Схемы и конфигурации тепловых сетей. Схемы тепловых сетей

15.04.2019

Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (ТЭЦ или крупной котельной) к тепловым потребителям по специальным трубопроводам, называемым тепловыми сетями.

Тепловая сеть - один из наиболее трудоемких элементов систем централизованного теплоснабжения. Она представляет собой теплопроводы- сложные сооружения, состоящие из соединенных между собой сваркой стальных труб, тепловой изоляции, компенсаторов тепловых удлинений, запорной и регулирующей арматуры, строительных конструкций, подвижных и неподвижных опор, камер, дренажных и воздухоспускных устройств.

По количеству параллельно проложенных теплопроводов тепловые сети могут быть однотрубными, двухтрубными и многотрубными.

Однотрубные сети наиболее экономичны и просты. В них сетевая вода после систем отопления и вентиляции должна полностью использоваться для горячего водоснабжения. Однотрубные тепловые сети являются прогрессивными, с точки зрения значительного ускорения темпов строительства тепловых сетей. В трехтрубных сетях две трубы используют в качестве подающих для подачи теплоносителя с разными тепловыми потенциалами, а третью трубу - в качестве общей обратной. В четырехтрубных сетях одна пара теплопроводов обслуживает системы отопления и вентиляции, а другая - систему горячего водоснабжения и технологические нужды.

В настоящее время наибольшее распространение получили двухтрубные тепловые сети , состоящие из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей. Благодаря высокой аккумулирующей способности воды, позволяющей осуществлять дальнее теплоснабжение, а также большей экономичности и возможности центрального регулирования отпуска теплоты потребителям, водяные сети имеют более широкое применение, чем паровые.

Водяные тепловые сети по способу приготовления воды для горячего водоснабжения разделяются на закрытые и открытые . В закрытых сетях для горячего водоснабжения используется водопроводная вода, нагреваемая сетевой водой в водоподогревателях. При этом сетевая вода возвращается на ТЭЦ или в котельную. В открытых сетях вода для горячего водоснабжения разбирается потребителями непосредственно из тепловой сети и после использования ее в сеть уже не возвращается.

Тепловые сети разделяют на магистральные , прокладываемые на главных направлениях населенных пунктов, распределительные - внутри квартала, микрорайона и ответвления к отдельным зданиям.

Радиальные сети (рис. 1а) сооружают с постепенным уменьшением диаметров теплопроводов в направлении от источника теплоты. Такие сети наиболее просты и экономичны по начальным затратам. Их основ ной недостаток - отсутствие резервирования. Во избежание перерывов в теплоснабжении (в случае аварии на магистрали радиальной сети прекращается теплоснабжение потребителей, присоединенных на аварийном участке) должно предусматриваться резервирование подачи теплоты потребителям за счет устройства перемычек между тепловыми сетями смежных районов и совместной работы источников теплоты (если их несколько). Радиус действия водяных сетей во многих городах достигает значительной величины (15–20 км).

Рис. 1. Схемы тепловых сетей: тупиковая (а) и кольцевая (б)

1- лучевой магистральный теплопровод; 2 - тепловые потребители; 3 - пере­мычки; 4 - районные (квартальные) котельные; 5 - секционирующие камеры; 6 - кольцевая магистраль; 7 - центральные тепловые пункты; 8 - промыш­ленные предприятия

Устройством перемычек тепловая сеть превращается в радиально-кольцевую, происходит частичный переход к кольцевым сетям. Для предприятий, в которых не допускается перерыв в теплоснабжении, предусматривают дублирование или кольцевые (с двусторонней подачей теплоты) схемы тепловых сетей. Хотя кольцевание сетей существенно удорожает их, но зато в крупных системах теплоснабжения значительно повышается надежность теплоснабжения, создается возможность резервирования, а также повышается качество гражданской обороны.


Паровые сети устраивают преимущественно двухтрубными. Возврат конденсата осуществляется по отдельной трубе - конденсатопроводу. Пар от ТЭЦ по паропроводу со скоростью 40–60 м/с и более идет к месту потребления. В тех случаях, когда пар используется в теплообменниках, конденсат его собирается в конденсатных баках, откуда насосами по конденсатопроводу возвращается на ТЭЦ.

Рис. 2. Прокладка теплопрово­дов на мачтах

Рис. 3. Проходной канал из сборных железобетонных блоков

Направление трассы тепловых сетей в городах и других населенных пунктах должно предусматриваться по районам наиболее плотной тепловой нагрузки с учетом существующих подземных и надземных сооружений, данных о составе грунтов и уровне стояния грунтовых вод, в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог, вне проезжей части и полосы зеленых насаждений. Следует стремиться к наименьшей протяженности трассы, а следовательно, к меньшим объемам работ по прокладке.

Рис. 4. Непроходные каналы марки КЛ (а), КЛп (б) и КЛс (в)

По способу прокладки тепловые сети делят на подземные и надземные (воздушные). Надземная прокладка труб (на отдельно стоящих мачтах или эстакадах, на кронштейнах, заделываемых в стены здания) применяется на территориях промышленных предприятий, при сооружении тепловых сетей вне черты города, при пересечении оврагов и т. д.. Надземная прокладка тепловых сетей рекомендуется преимущественно при высоком стоянии грунтовых вод. Преобладающим способом прокладки трубопроводов тепловых сетей является подземная прокладка: в проходных каналах и коллекторах совместно с другими коммуникациями; в полупроходных и непроходных каналах; бесканальная (в защитных оболочках различной формы и с засыпной теплоизоляцией).

Наиболее совершенный, но и более дорогой способ представляет собой прокладка теплопроводов в проходных каналах, которые применяют при наличии нескольких теплопроводов больших диаметров. При температуре воздуха в каналах более 50 °С предусматривают естественную или механическую вентиляцию.

Вытяжные шахты на трассе размещают примерно через 100 м. Приточные шахты располагают между вытяжными и по возможности объединяют с аварийными люками. На участках тепловых сетей с большим числом трубопроводов и высокой температурой теплоносителей устраивают механическую вентиляцию. При температуре воздуха в каналах ниже 40 °С их периодически проветривают, открывая люки и входы. Во время производства ремонтных работ можно применять механический передвижной вентиляционный агрегат. В больших городах строят так называемые городские коллекторы, в которых прокладывают теплопроводы, водопровод, электрические и телефонные кабели.

Полупроходные каналы состоят из стеновых блоков Г-образной формы, железобетонных днищ и перекрытий. Строят их под проездами с интенсивным уличным движением, под железнодорожными путями, при пересечении зданий, где затруднено вскрытие теплопроводов для ремонта. Высота их обычно не превышает 1600 мм, ширина прохода между трубами 400–500 мм. В практике централизованного теплоснабжения наиболее широко применяются непроходные каналы .

Рис. 5. Конструктивные элементы тепловых сетей

а -камера тепловой сети; 1- сальниковые компенсаторы; 2 - манометры; 3 - неподвижная опора; 4 - канал; б -размещение ниш по трассе теплопро­водов: Н - неподвижная опора; П - подвижная опора; в - размещение ком­пенсатора в нише:1 - подающий трубопровод; 2 - обратный трубопровод; 3 -стенка; г - сальниковый компенсатор; 1 - патрубок; 2 - грундбукса; 3 - набивка-шнур; 4 - кольцо уплотнительное; 6 - корпус; 6 - контрбукса; 7 - кольцо предохранительное; 8- болт: 9 - шайба; 10 - гайка; д - неподвиж­ная щитовая опора; 1 - железобетонная плита-щит; 2 - приварные упоры; 3 -канал; 4 - бетонная подготовка: 5 -трубопроводы; 6 - дренажное от­верстие; е - катковая подвижная опора: 1 - каток; 2 - направляющие; 3 - металлическая подкладка

Рис. 6. Бесканальная проклад­ка теплопроводов в монолитных оболочках из армированного пено­бетона

1- армопенобетонная оболочка; 2 - песчаная подсыпка; 3 - бетонная под­готовка; 4 - грунт

Разработаны типовые каналы трех видов: канал марки КЛ, состоящий из лотков и железобетонных плит перекрытия; канал марки КЛп, состоящий из плиты-днища и лотка и канал марки КЛс, состоящий из двух лотков, уложенных один на другой и соединенных на цементном растворе с помощью двутавровых балок. По трассе подземного теплопровода устраивают специальные камеры и колодцы для установки арматуры, измерительных приборов, сальниковых компенсаторов и др., а также ниши для П-образных компенсаторов. Подземный теплопровод прокладывают на скользящих опорах. Расстояние между опорами принимают в зависимости от диаметра труб, причем опоры подающего и обратного трубопроводов устанавливают вразбежку.

Тепловые сети в целом, особенно магистральные, являются серьезным и ответственным сооружением. Их стоимость, по сравнению с затратами на строительство ТЭЦ, составляет значительную часть.

Бесканальный способ прокладки теплопровода - самый дешевый. Применение его позволяет снизить на 30–40% строительную стоимость тепловых сетей, значительно уменьшить трудовые затраты и расход строительных материалов. Блоки теплопроводов изготовляют на заводе. Монтаж теплопроводов на трассе сводится лишь к укладке автокраном блоков в траншею и сварке стыков. Заглубление тепловых сетей от поверхности земли или дорожного покрытия до верха перекрытия канала или коллектора принимается, м: при наличии дорожного покрытия - 0,5, без дорожного покрытия - 0,7, до верха оболочки бесканальной прокладки - 0,7, до верха перекрытия камер - 0,3.

В настоящее время свыше 80% тепловых сетей проложены в непроходных каналах, около 10% - надземные, 4% - в проходных каналах и тоннелях и около б% - бесканальные. Средний срок службы подземных канальных теплопроводов вдвое меньше нормативного и не превышает в среднем 10–12 лет, а бесканальных с изоляцией на битумовяжущей основе - не более 6- 8 лет. Основной причиной повреждений является наружная коррозия, возникающая из-за отсутствия или некачественного нанесения антикоррозионных покрытий, неудовлетворительного качества или состояния покровных слоев, допускающих избыточное увлажнение изоляции, а также вследствие затопления каналов из-за неплотностей конструкций. Как у нас в стране, так и за рубежом ведется постоянный поиск, а в последние годы особенно интенсивно, в направлении повышения долговечности теплопроводов, надежности их работы и снижения затрат на их сооружение.

Схемы и конфигурации тепловых сетей

Задачи гидравлического расчета тепловых сетей

Гидравлический расчет является одним из важнейших этапов проектирования и эксплуатации тепловых сетей.

При проектировании тепловых сетей в прямую задачу гидравлического расчета входит:

1. Определœение диаметров трубопроводов;

2. Определœение потерь давления на участках;

3. Определœение давления в различных точках;

4. Увязка всœех точек системы при статическом и динамическом режимах.

В некоторых случаях (при эксплуатации тепловых сетей) может решаться обратная задача, ᴛ.ᴇ. определœение пропускной способности трубопроводов при известном диаметре или потерях давления участка.

В результате после гидравлического расчета тепловой сети бывают решены следующие задачи:

1. Определœение капитальных вложений;

2. Подбор циркуляционных и подпиточных насосов;

3. Выбор схем присоединœения абонентов;

4. Выбор регулирования абонентских вводов;

5. Разработка режима эксплуатации.

Для проведения гидравлического расчета должны быть заданы схема и профиль тепловой сети, указаны размещения источника и потребителœей и расчетные тепловые нагрузки.

Схема тепловой сети определяется размещением источника теплоты (ТЭЦ или котельной) по отношению к району теплопотребления, характером тепловой нагрузки и видом теплоносителя (рис. 5.1 ).

Основные принципы, которыми следует руководиться при выборе схемы тепловой сети - ϶ᴛᴏ надежность и экономичность.

Экономичность тепловой сети определяется по - среднее удельное падение давления по длинœе. = f (стоимости сети, расхода электроэнергии на перекачку теплоносителя, теплопотерь трубопроводов и т.д.)

Удельные потери давления на трение при гидравлических расчетах водяных тепловых сетей следует определять на основании технико-экономических расчетов.

В случае если технико-экономические расчёты не проводятся, то рекомендуется принимать:

Магистральные трубопроводы;

Ответвления.

Надежность тепловой сети - ϶ᴛᴏ способность непрерывной подачи теплоносителя к потребителю в крайне важно м количестве в течении всœего года. Требования к надежности тепловой сети возрастают с понижением расчетной температуры наружного воздуха и увеличением диаметров трубопроводов. В СНиПе для различных t нр и d тр указаны крайне важно сть резервирования подачи теплоты и допускаемое снижение подачи от расчетного значения.

Аварийная уязвимость тепловой сети особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединœении абонентов, в связи с этим при выборе схемы водяной тепловой сети вопросам надежности и резервирования теплоснабжения крайне важно уделить особое внимание.

Водяные тепловые сети разделяются на магистрали и распределительные. К магистралям относятся трубопроводы, соединяющие источник с районами теплопотребления. Из магистралей теплоноситель поступает в распределительные сети и по ним через ЦТП и ИТП к абонентам. Непосредственное присоединœение потребителœей к магистралям тепловой сети допускать не следует, кроме крупных промышленных предприятий (с Q > 4 МВт ).

Рис. 5.1.

Принципиальная

схема тепловой

СК – секционирущая камера

В местах присоединœения распределительных сетей к магистралям сооружают секционирующие камеры (СК), в которых размещают: секционирующие задвижки, задвижки распределительных сетей и т.д.

Секционирующие задвижки устанавливают на магистралях с 100 мм на 1000 м , 400 мм на 1500 м . Благодаря разделœению магистральных сетей на секции уменьшаются потери воды из тепловой сети при аварии, т.к. место аварии локализуется секционными задвижками.

Принципиально существуют две схемы: тупиковая(радиальная) и кольцевая.

Рис. 5.2 . Принципиальные схемы тепловых сетей: а, в – тупиковые;

в – кольцевая; 1 – магистраль 1; 2 – магистраль 2;

3 – резервирующая перемычка

Тупиковая схема (рис. 5.2а, в ) более дешевая по начальным затратам, требует меньше металла и проста в эксплуатации. При этом менее надежна, т.к. при аварии на магистралях прекращается теплоснабжение абонентов, присоединœенных за местом аварии.

Кольцевая схема (рис. 5.2б ) более надежна и применяется в крупных системах теплоснабжения от нескольких источников.

Для увеличения надежности работы тупиковых схем применяют резервирующие перемычки (рис. 5.2в ).

Схемы и конфигурации тепловых сетей - понятие и виды. Классификация и особенности категории "Схемы и конфигурации тепловых сетей" 2017, 2018.

СХЕМЫ, ПРОКЛАДКИ И КОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или котельных) по отношению к району теплового потребления, характером тепловой нагрузки потребителей района и видом теплоносителя. Основные принципы, которыми следует руководствоваться при выборе схемы теплосети, - это надежность и экономичность. При выборе конфигурации теплосетей, как правило, стремиться к получению наиболее простых решений и наименьшей длины теплопроводов.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и то же время достаточно надежным решением является прокладка однотрубного паропровода с конденсатопроводом.

Следует иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов и в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на 100% нагрузки, двух параллельных, рассчитанных на 50% нагрузки, площадь поверхности трубопроводов возрастает на 56%. Соответственно возрастают расход металла и начальная стоимость тепловой сети.

Более сложной задачей является выбор схемы водяных теплосетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные теплосети в современных городах обслуживают большое количество потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий, расположенных на территориях, измеряемых часто многими десятками квадратных километров.

Водяные сети менее долговечны по сравнению с паровыми главным образом из-за большей подверженности наружной коррозии стальных трубопроводов подземных водяных сетей по сравнению с паропроводами. Кроме того, водяные теплосети более чувствительны к авариям из-за большой плотности теплоносителя. Аварийная уязвимость водяных систем теплоснабжения особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединении отопительных установок к теплосети, поэтому при выборе схемы водяных теплосетей вопросам надежности и резервирования теплоснабжения необходимо уделить особое внимание.

Водяные теплосети должны четко разделяться на магистральные и распределительные. К магистральным сетям обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных сетей в распределительные сети и по ним подается через ЦТП или ИТП к теплопотребляющим установкам потребителей. Непосредственное присоединение потребителей теплоты к магистральным сетям допускать не следует, за исключением случаев присоединения крупных промышленных предприятий.



В узлах присоединения распределительных сетей к крупным магистралям сооружаются так называемые секционирующие камеры (СК), в которых размещаются: секционирующие задвижки, головные задвижки распределительных сетей, задвижки на блокирующих связях между смежными магистралями, а также между магистралями и резервными источниками теплоснабжения (например, районными котельными). Секционирующие задвижки устанавливаются обычно на магистральных сетях через 2-3 км. Благодаря разделению магистральных сетей на секции уменьшаются потери воды из теплосети при аварии, т.к. место аварии локализуется секционирующими задвижками. Это облегчает и ускоряет включение в работу сети после аварии. Задвижки, установленные в СК, должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь двустороннее присоединение к магистрали с обеих сторон секционирующей задвижки с тем, чтобы можно было обеспечить бесперебойное теплоснабжение абонентов при авариях на любом секционированном участке магистрали.

В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика.

Блокировочные связи между магистралями могут выполняться однотрубными. Соответствующей схемой их присоединения к магистральной сети может быть предусмотрено использование блокирующей связи как для подающей, так и обратной линии.

Распределительные тепловые сети отводимые от СК, при диаметре этих сетей 700 мм и меньше, а также магистральные сети диаметром 700 мм и меньше выполняются обычно тупиковыми. Это объясняется тем, что максимально допустимая длительность аварийного прекращения теплоснабжения для большинства абонентов водяных тепловых сетей, за исключением зданий первой категории теплоснабжения (больницы, детские учреждения, государственные музеи и др.), может быть установлена в пределах до 24 ч, так как за такой период благодаря аккумулирующей способности зданий не возникает опасности их размораживания при наличии автономной циркуляции воды в абонентских отопительных установках.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарное резервирование котлов на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

Назначение тепловых сетей - соединение источников тепла с местами его потребления. Наружными тепловыми сетями (при централизованном теплоснабжении) называют сети, соединяющие источник тепла с пунктами, распределяющими тепло, в отличие от теплопроводов, прокладываемых внутри зданий и называемых теплопроводами внутренней разводки.

Наружные тепловые сети прокладывают, как правило, в земле (в проходных, полупроходных и непроходных каналах, бесканально), открыто (на кронштейнах по стенам строений, на бетонных, железобетонных и металлических опорах, на отдельных конструкциях мостов при переходах через железнодорожные пути и водные преграды) и дюкером. Тепловые сети, проходящие по подвалам или по техническим подпольям, т. е. внутри зданий, именуются также наружными сетями, поскольку соединяют, как указывалось выше, источник тепла с тепловыми пунктами, в которых устанавливаются элеваторные и тепловые узлы, подогреватели и прочие устройства, распределяющие тепло.

Теплопроводы от этих узлов до мест потребления тепла (отопительных панелей и радиаторов, калориферов, кондиционеров, технологических установок и т. д.) относятся к теплопроводам внутренней разводки (системы центрального отопления и горячего водоснабжения, разводки внутри зданий котельных, теплоэлектроцентралей).

Наружные тепловые сети разделяются на магистральные - от источника тепла до микрорайона (квартала) или до промышленного предприятия, на распределительные - от магистральных тепловых сетей до ответвлений (вводов) к отдельным строениям и на ответвления (вводы) - от распределительных или магистральных тепловых сетей до узлов присоединений систем потребителей тепла.

Транспортируемый теплоноситель используется для отопления, горячего водоснабжения и вентиляции, а также для производственно-технологических нужд. В зависимости от вида теплоносителя сети делятся на паровые и водяные. При теплоносителе паре к источнику тепла от мест его потребления возвращается конденсат. Сети, в которых циркулирует постоянное количество теплоносителя (без разбора его у потребителей), называются закрытыми; сети с непосредственным разбором воды - открытыми.

По характеру потребителей тепловые сети делятся на промышленные, коммунальные и смешанные. В настоящее время приняты двухтрубные и многотрубные системы теплоснабжения. По конфигурации тепловые сети могут быть лучевыми и кольцевыми. Кольцевые сети обеспечивают лучший гидравлический режим и позволяют отключать для ремонта отдельные линии сетей, не прерывая снабжения теплом потребителей.

10. Потребление тепла жилыми районами .

Тепловые потребители классифицируются по двум основным категориям:

а) потребление тепла для коммунально-бытовых нужд (для обеспечения комфортных условий труда и быта в жилых, общественных и производственных помещениях);

б) потребление тепла для технологических нужд (для обеспечения выпуска промышленной или сельскохозяйственной продукции заданного качества).

29. Центральное качественное регулирование однородной тепловой нагрузки при зависимых схемах присоединения. Температурный график сетевой воды и его расчет.

Центральное регулирование отопительной нагрузки применяют в системах теплоснабжения с децентрализованным горячим водоснабжением. В таких системах отопление является основной тепловой нагрузкой. Центральное регулирование осуществляется в соответствии с потребностью тепла для отопления зданий при различных наружных температурах воздуха.

При качественном регулировании задача расчета состоит в определении температуры воды в зависимости от тепловой нагрузки. Расход воды остается постоянным в течение всего отопительного сезона.

Общее уравнение для регулирования отопительной нагрузки при зависимых схемах присоединения отопительных установок к тепловой сети:

20.Открытые и закрытые тепловые сети. Схемы присоединения потребителей горячей воды.

В открытых тепловых сетях осуществляется непосредственный водоразбор из тепловых сетей на ГВС.

Расход теплоты, передаваемой по тепловым сетям при открытой системе теплоснабжения.

МВт (Гкал/ч)

где G 1, G 2 – расходы воды в подающем и обратном трубопроводах, кг/с (кг/ч);

с – теплоемкость воды, кДж/(кг · °С); t 1, t 2 –температуры сетевой воды в подающем и обратном трубопроводах, °С.

В закрытых системах дополнительно устанавливаются водоводяные подогреватели ГВС. На предприятиях возможна установка пароводяных подогревателей ГВС. В систему ГВС поступает водопроводная (питьевая) вода после подогревателя. Подогреватели ГВС могут быть включены в соответствии с одной из трех схем (параллельная схема, двухступенчатая смешанная схема, двухступенчатая последовательная схема)

Расход теплоты, передаваемой по водяному теплопроводу, при закрытой системе теплоснабжения

МВт (Гкал/ч)

30. Температурный график сетевой воды при количественном и качественно-количественном регулировании.



Основным достоинством количественного регулирования является сокращение расхода электроэнергии на перекачку теплоносителя. Это преимущество может быть использовано в магистральных трубопроводах двухступенчатых сетей, к которым абоненты присоединены по не- зависимым схемам или с помощью смесительных насосных подстанций. При снижении расхода сетевой воды в магистральных сетях смеси- тельные насосы, работающие с переменным коэффициентом смешения, увеличивают подачу воды из обратной магистрали. Благодаря этому в системах отопления сохраняется необходимый расход воды и тем самым устраняется основной недостаток количественного регулирования – разрегулировка отопительных систем.

При качественно-количественном регулировании осуществляется изменение расхода и температуры сетевой воды в зависимости от вели- чины отопительной нагрузки.

5. Показать схему одноступенчатой системы теплоснабжения. Ее преимущества и недостатки.

В одноступенчатых системах теплоснабжения потребителей тепла присоединяют непосредственно к тепловым сетям (рис. 2.5). Узлы при- соединения потребителей тепла к тепловым сетям называются абонент- скими вводами. На абонентском вводе каждого здания устанавливают подогреватели горячего водоснабжения, элеваторы, циркуляционные насосы, регулирующую арматуру для параметров и расходов теплоно- сителя по местным отопительным и водоразборным приборам, кон- трольно-измерительные приборы. Поэтому часто абонентский ввод на- зывают местным тепловым пунктом (МТП).

Схема одноступенчатой системы теплоснабжения: 1 – магистральные трубопроводы; 2 – ответвления; МТП – местный тепловой пункт; ТП – теплофика- ционный подогреватель; ПК – пиковый котел; СН – сетевой насос

й подогреватель; ПК – пиковый котел; СН – сетевой насос

Если абонентский ввод сооружается для отдельной, например, тех- нологической установки, то его называют индивидуальным тепловым пунктом (ИТП).

Непосредственное присоединение отопительных приборов ограни- чивает пределы допустимого давления в тепловых сетях, т. к. высокое давление, необходимое для транспорта теплоносителя к конечным по- требителям, опасно для радиаторов отопления. В силу этого односту- пенчатые системы применяют для теплоснабжения ограниченного чис- ла потребителей от котельных с небольшой длиной тепловых сетей.

Резервирования подачи тепла потребителям является наиболее сложным вопросом проектирования тепловых сетей, который не полностью освещен в нормативно-технической документации. В связи с этим произведена разработка “Методических рекомендаций по резервированию тепловых сетей” (в дальнейшем по тексту “Рекомендации”) с учетом последних достижений техники и специфических условий эксплуатации г. Москвы в 2006 году.

Генеральный директор ООО ”Каналстройпроект” – Малиницкий В.С.

Заместитель Главного инженера ООО ”Каналстройпроект” – Липовских В.М.

Главный инженер проекта ООО ”Каналстройпроект” – Арешкин А.А.

В течение последних пятидесяти лет требования по резервированию сетей периодически изменялись. Например, для климатических условий г. Москвы требования по резервированию были следующими:

– согласно п.4.1. СНиП II-36-73 резервирование тепловых сетей было обязательным для тепломагистралей с нагрузкой более 300 Гкал/ч (для СЦТ с режимом 150/70°С, начиная с теплопроводов 2хДу800 мм и более);

– согласно п.3.1, и табл.1 СНиП 2.04.07-86* резервирование было обязательным для теплопроводов 2хДу500 мм и более;

– согласно п.6.33. и табл.2 СНиП 41-02-2003 резервирование стало обязательным для теплопроводов 2хДу300 мм и более.

При этом в СНиП 41-02-2003 не учтены специфические условия бесканальной прокладки теплопроводов заводского изготовления с теплоизоляцией из пенополиуретана (ППУ) в полиэтиленовой оболочке, в которых предусмотрен кабель для профилактического дистанционного контроля состояния теплопроводов (в дальнейшем по тексту бесканальная прокладка теплопроводов в ППУ-изоляции).

В результате чего существующие тепловые сети, а также запроектированные до 2003 г. не соответствуют нормам резервирования действующего СНиП 41-02-2003. Исходя из этого, при реконструкции действующих СЦТ необходимо рассматривать вопрос резервирования существующих тепловых сетей в зависимости от срока их прокладки (или последнего срока перекладки) и технического состояния.

При рассмотрении вопроса резервирования тепловых сетей необходимо учитывать, что оно приводит к дополнительному увеличению капитальных затрат и поэтому, должно быть минимизировано.

В связи с этим при разработке схем и проектов тепловых сетей необходимо исходить из следующих положений:

– вероятности одной аварии тепловых сетях в рассматриваемый период времени;

– обеспечения резервирование источника тепла за счет установки на нем двух и более агрегатов;

— особенности присоединения к тепловым сетям.

Термины и классификация

В настоящих нормах используются следующие термины и классификация.

Система централизованного теплоснабжения – система, состоящая из одного или нескольких источников тепла, тепловых сетей и потребителей тепла (в дальнейшем по тексту СЦТ).

Авария – повреждение тепловых сетей, приводящее к останову подачи тепла потребителям на период более 15 часов.

Первая категория потребителей – потребители, не допускающие перерывов в подаче расчетного количества тепла и снижение температуры воздуха в помещениях ниже предусмотренных ГОСТ 30494. Например, больницы, родильные дома, детские дошкольные с круглосуточным пребыванием детей, картинные галереи, химические и специальные производства, шахты и т.п.

– жилых и общественных зданий до 12°С;

– промышленных зданий до 8°С.

Первичные тепломагистрали – тепловые сети непосредственно присоединенные к источникам тепла без вторичных тепломагистралей и квартальных первичных теплопроводов.

Вторичные тепломагистрали – тепловые сети присоединенные к первичным тепломагистралям без квартальных первичных теплопроводов.

Квартальные теплопроводы – разводящие первичные тепловые сети внутри кварталов.

Абонентские вводы - теплопроводы от тепломагистралей или квартальных теплопроводов до ЦТП, ВЦТП и ИТП.

1. Общие положения по резервирование источников тепла и тепловых сетей

1.1. Вопрос резервирования тепловых сетей напрямую связан с метеоусловиями местности и со сроком выполнения ремонтных работ. В связи с этим при разработке данных “Рекомендаций” учитывались специфичные условия эксплуатации (в зависимости от условий эксплуатации, профилактических мер и оперативности аварийной службы), сложившиеся в ОАО “Московская теплосетевая компания” (МТК) и ОАО “Московская энергетическая компания” (МОЭК).

1.2. Согласно требованиям СНиП 41-02-2003 “Тепловые сети” при отсутствие на объектах 1 категории местного резервного источника тепла резервирование тепловых сетей от источника тепла (или от другого источника тепла) до данного объекта обязательно.

1.3. Согласно требованиям СНиП 41-02-2003 “Тепловые сети” допускается не производить резервирование тепловых сетей в следующих случаях:

– для участков надземной прокладки протяженностью менее 5 км;

– при наличии у потребителей местного резервного источника тепла;

– для тепловых сетей диаметром 250 мм и менее.

Для остальных случаев необходимо рассматривать вопрос резервирования сетей с учетом конкретной ситуации.

1.4. Резервирование источников тепла обеспечивается следующим условием выбора котлов - при выходе самого мощного котла производительность оставшихся котлов должна обеспечить покрытие в зависимости от расчетной температуры наружного воздуха от 78 до 91% расчетной нагрузки на отопление и вентиляцию для потребителей 2 и 3 категории и 100% расчетной нагрузки потребителей 1 категории.

1.5. Не производится резервирования транзитных теплопроводов от ТЭЦ до пиковых котельных в случае если их производительность обеспечивает в зависимости от расчетной температуры наружного воздуха покрытие от 78 до 91% расчетной нагрузки на отопление и вентиляцию для потребителей 2 и 3 категории и 100% расчетной нагрузки потребителей 1 категории.

1.6. Основными критериями при резервировании тепловых сетей рекомендуется принимать:

– срок слива и заполнения сетевой водой теплопроводов и срок ликвидации аварии, которые необходимо снижать за счет оперативности проведения восстановительных работ до минимально допустимого периода, т.е. до периода 12 часов и менее, что соответствует сроку ликвидации аварии на участке тепловой сети 2хДу250 мм протяженностью 1000 м (участок между двумя секционирующими задвижками).

– вероятность возникновения аварии, исходя из срока службы и технического состояние теплопроводов, а также типа прокладки теплопроводов и контроля их состояния.

Исходя из этих вышеперечисленных критериев рекомендуется определять протяженность не зарезервированных участков теплопроводов 2хДуЗ00-600 мм.

1.6.1. Расчет и практика восстановительных работ в МТК и МОЭК показали, что для теплопроводов проложенных в непроходных каналах с теплоизоляцией из минераловатных изделий (или бесканальная прокладка с теплоизоляцией из армопенобетона и пенополимерминеральной изоляции) 2хДуЗ00-600 мм необходимо снизить протяженность не зарезервированных участков до уровня, приведенного в таблице 1.1.

Таблица 1.1

1.6.2. В случае монтажа дополнительных сливных устройств, обеспечивающих ускоренное опорожнение трубопроводов или увеличения диаметра сливных устройств допускается повышать протяженность не зарезервированных участков до уровня, приведенного таблице 1.2.

Таблица 1.2

Схема тепловых сетей с тупиковыми участками, обеспечивающая краткосрочное проведение ремонтных работ (менее 12 часов) приведена на рис. 1.1.

Рис. 1.1. Схема тепловых сетей с тупиковой разводкой (непроходной канал, мин. вата), не требующих резервирования

1.6.3. В связи с профилактическим контролем состояния теплопроводов для бесканальной прокладки теплопроводов в ППУ-изоляции протяженность незарезервированных участков по сравнению с таблицей 1.1. может быть увеличена до уровня, приведенного в таблице 1.3. При этом должен быть обеспечено ускоренное опорожнение трубопроводов за счет монтажа дополнительных сливных устройств или увеличения диаметра сливных устройств.

Таблица 1.3

Условный диаметр теплопроводов, мм Время проведения ремонтных работ, ч Протяженность незарезервированного участка между двумя секционирующими задвижками, м
300 менее 12 1500
400 менее 12 1000
500 менее 12 700
600 менее 12 500

Схема тепловых сетей с тупиковыми участками, обеспечивающая краткосрочное проведение ремонтных работ (менее 12 часов) приведена на рис. 1.2.

Рис. 1.2. Схема тепловых сетей с тупиковой разводкой (бесканальная прокладка, ППУ), не требующих резервирования

1.7. При обеспечение района теплом от двух и более источников рекомендуется производить резервирование тепловых сетей от каждого источника, т.е. монтировать аварийную перемычку между тепловыми сетями каждого источника тепла.

1.8. В дальнейшем по тексту рассматривается вопрос резервирования тепловых сетей только закрытых систем центрального теплоснабжения (СЦТ) при отсутствие у потребителя местного аварийного источника тепла.

2. Технические решения по резервированию тепловых сетей

– путем двухстороннего присоединения вторичных тепломагистралей к двум первичным тепломагистралям (одного или двух источников тепла) без монтажа секционирующих задвижек;

– путем одностороннего присоединения одним концом тупиковых вторичных тепломагистралей к двум параллельно проложенным первичным тепломагистралям (одного или двух источников тепла) без монтажа секционирующих задвижек;

– путем закольцовки первичных тепломагистралей (одного или двух источников тепла) с монтажом секционирующих задвижек;

– путем прокладки дополнительного (третьего) теплопровода;

– путем подвода к потребителю дополнительных двухтрубных теплопроводов от первичной тепломагистрали или второго источника тепла (в основном потребители 1 категории);

– путем комбинирования вышеперечисленных технических решений.

2.2. Схема тепловых сетей, в которых производится двухстороннее присоединения тепловых сетей к двум первичным тепломагистралям (одного или двух источников тепла) без монтажа секционирующих задвижек приведена на рис. 2.1. Отличительной особенностью данного технического решения является то, что потребители присоединяются исключительно к вторичным тепломагистралям.

Рис. 2.1. Схема зарезервированных тепловых сетей с двухсторонним присоединением к двум первичным тепломагистралям

2.3. Схема тепловых сетей, в которых производится одностороннее присоединения тупиковых тепловых сетей к двум первичным тепломагистралям (одного или двух источников тепла) без монтажа секционирующих задвижек приведена на рис.2.2.

Рис. 2.2. Схема зарезервированных тепловых сетей с односторонним присоединением к двум первичным тепломагистралям

2.4. Схема тепловых сетей, в которых резервирование обеспечивается закольцовкой первичных тепломагистралей (одного или двух источников тепла) приведена на рис. 2.3. Отличительной особенностью данной схемы – закольцовка сети , является присоединение тупиковых тепловых сетей в одной точке между двумя секционирующими задвижками первичной тепломагистрали или присоединение в двух точках в обхват одной секционирующей задвижки первичной тепломагистрали (врезка “штанами”).

Рис. 2.3. Схема зарезервированных тепловых сетей с односторонним присоединением к закольцованным первичным тепломагистралям

2.5. Схема тепловых сетей, в которых резервирование производится путем прокладки дополнительного (третьего) теплопровода двойного назначения приведена на рис. 2.4. При этом все теплопроводы должны присоединяться непосредственно к зарезервированной тепломагистрали (или к источнику тепла), хрехтрубную схему целесообразно использовать для отдельно расположенных районов и потребителей 1 категории. При этом для обеспечения постоянной циркуляции в период нормальной эксплуатации дополнительный теплопровод рекомендуется использовать в качестве обратного теплопровода.

Рис. 2.4. Схема прокладки трехтрубных тепловых сетей с односторонним присоединением к зарезервированным тепломагистралям

2.6. Схема прокладки двух дополнительных теплопроводов (подающего и обратного) для резервирования объектов 1 категории приведена на рис. 2.4. При этом основные и резервные теплопроводы должны присоединяться в двум зарезервированным тепломагистралям.

2.7. Конфигурация тепловых сетей с нерезервируемыми надземными участками приведена на рис.2.5.

Рис. 2.5. Конфигурация тепловых сетей с нерезервируемыми участкам надземной прокладки

З. Резервирование тепловых сетей при строительстве нового источника тепла

3.1. При разработке схемы тепловых сетей при строительстве нового источника тепла рекомендуется производить разработку различных вариантов схем теплосети с рассмотрением вопроса резервирования.

3.2. Для источников тепла производительностью менее 50 Гкал/ч рекомендуется производить разработку варианта схемы только с тупиковой разводкой без резервирования тепловых сетей.

3.3 Для источников тепла производительностью от 50 до 200 Гкал/ч включительно рекомендуется производить разработку как варианта с тупиковой разводкой без резервирования тепловых сетей, так и вариантов с резервированием тепловых сетей и последующим согласованием одного из них (или совмещенного варианта).

3.4. Для источников тепла производительностью более 200 Гкал/ч рекомендуется производить разработку нескольких вариантов схем с резервированием тепловых сетей и последующим согласованием одного из них.

3.5. Допускается монтаж участков, обеспечивающих резервирование тепловых сетей выполнять на последнем этапе строительства после формирования теплового района.

4. Резервирование тепловых сетей при реконструкции СЦТ

4.1. При реконструкции СЦТ с увеличением нагрузки источника тепла за счет присоединения новых (реконструируемых) потребителей допускается для сохраняемых и реконструируемых потребителей использовать существующую схему тепловых сетей. При этом разработку схемы для новых потребителей рекомендуется производить с учетом положений, приведенных в разделе 3.

4.2. При реконструкции СЦТ с увеличением нагрузки источника тепла только за счет реконструируемых потребителей (без присоединения новых) допускается для сохраняемых и реконструируемых потребителей использовать существующую схему тепловых сетей.

4.3. При реконструкции СЦТ с целью повышения надежности без увеличения нагрузки источника тепла и присоединения новых потребителей рекомендуется разрабатывать новую схему тепловых сетей с учетом положений, приведенных в разделе 3.

5. Принципиальные схемы узлов (камер) на участках с резервными связями

5.1. Для двухтрубных тепловых сетей допускается принципиальные схемы узлов выполнять в однотрубном исполнении. Для трехтрубных тепловых сетей принципиальные схемы узлов рекомендуется выполнять в натуральном виде, т. е. в двух и трехтрубном исполнении.

5.2. Для обеспечения правильной циркуляции теплоносителя после переключения потоков сетевой воды на участках резервной связи необходимо выполнять транспозицию теплопроводов, то есть “перехлест” потоков сетевой воды. При этом “перехлест” потоков может осуществляться путем соответствующей врезки теплопроводов в камере или путем “перехлеста” теплопроводов на участке теплосети.

5.2.2. С целью снижения коррозионных процессов на участках резервной связи необходимо обеспечивать циркуляцию сетевой воды с использованием воздушной или спускной линии.

5.3. Для повышения надежности на протяженных участках резервной связи рекомендуется устанавливать отсекающие задвижки по обе стороны участка. Максимальная протяженность участков, на которых допускается производить установку отсекающей задвижки только с одной стороны приведена в таблице 5.1. Установка отсекающих задвижек по обе стороны участков меньшей протяженности требует согласования с эксплуатационной организацией.

Таблица 5.1

5.4. Принципиальные схемы узлов на участках с резервной связью приведены на рис. 5.1

Рис. 5.1. Принципиальная схема узлов (камер) на участке резервной связи

6. Проверка гидравлического и теплового режима при аварийных ситуациях

6.1. Для протяженных тепловых сетей при необходимости рекомендуется производить проверку гидравлического и теплового режима при аварийных ситуациях с учетом положений, изложенных в п.6.33, и таблицы 2 СНиП 41-02-2003 (приложение 1).

6.2. Поверочный гидравлический расчет тепловых сетей при аварийных ситуациях рекомендуется производить по специальной компьютерной программе с построением пьезометрического графика, исходя из условия сохранения напоров на выходе и входе источника тепла, характерных для нормальных условий эксплуатации.

6.3. Допускается производить поверочный гидравлический расчет тепловых сетей при аварийных ситуациях по компьютерной программе для гидравлического расчета тупиковых тепловых сетей со снижением расхода сетевой воды до требуемого уровня согласно п.6.33. и таблицы 2 СНиП 41-02-2003.

6.4. Для пунктов 6.2 и 6.3 возможно использование следующих программ:

Гидросистема – гидравлический и теплогидравлический расчеты, а также выбор диаметров трубопроводных систем различного назначения с детальным учетом местных сопротивлений с возможностью автоматического построение пьезометрических графиков. Данная программа поставляется ООО “НТП Трубопровод”.

ZuluThermo – гидравлические расчеты тепловых сетей с возможностью выполнения конструктивного, поверочного и наладочного теплогидравлического расчета тепловой сети и функцией построения пьезометрических графиков. Данная программа поставляется ООО “Политерм”.

Приложение 1

Выписка из СНиП 41-02-2003 “Тепловые сети” п.6.33:

При подземной прокладке тепловых сетей в непроходных каналах и бесканальной прокладке величина подачи теплоты (%) для обеспечения внутренней температуры воздуха в отапливаемых помещениях не ниже 12°С в течение ремонтно-восстановительного периода после отказа должна приниматься по таблице 2.

Таблица 2

Диаметр труб тепловых сетей, мм Время восстановления теплоснабжения, ч Расчетная температура наружного воздуха для проектирования отопления, t 0 , 0 С.
–10 –20 –30 –40 –50
300 15 32 50 59 60 64
400 18 41 56 63 65 68
500 22 63 63 69 70 73
600 26 68 68 73 75 77
700 29 70 70 75 76 78
800-1000 40 75 75 79 80 82
1200-1400 54 79 79 82 83 85

Надеюсь, что все разобрались со схемами теплоснабжения, как с резервированием, так и без него. Теперь, понятно как производится закольцовка сети и что из себя представляет тупиковая тепловая сеть? Пишите комментарии, и варианты своих схем тепловой сети.