил свою работоспособность или отключен от сети, компьютер 2 принимает свой собственный маяк, что приводить к восстановлению работы сети (рис.7.16г).

7.4.4. Области применения FDDI


  1. FDDI обеспечивает высокоскоростную связь между сетями различных типов и может применяться в сетях городского масштаба.

  2. Используется для соединения больших или мини-компьютеров в традиционных компьютерных залах, обслуживая очень интенсивную передачу файлов.

  3. Выступает в качестве магистральных сетей, к которым подключаются ЛВС малой производительности. Подключать все оборудование фирмы к одной ЛВС – не самое мудрое решение. Это может перегрузить сеть, а сбой какого-либо компонента – остановить работу всей фирмы.

  4. Локальные сети, где нужна высокая скорость передачи данных. Это сети, состоящие из инженерных РС и компьютеров, где ведется видеообработка, работают системы автоматизированного проектирования, управления производством.

  5. Любое учреждение, нуждающееся в высокоскоростной обработке. Даже в офисах коммерческих фирм производство графики или мультимедиа для презентаций и других документов нередко вызывает перегрузку сети.

Контрольные вопросы:


  1. Архитектура Ethernet.

  2. Формат кадра в Ethernet.

  3. Сегментация сети.

  4. Сетевые архитектуры ArcNet и ArcNet Plus.

  5. FDDI - распределенный волоконно-оптический интерфейс передачи данных.

  6. Общие характеристики FDDI/

  7. Области применения FDDI.

Под сетевой архитектурой понимают набор стандартов, топологий и протоколов низкого уровня, необходимых для создания работоспособной сети.

За многие годы развития сетевых технологий было разработано много различных архитектур. Рассмотрим их.

Token Ring .

Технология разработана компанией IBM в 1970-х годах, а затем была стандартизована IEEE в «Проекте 802» как спецификация 802.5. Она имеет следующие характеристики:

· физическая топология – «звезда»;

· логическая топология – «кольцо»

· скорость передачи данных – 4 или 16 Мбит/с;

· среда передачи – витая пара (используется 2 пары);

UTP – 150 м (для 4 Мбит/с)

STP – 300 м (для 4 Мбит/с)

или 100 (для 16 Мбит/с);

· максимальная длина сегмента с репитерами:

UTP – 365 м

STP – 730 м

* максимальное количество компьютеров на сегмент – 72 или 260 (в зависимости от типа кабеля)

Для объединения компьютеров в сетях Token Ring используются концентраторы MSAU, неэкранированная или экранированная витая пара (возможно и применение оптоволокна).

К преимуществам архитектуры Token Ring можно отнести высокую дальность передачи при использовании повторителей (до 730 м). Можно использовать в автоматизированных системах в реальном времени.

Недостатки архитектуры – довольно высокая стоимость, низкая совместимость оборудования.

Сетевая среда ARCNet была разработана корпорацией Datapoint в 1977 году. Стандартом она не стала, но соответствует спецификации IEEE 802.4. Это простая, гибкая и недорогая архитектура для небольших сетей (до 256 компьютеров) характеризуется следующими параметрами:

· физическая топология – «шина» или «звезда»;

· логическая топология – «шина»

· метод доступа – передача маркера;

· скорость передачи данных – 2,5 или 20 Мбит/с;

· среда передачи – витая пара или коаксиальный кабель;

· максимальный размер кадра – 516 байт;

· среда передачи – витая пара или коаксиальный кабель

· максимальная длина сегмента:

Для витой пары – 244 м (для любой топологии)

Для коаксиального кабеля – 305 м или 610 м (для топологии «шина» или «звезда», соответственно).

Для соединения компьютеров используются концентраторы. Основной тип кабеля – коаксиальный типа RG-62. Поддерживается также витая пара и оптоволокно. Для коаксиального кабеля используется BNC-коннекторы, для витой пары – коннекторы RJ-45. Основное достоинство не большая стоимость оборудования и сравнительно большая дальность.

AppleTalk .

Фирменная сетевая среда, предложенная компанией Apple в 19883 году и встроенная в компьютеры Macintosh. Она включает в себя целый набор протоколов, соответствующих модели OSI. На уровне сетевой архитектуры используется протокол LokalTalkФ, имеющий следующие характеристики:



· топология – «шина» или «дерево»;

· метод доступа – CSMA/CA;

· скорость передачи данных – 230,4 Кбит/с;

· среда передачи данных – экранированная витая пара;

· максимальная длина сети – 300 м;

· максимальное число компьютеров – 32.

Очень низкая пропускная способность привела к тому, что многие производители стали предлагать адаптеры расширения, позволяющие AppleTalk работать с сетевыми средами большой пропускной способности – EtherTalk, TokenTalk, FDDITalk. В локальных сетях, построенных на базе IBM-совместимых компьютеров сетевая среда AppleTalk практически не встречается.

100VG-AnyLAN .

Архитектура 100VG-AnyLAN была разработана в 90-х годах компаниями AT&T и Hewlett-Packard для объединения сетей Ethernet b Token Ring. В 1995 году эта архитектура получила статус стандарта IEEE 802.12. Она имеет следующие параметры:

· топология – «звезда»;

· метод доступа – по приоритету запроса;

· скорость передачи данных – 100 Мбит/с;

· среда передачи – витая пара категории 3,4 или 5 (используются все 4 пары);

· максимальная длина сегмента (для оборудования HP) – 225 м.

Из-за сложности и высокой стоимости оборудования в настоящее время практически не применяется.

Архитектура для домашних сетей.

Home PNA .

В 1966 году целый ряд компаний объединились для создания стандарта, позволяющего строить домашние сети на основе обычной телефонной проводки. Результатом этой работы стало появление в 1998 году архитектуры Home PNA 1.0, а затем Home PNA 2.0, Home PNA3.0 . Их краткие характеристики:

Таблица № 1. Сравнение стандартов Home PNA.

Во всех указанных стандартах используется самый популярный метод доступа к среде – CSMA/CD; в качестве среды – телефонный кабель; в качестве разъемов – телефонные коннекторы RJ-11. Устройства Home PNA могут работать и с витой парой и с коаксиальным кабелем, причем, дальность передачи существенной возрастает.

Следует не забывать, что телефонные линии в России не отвечают стандартым развитых стран как по качеству, так и по охвату. Цены на адаптеры довольно высоки. Тем не менее, данную архитектуру можно рассматривать в качестве альтернативы для беспроводных сетей в офисных зданиях и жилых домах.

Домашние сети на базе электропроводки.

Эта технология появилась недавно и получила название Home PLC. Оборудование в продаже имеется, но популярности пока не имеет.

Параметры сетей HomePlug:

· топология – «шина»;

· скорость передачи данных – до 85 Мбит/c$

· метод доступа – CSMA/CD;

· среда передачи – электрическая проводка;

Недостатки сетей Home PLC –незащищенность от перехвата, требующая обязательного применения шифрования и большая чувствительность к электрическим помехам. К тому же такая технология пока еще дорога.

Технологии, используемые в современных локальных сетях.

Ethernet .

Архитектура Ethernet объединяет целый набор стандартов, имеющих как общие черты, так и отличные. Первоначально она была создана фирмой Xerox в середине 70-х годов и представляла собой систему передачи со скоростью 2,93 Мбит/с. После доработки с участием компаний DEC и Intel архитектура Ethernet послужила основой принятого в 1985 году стандарта IEEE 802.3, определившая для нее следующие параметры:

· топология – «шина»;

· метод доступа – CSMA/CD;

· скорость передачи – 10 Мбит/с;

· среда передачи – коаксиальный кабель;

· применение терминаторов – обязательно;

· максимальная длина сегмента сети – до 500 м;

· максимальная длина сети – до 2,5 км;

· максимальное количество компьютеров в сегменте – 100;

· максимальное количество компьютеров с сети – 1024.

В исходной версии предусматривалось применение коаксиального кабеля двух типов «толстого» и «тонкого» (стандарты 10Base-5 и 10Base-2 соответственно).

В начале 90-х годов появилась спецификация для построения сетей Ethernet c использованием витой пары (10Base-T) и оптоволокна (10Base-FL). В 1995 году был опубликован стандарт IEEE 802.3u, обеспечивающий передачу на скоростях до 100 Мбит/с. В 1998 году появился стандарт IEEE 802.3z и 802.3ab, а в 2002 году IEEE802.3 ae. Сравнение стандартов приведены в таблице № 12.2.

Таблица № 12.2. Характеристики различных стандартов Ethernet.

Реализация Скорость Мбит/c Топология Среда передачи Максимальная длина кабеля, м
Ethernet
10Base-5 «шина» Толстый коаксиальный кабель
10Base-2 «шина» Тонкий коаксиальный кабель 185; реально до 300
10Base-T «звезда» Витая пара
10Base-FL «звезда» оптоволокно 500 (станция-концентратор); 200 (между концертраторами)
Fast Ethernet
100Base-TX «звезда» Витая пара категории 5 (используется 2 пары)
100Base-T4 «звезда» Витая пара категории 3,4, 5 (используется четыре пары)
100Base-FX «звезда» Многомодовое или одномодовое оптоволокно 2000 (многомодовый) 15000 (одномодовый) реально – до 40 км
Gigabit Ethernet
1000Dase-T «звезда» Витая пара категории 5 или выше
1000Dase-CX «звезда» Специальный кабель типа STR
1000Dase-SX «звезда» оптоволокно 250-550 (многомодовый), в зависимости от типа
1000Dase-LX «звезда» оптоволокно 550 (многомодовый); 5000 (одномодовый); реально – до 80 км
10 Gigabit Ethernet
10GDase-x «звезда» оптоволокно 300-40000 (в зависимости от типа кабеля и длины волны лазера)

Недостаток сетей Ethernet связан с использованием в них метода доступа к среде CSMA/CD (множественный доступ с контролем несущей и обнаружением столкновений). При увеличении количества компьютеров растет число столкновений, что снижает пропускную способность сети и увеличивает время доставки кадров. Поэтому рекомендуемой нагрузкой сети Ethernet считается уровень в 30-40% от общей полосы пропускания. Этот недостаток легко устраняется путем замены концентраторов мостами и коммутаторами, умеющими изолировать передачу данных между двумя компьютерами в сети от других.

Преимуществ у сети Ethernet очень много. Сама технология проста в реализации. Стоимость оборудования не высока. Можно использовать практически любые виды кабеля. Поэтому в настоящее время данная архитектура сетей можно сказать, что она является господствующей.

Беспроводные сети

Wi-Fi – популярная в мире и быстро развивающаяся в России технология, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету (рис.12.5).


В стандарте 802.11 предусматривается использование только полудуплексные приемопередатчики, которые не могут одновременно передавать и принимать информацию. Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений.

Основным недостатком сетей Wi-Fi является малая дальность передачи данных, не превышающая для большинства устройств 150 м (максимум 300 м) на открытом пространстве и всего несколько метров в помещении.

Данную проблему решает архитектура WiMAX, разрабатываемая в рамках рабочей группы IEEE 802.16. Реализация этой технологии, также использующей радиосигналы в качестве среды передачи, позволит предоставить пользователям скоростной беспроводной доступ на расстояниях до нескольких десятков км (рис. 10.6.).


Рис. 12.6. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десятков км).

Новая технология Bluetooth использует радиосигнал 2,4 Ггц. Она имеет низкое энергопотребление, что позволяет использовать ее в переносных устройствах – ноутбуках, мобильных телефонах (рис.12.7.)



Рис. 12.7. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десяти метров).

Bluetooth практически не требует настройки. У нее низкие показатели по дальности (до 10 метров) при 400-700 Кбит/с.

Специализация распределенных вычислений:

Сети и протоколы;

Сетевые мультимедиасистемы;

Распределенные вычисления;

Архитектура сети

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа.Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Сетевая архитектура сродни архитектуре строений. Архитектура здания отражает стиль конструкций и материалы, используемые для постройки. Архитектура сети описывает не только физическое расположение сетевых устройств, но и тип используемых адаптеров и кабелей. Кроме того, сетевая архитектура определяет методы передачи данных по кабелю.

Архитектура сетей

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

В данном курсе будет рассмотрено три вида архитектур:

архитектура терминал – главный компьютер;

одноранговая архитектура;

архитектура клиент – сервер.

Архитектура терминал – главный компьютер

Архитектура терминал – главный компьютер (terminal – host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Главный компьютер через мультиплексоры передачи данных (МПД) взаимодействуют с терминалами.

Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).

Одноранговая архитектура

Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.

Архитектура клиент – сервер

Клиент-сервер (англ. Client-server) - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.Содержание

Преимущества

Делает возможным, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера, не затрагивают клиентов.

Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т.п.

Недостатки

Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

Поддержка работы данной системы, требует отдельного специалиста - системного администратора.

Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Трёхуровневая архитектура

Сеть с выделенным сервером

Сеть с выделенным сервером (англ. Client/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Сетевые архитектуры

Сетевые архитектуры разделяются по скорости передачи данных, среде передачи, вариантах реализации, топологии

Ethernet. 10Мбит/с.

  • 10BaseT (Витая пара);
  • 10Base2 (Тонкий коаксиал);
  • 10Base5 (Толстый коаксиал);
  • 10BaseFL (Оптоволокно) .

10Base2 или Тонкий Ethernet

10Base5

IEEE 10Base5 или "толстый" Ethernet - самый старый стандарт среди остальных. В настоящее время затруднительно найти в продаже новое оборудование для построения сети на этом стандарте. Основные его параметры:

10Base-T или Ethernet на витой паре

В 1990 году IEEE опубликовал спецификацию 802.3 для построения сети Ethernet на основе витой пары. l0BaseT (10 - скорость передачи 10 Мбит/с, Base - узкополосная, Т - витая пара) - сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Тем не менее и экранированная витая пара (STP) также может применяться в топологии lOBaseT без изменения каких-либо ее параметров. Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно концентратор сети lOBaseT выступает как многопортовый (multiport) репитер и часто располагается в распределительной стойке здания. Каждый компьютер подключается к другому концу кабеля, соединенного с концентратором, и использует две пары проводов: одну - для приема, другую - для передачи. Максимальная длина сегмента l0BaseT - 100 м (328 футов). Минимальная длина кабеля - 2,5 м (около 8 футов). Сеть l0BaseT может обслуживать до 1024 компьютеров.

10BaseFL

10BaseFL (10 - скорость передачи 10 Мбит/с, Base - узкополосная передача, FL - оптоволоконный кабель) представляет собой сеть Ethernet, в которой компьютеры и репитеры соединены оптоволоконным кабелем. Основная причина причина популярности 10BaseFL - возможность прокладывать кабель между репитерами на большие расстояния (например между зданиями). Максимальная длина сегмента 10BaseFL - 2000м.

Ethernet. 100Мбит/с.

Новые стандарты Ethernet позволяют преодолеть скорость передачи в 10 Мбит/с.Известны несколько стандартов Ethernet, которые могут удовлетворить возросшие требования, рассмотрим 2 из них:

  • 100BaseVG-AnyLAN Ethernet;
  • 100BaseX Ethernet(Fast Ethernet).

И Fast Ethernet, и 100 Base VG-Any LAN работают примерно в пять-десять раз быстрее, чем стандартный Ethernet. Кроме того, они совместимы с существующей кабельной системой 10BaseT. Это означает, что перейти от l0BaseT к этим стандартам достаточно просто и быстро.

100VG-AnyLAN

100VG (Voice Grade) AnyLAN - новая сетевая технология, которая сочетает в себе элементы Ethernet и Token Ring. Эта технология, разработанная фирмой Hewlett-Packard, в настоящее время совершенствуется стандартом IEEE 802.12. Спецификация 802.12 -стандарт передачи кадров Ethernet 802.3 и пакетов Token Ring 802.5. Эта технология имеет несколько названий:

  • l00VG-AnyLAN;
  • 100Base VG;
  • AnyLAN.

Спецификации

Перечислим возможности некоторых из существующих в настоящее время спецификаций l00VG-AnyLAN:

  • минимальная скорость передачи данных 100 Мбит/с;
  • поддержка каскадируемой топологии «звезда» на основе витой пары категории 3, 4 или 5 и оптоволоконного кабеля;
  • метод доступа по приоритету запроса (различаются два уровня приоритета: низкий и высокий);
  • поддержка средств фильтрации персонально адресованных кадров в концентраторе (для повышения степени конфиденциальности);
  • поддержка передачи кадров Ethernet и Token Ring.

Топология

Сеть 100VG-AnyLAN строится по топологии «звезда», где все компьютеры соединены с концентратором. Сеть можно расширять, добавляя «дочерние» (child) концентраторы к центральному, «родительскому» (parent), который относится к ним так же, как и к компьютерам, т.е. родительские концентраторы управляют передачей компьютеров, соединенных со своими «детьми».

Некоторые соображения

Представленная технология требует использования специальных концентраторов и плат. Кроме того, длина кабеля 100BaseVG, по сравнению с 10BaseT и другими реализациями Ethernet, ограничена: общая длина пары кабелей от концентратора 100BaseVG до компьютеров не может превышать 250 м. Чтобы преодолеть это ограничение, надо использовать специальное оборудование. Ограничения длины кабеля приведут к тому, что для 100BaseVG потребуется больше кабельных стоек, чем для 10BaseT.

100BaseX Ethernet

Этот стандарт, иногда называемый Fast Ethernet, является расширением существующего стандарта Ethernet. Он строится на UTP категории 5, использует метод доступа CSMA/CD и топологию «звезда-шина» (подобно 10BaseT), где все кабели подключены к концентратору.

Компьютерные сети. Архитектура комп. сетей. Основные характеристики архитектуры сетей

Уровень 1 - физический - реализует управление каналом связи, что сводится к подключению и отключению канала связи и формированию сигналов, представивших передаваемые данные.

Уровень 2 - канальный - обеспечивает надежную передачу данных через физический канал, организованный на уровне 1.

Уровень 3 - сетевой - обеспечивает выбор маршрута передачи сообщений по линиям, связывающим узлы сети.

Уровни 1-3 организуют базовую сеть передачи данных как систему, обеспечивающую надежную передачу данных между абонентами сети.

Уровень 4 - транспортный - обеспечивает сопряжение абонентов сети с базовой сетью передачи данных.

Уровень 5 - сеансовый - организует сеансы связи на период взаимодействия процессов. На этом уровне по рапросам процессов создаются порты для приема и передачи сообщений и организуются соединения - логические каналы.

Уровень 6 - представительный - осуществляет трансформацию различных языков, форматов данных и кодов для взаимодействия разнотипных компьютеров.

Уровень 7 - прикладной - обеспечивает поддержку прикладных процессов пользователей. Порядок реализации связей в сети регулируется протоколами. Протокол - это набор коммутационных правил и процедур по формированию и передаче данных в сети.

Компьютерные сети. Основные характеристики. Типы сетей.

Компьютерные сети. Основные характеристики. Типы сетей.

Компьютерная сеть (вычислительная сеть, сеть передачи данных) - система связи двух или более компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило - различные виды электрических сигналов или электромагнитного излучения.

Типы сетей

По размеру, охваченной территории

· Персональная сеть (PAN, Personal Area Network)

· Локальная сеть (LAN, Local Area Network)

o Объединение нескольких зданий (CAN, Campus Area Network)

· Городская сеть (MAN, Metropolitan Area Network)

· Национальная сеть

· Глобальная вычислительная сеть(WAN, Wide Area Network)

· Сравнительная характеристика сетей (особенности локальных, глобальных и городских сетей)

По типу функционального взаимодействия

· Клиент-сервер

· Смешанная сеть

· Точка-точка

· Одноранговая сеть

· Многоранговые сети

По типу сетевой топологии

· Решётка

· Смешанная топология

· Полносвязная топология

По функциональному назначению

· Сети хранения данных

· Серверные фермы

· Сети управления процессом

· Сети SOHO

По сетевым ОС

· На основе Windows

· На основе UNIX

· На основе NetWare

· Смешанные

По необходимости поддержания постоянного соединения

· Пакетная сеть, например Фидонет и UUCP

· Онлайновая сеть, например Интернет и GSM

Понятие сервера. Типы серверов, используемые в компьютерных сетях

Понятие сервера. Типы серверов, используемые в компьютерных сетях

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера - это сетевой принтер.

Типы серверов: Telnet-серверы позволяют пользователям подключаться к главному компьютеру и работать с ним так, как будто все задачи выполняются на самом удаленном компьютере.Web-серверы позволяют предоставлять информацию через Интернет посредством языка гипертекстовой разметки (HyperText Markup Language, HTML)Шлюз (gateway) - это транслятор, который дает возможность разным сетям взаимодействовать между собой.Новостные серверы функционируют в качестве источников распространения и доставки новостей для более чем 20 ООО новостных конференций общего пользования, доступ к которым в настоящее время можно получить через пользовательскую сеть Usenet (самая крупная в сети Интернет система рассылки новостей и организации дискуссионных форумов, упорядоченная по группам новостей этой сети).Аудио- и видеосерверы создают мультимедийные возможности для Web-сайтов, позволяя пользователям слушать звуки и музыку и смотреть видеоклипы через сменные модули Web-браузеров. Почтовые серверы (такие, например, как Microsoft Exchange Server и Sendmail) управляют потоком электронных сообщений, пересылаемых между пользователями компьютерных сетей.

Топология сети. Определение топологии. Типы топологий, их характеристики

Топология сети. Определение топологии. Типы топологий, их характеристики

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Шина (bus) - все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам.

Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера.

Способы передачи информации в глобальной вычислительной сети. Протоколы TCP/IP.

Способы передачи информации в глобальной вычислительной сети. Протоколы TCP/IP.

Протокол управления передачей / Межсетевой протокол - набор протоколов, разработанный для Интернета и ставший его основой.

Передача информации по протоколу TCP/IP состоит из четырех этапов:
-1- протокол ТСР: разбиение информации на нумерованные пакеты;
-2- протокол IP: передача пакетов получателю;
-3- протокол TCP на стороне получателя: проверка комплектности полученных пакетов;
-4- протокол TCP: восстановление искомой информации.
В семейство TCP/IP входят:
- протокол Telnet;
- система доменной адресации DNS, позволяющая пользователям адресоваться к узлам сети по символьному доменному имени вместо цифрового IP-адреса;
- протокол передачи файлов FTP, который определяет механизм хранения и передачи файлов;
- протокол передачи гипертекста HTTP.

60. Internet. Основные понятия и определения. История развития.

Службы Internet.

Internet. Основные понятия и определения. История развития. Службы Internet.

ИНТЕРНЕТ (Internet - inter + net - объединение сетей) - всемирная компьютерная сеть, объединяющая миллионы компьютеров в единую информационную систему. Интернет предоставляет широчайшие возможности свободного получения и распространения научной, деловой, познавательной и развлекательной информации. Глобальная сеть связывает практически все крупные научные и правительственные организации мира, университеты и бизнес-центры, информационные агентства и издательства, образуя гигантское хранилище данных по всем отраслям человеческого знания. Виртуальные библиотеки, архивы, ленты новостей содержат огромное количество текстовой, графической, аудио и видео информации.

Международная компьютерная сеть Интернет (Internet) обязана своим рождением военному проекту, выполняемому в середине 60-х годов под руководством американского Агентства перспективных исследований Министерства обороны. Целью этого проекта было объединение внутренних (локальных) сетей ряда исследовательских лабораторий и университетов США, работающих на оборону, в единую специализированную компьютерную сеть.

1969-в сеть объединены первые четыре университетских узла Министерства обороны США.

1972-изобретена электронная почта и отправлено первое послание.

1973-сеть стала международной - подключились Норвегия и Англия.

1989-создана первая версия языка HTML (описание гипертекстовых документов) - (HyperText Markup Language).

1993-выпущен первый Web-браузер Mosaic

1994-создан браузер Netscape Navigator.

1995-браузер фирмы Microsoft - Internet Explorer

1999-называется цифра - около 150 миллионов компьютеров включенных в Сеть.

Архитектура сети - это реализованная структура сети переда- чи данных, определяющая ее топологию, состав устройств и пра- вила их взаимодействия в сети. В рамках архитектуры сети рассмат- риваются вопросы кодирования информации, ее адресации и пе- редачи, управления потоком сообщений, контроля ошибок и ана- лиза работы сети в аварийных ситуациях и при ухудшении харак- теристик.

Наиболее распространены следующие архитектуры сети:

Ethernet (от англ, ether - эфир) - широковещательная сеть. Это значит, что все станции сети могут принимать все сообщения. Топология - линейная или звездообразная. Скорость передачи данных - 10 или 100 Мбит/с. Arcnet (Attached Resource Computer Network - компьютерная сеть соединенных ресурсов) - широко- вещательная сеть. Физическая топология - дерево. Скорость пере- дачи данных - 2,5 Мбит/с;

Token Ring (эстафетная кольцевая сеть, сеть с передачей мар- кера) - кольцевая сеть, в которой принцип передачи данных основан на том, что каждый узел кольца ожидает прибытия неко- торой короткой уникальной последовательности битов - марке- ра - из смежного предыдущего узла. Поступление маркера указы- вает на то, что можно передавать сообщение из данного узла дальше по ходу потока. Скорость передачи данных - 4 или 16 Мбит/с;

FDDI (Fiber Distributed Data Interface) - сетевая архитектура высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи данных - 100 Мбит/с. Топология - двойное кольцо или смешанная (с включением звездообразных или древо- видных подсетей). Максимальное число станций в сети - 1000. Очень высокая стоимость оборудования;

ATM (Asynchronous Transfer Mode) - перспективная, пока еще очень дорогая архитектура, обеспечивающая передачу циф- ровых данных, видеоинформации и голоса по одним и тем же линиям. Скорость передачи данных - до 2,5 Гбит/с. Линии связи оптические.