Шифр скользящей перестановки. Перестановочные шифры

12.03.2019

Широкое распространение получила разновидность маршрутной перестановки - вертикальная перестановка. В этом шифре также используется прямоугольная таблица, в которую сообщение записывается по строкам слева направо. Выписывается шифрограмма по вертикалям, при этом столбцы выбираются в порядке, определяемом ключом.

ОТКРЫТЫЙ ТЕКСТ: пример маршрутной перестановки

КЛЮЧ: (3, 1, 4, 2, 5)

КРИПТОГРАММА: рмупткмрнрнпррйсвиатеаиешоео

Заполнять последнюю строку таблицы «нерабочими» буквами нецелесообразно, так как криптоаналитик, получивший данную криптограмму, получает сведения о длине числового ключа .

Шифр вертикальной перестановки. Является разновидностью предыдущего шифра. К особенностям шифра можно отнести следующие:

Количество столбцов в таблице фиксируется и определяется длиной ключа;

Маршрут вписывания - строго слева-направо сверху-вниз;

Шифрограмма выписывается по столбцам в соответствии с их нумерацией (ключом).

Рис.5.5. Пример использования шифра вертикальной перестановки

В качестве ключа можно использовать слово или фразу. Тогда порядок выписывания столбцов соответствует алфавитному порядку букв в ключе. Например, если ключевым словом будет «ДЯДИНА», то присутствующая в нем буква А получает номер 1, Д – 2 и т.д. Если какая-то буква входит в слово несколько раз, то ее появления нумеруются последовательно слева направо. В примере первая буква Д получает номер 2, вторая Д – 3.

При шифровании сообщения «АБРАМОВ ИЛЬЯ СЕРГЕЕВИЧ» результат будет «ОЯЕ_АВ_ЕРИЕИАЛРЧМЬГ_Б_СВ».

по разным путям геометрической фигуры.

Простейшим примером перестановки является перестановка с фиксированным периодом d . В этом методе сообщение делится на блоки по d символов и в каждом блоке производится одна и та же перестановка . Правило, по которому производится перестановка , является ключом и может быть задано некоторой перестановкой первых d натуральных чисел. В результате сами буквы сообщения не изменяются, но передаются в другом порядке.

Например, для d=6 в качестве ключа перестановки можно взять 436215 . Это означает, что в каждом блоке из 6 символов четвертый символ становится на первое место , третий – на второе, шестой – на третье и т.д. Пусть необходимо зашифровать такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 4 блока. Результатом шифрования с помощью перестановки 436215 будет сообщение

ОЕТЭТ_ТЛСКДИШР_ЯФНАЯВОИ

Теоретически, если блок состоит из d символов, то число возможных перестановок d!=1*2*...*(d-1)*d . В последнем примере d=6 , следовательно, число перестановок равно 6!=1*2*3*4*5*6=720 . Таким образом, если противник перехватил зашифрованное сообщение из рассмотренного примера, ему понадобится не более 720 попыток для раскрытия исходного сообщения (при условии, что размер блока известен противнику).

Для повышения криптостойкости можно последовательно применить к шифруемому сообщению две или более перестановки с разными периодами.

Другим примером методов перестановки является перестановка по таблице . В этом методе производится запись исходного текста по строкам некоторой таблицы и чтение его по столбцам этой же таблицы. Последовательность заполнения строк и чтения столбцов может быть любой и задается ключом.

Рассмотрим пример. Пусть в таблице кодирования будет 4 столбца и 3 строки (размер блока равен 3*4=12 символов). Зашифруем такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 2 блока. Запишем каждый блок в свою таблицу по строчкам ( таблица 2.9).

Таблица 2.9. Шифрование методом перестановки по таблице
1 блок
Э Т О
Т Е К С
Т Д Л
2 блок
Я Ш И
Ф Р О В
А Н И Я

Затем будем считывать из таблицы каждый блок последовательно по столбцам:

ЭТТТЕ ОКД СЛЯФА РНШОИИВЯ

Можно считывать столбцы не последовательно, а, например, так: третий, второй, первый, четвертый:

ОКДТЕ ЭТТ СЛШОИ РНЯФАИВЯ

В этом случае порядок считывания столбцов и будет ключом.

В случае, если размер сообщения не кратен размеру блока, можно дополнить сообщение какими-либо символами, не влияющими на смысл, например, пробелами. Однако это делать не рекомендуется, так как это дает противнику в случае перехвата криптограммы информацию о размере используемой таблицы перестановок (длине блока). После определения длины блока противник может найти длину ключа (количество столбцов таблицы) среди делителей длины блока.

Посмотрим, как зашифровать и расшифровать сообщение, имеющее длину, не кратной размеру таблицы перестановки. Зашифруем слово

ПЕРЕМЕНКА

Количество символов в исходном сообщении равно 9. Запишем сообщение в таблицу по строкам ( таблица 2.10), а последние три ячейки оставим пустыми.

Затем будем считывать из таблицы последовательно по столбцам:

ПМАЕЕРНЕК

Для расшифрования вначале определяют число полных столбцов, то есть количество символов в последней строке. Для этого делят размер сообщения (в нашем примере – 9) на количество столбцов или размер ключа (в примере – 4). Остаток от деления будет числом полных столбцов: 9 mod 4 = 1 . Следовательно, в нашем примере был 1 полный столбец и три коротких. Теперь можно поставить буквы сообщения на свои места и расшифровать сообщение. Так как ключом при шифровании было число 1234 (столбцы считывались последовательно), то при расшифровании первые три символа (ПМА ) записываются в первый столбец таблицы перестановки, следующие два (ЕЕ ) – во второй столбец, следующие два (РН ) – в третий, и последние два (ЕК ) – в четвертый. После заполнения таблицы считываем строки и получаем исходное сообщение ПЕРЕМЕНКА .

Существуют и другие способы перестановки, которые можно реализовать программным и аппаратным путем. Например, при передаче данных, записанных в двоичном виде, удобно использовать аппаратный блок, который перемешивает определенным образом с помощью соответствующего электрического монтажа биты исходного n-разрядного сообщения. Так, если принять размер блока равным восьми битам, можно, к примеру, использовать такой блок перестановки, как на

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода, которые могут быть использованы в автоматизированных системах.

Самая простая перестановка - написать исходный текст задом наперед и одновременно разбить шифрограмму на пятерки букв. Например, из фразы:

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ,

получится такой шифртекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЬ ТСУП

В последней группе (пятерке) не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, его следует дополнить незначащей буквой (например, О) до числа, кратного пяти:

ПУСТЬ-БУДЕТ-ТАККА-КМЫХО-ТЕЛИО.

Тогда шифрограмма, несмотря на столь незначительное изменение, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

Кажется ничего сложного, но при расшифровке возникнут серьезные неудобства.

Во время Гражданской войны в США использовался был такой шифр: исходную фразу писали в несколько строк. Например, по пятнадцать букв в каждой (с заполнением последней строки ничего не значащими буквами).

После этого вертикальные столбцы по порядку писали в строку с разбивкой на пятерки букв:

ПКУМС ЫТХЬО БТУЕД ЛЕИТК ТЛАМК НКОАП

Вариант этого шифра: сначала исходную фразу записать в столбики:

Потом разбить строки на пятерки букв:

ПСЬУЕ ТКАМХ ТЛАВД УТБДТ АККЫО ЕИБГЕ

Если строки укоротить, а их количество увеличить, то получится прямоугольник-решетка, в который можно записывать исходный текст. Но тут уже требуются предварительные договоренности между адресатом и отправителем посланий, поскольку сама решетка может быть различной длины-высоты, записывать в нее можно по строкам, по столбцам, по спирали туда или по спирали - обратно, можно писать и по диагоналям, а для шифрования можно брать тоже различные направления. В общем, вариантов масса.

Для примера возьмем решетку 6х6 (причем количество строк может увеличиваться или уменьшаться в зависимости от длины исходного сообщения) и заполним ее по строкам:

Если шифровать по стрелкам (диагоналям) сверху вниз с левого верхнего угла, то в итоге получится такая шифрограмма:

П УУ СДК ТЕКХ ЬТАОА БТКТБМ АМЕВЛ ЫЛГК ИДИ ЕЗ Ж

Для окончательного оформления шифртекст может быть разбит на группы по 6 символов:

ПУУСДК ТЕКХЬТ АОАБТК ТБМАМЕ ВЛЫЛГК ИДИЕЗЖ

Очень часто используют перестановки с ключом. Тогда правила заполнения решетки и шифрования из нее упрощаются, становятся стандартными. Единственное, что надо помнить и знать - это ключ, которым может быть любое слово, например, РАДИАТОР. В соответствии с расположением букв в алфавите, буква А получает номер 1, вторая буква А - 2, следующая по алфавиту буква Д - 3, потом И - 4, О – 5; первая буква Р - 6, вторая Р - 7 и буква Т - 8. Заполняем решетку:

Записываем столбики в соответствии с номерами букв ключа:

УТЫ ЬКТ СТХ ТАО УАЛ ПЕМО ДКИ БКЕ

Затем последовательность опять разбивается на пятерки:

УТЫЬК ТСТХТ АОУАЛ ПЕМОД КИБКЕ

Таким шифром простой перестановки колонок пользовались немецкие секретные агенты во время Второй мировой войны. В качестве ключа они использовали первые буквы строк на определенной странице какой-нибудь обыкновенной книги.

Развитием этого шифра является шифр перестановки колонок с пропусками, которые располагаются в решетке тоже в соответствии с ключом (в нашем случае через 6-1-3-4-2-8-5-7 ... символов):

Шифрограмма будет такой:

УДК Ь СЕХЛ ТТОМ АЕП ПКИ УКЛР БТТО

Из рассмотренных примеров видно, что все процедуры шифрования и расшифрования по методу перестановок являются в достаточной степени формальными и могут быть реализованы алгоритмически.

(см. также )

Большое влияние на развитие криптографии оказали появившиеся в середине XX века работы американского математика Клода Шеннона. В этих работах были заложены основы теории информации, а также был разработан математический аппарат для исследований во многих областях науки, связанных с информацией. Более того, принято считать, что теория информации как наука родилась в 1948 году после публикации работы К. Шеннона "Математическая теория связи".

В своей работе "Теория связи в секретных системах" Клод Шеннон обобщил накопленный до него опыт разработки шифров. Оказалось, что даже в очень сложных шифрах в качестве типичных компонентов можно выделить такие простые шифры как шифры замены, шифры перестановки или их сочетания .

В качестве первичного признака, по которому проводится классификация шифров, используется тип преобразования, осуществляемого с открытым текстом при шифровании. Если фрагменты открытого текста (отдельные буквы или группы букв) заменяются некоторыми их эквивалентами в шифртексте, то соответствующий шифр относится к классу шифров замены . Если буквы открытого текста при шифровании лишь меняются местами друг с другом, то мы имеем дело с шифром перестановки . С целью повышения надежности шифрования шифрованный текст, полученный применением некоторого шифра, может быть еще раз зашифрован с помощью другого шифра.


Рис. 6.1.

Всевозможные такие композиции различных шифров приводят к третьему классу шифров, которые обычно называют композиционными шифрами . Заметим, что композиционный шифр может не входить ни в класс шифров замены, ни в класс шифров перестановки ( рис. 6.1).

6.3 Шифры перестановки

Шифр перестановки, как видно из названия, осуществляет преобразование перестановки букв в открытом тексте. Типичным примером шифра перестановки является шифр "Сцитала". Обычно открытый текст разбивается на отрезки равной длины и каждый отрезок шифруется независимо. Пусть, например, длина отрезков равна и - взаимнооднозначное отображение множества в себя. Тогда шифр перестановки действует так: отрезок открытого текста преобразуется в отрезок шифрованного текста.

Классическим примером такого шифра является система, использующая карточку с отверстиями - решетку , которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. При зашифровке буквы сообщения вписываются в эти отверстия. При расшифровке сообщение вписывается в диаграмму нужных размеров, затем накладывается решетка, после чего на виду оказываются только буквы открытого текста.

Также возможны и другие варианты шифра перестановки, например, шифры столбцовой и двойной перестановки.

6.3.1 Шифр столбцовой перестановки

При расшифровывании буквы шифртекста записываются по столбцам в соответствии с последовательностью чисел ключа, после чего исходный текст считывается по строкам. Для удобства запоминания ключа применяют перестановку столбцов таблицы по ключевому слову или фразе, всем символам которых ставятся в соответствие номера, определяемые порядком соответствующих букв в алфавите.

При решении заданий на криптоанализ шифров перестановки необходимо восстановить начальный порядок следования букв текста. Для этого используется анализ совместимости символов, в чем может помочь таблица сочетаемости (см. ).

Таблица 6.1. Сочетаемость букв русского языка
Г С Слева Справа Г С
3 97 л, д, к, т, в, р, н А л, н, с, т, р, в, к, м 12 88
80 20 я, е, у, и, а, о Б о, ы, е, а, р, у 81 19
68 32 я, т, а, е, и, о В о, а, и, ы, с, н, л, р 60 40
78 22 р, у, а, и, е, о Г о, а, р, л, и, в 69 31
72 28 р, я, у, а, и, е, о Д е, а, и, о, н, у, р, в 68 32
19 81 м, и, л, д, т, р, н Е н, т, р, с, л, в, м, и 12 88
83 17 р, е, и, а, у, о Ж е, и, д, а, н 71 29
89 11 о, е, а, и 3 а, н, в, о, м, д 51 49
27 73 р, т, м, и, о, л, н И с, н, в, и, е, м, к, з 25 75
55 45 ь, в, е, о, а, и, с К о, а, и, р, у, т, л, е 73 27
77 23 г, в, ы, и, е, о, а Л и, е, о, а, ь, я, ю, у 75 25
80 20 я, ы, а, и, е, о М и, е, о, у, а, н, п, ы 73 27
55 45 д, ь, н, о, а, и, е Н о, а, и, е, ы, н, у 80 20
11 89 р, п, к, в, т, н О в, с, т, р, и, д, н, м 15 85
65 35 в, с, у, а, и, е, о П о, р, е, а, у, и, л 68 32
55 45 и, к, т, а, п, о, е Р а, е, о, и, у, я,ы, н 80 20
69 31 с, т, в, а, е, и, о С т, к, о, я, е, ь, с, н 32 68
57 43 ч, у, и, а, е, о, с Т о, а, е, и, ь, в, р, с 63 37
15 85 п, т, к, д, н, м, р У т, п, с, д, н, ю, ж 16 84
70 30 н, а, е, о, и Ф и, е, о, а, е, о, а 81 19
90 10 у, е, о, а, ы, и X о, и, с, н, в, п, р 43 57
69 31 е, ю, н, а, и Ц и, е, а, ы 93 7
82 18 е, а, у, и, о Ч е, и, т, н 66 34
67 33 ь, у, ы, е, о, а, и, в Ш е, и, н, а, о, л 68 32
84 16 е, б, а, я, ю Щ е, и, а 97 3
0 100 м, р, т, с, б, в, н Ы Л, х, е, м, и, в, с, н 56 44
0 100 н, с, т, л Ь н, к, в, п, с, е, о, и 24 76
14 86 с, ы, м, л, д, т, р, н Э н, т, р, с, к 0 100
58 42 ь, о, а, и, л, у Ю д, т, щ, ц, н, п 11 89
43 57 о, н, р, л, а, и, с Я в, с, т, п, д, к, м, л 16 84

При анализе сочетаемости букв друг с другом следует иметь в виду зависимость появления букв в открытом тексте от значительного числа предшествующих букв. Для анализа этих закономерностей используют понятие условной вероятности.

Систематически вопрос о зависимости букв алфавита в открытом тексте от предыдущих букв исследовался известным русским математиком А.А. Марковым (1856-1922). Он доказал, что появления букв в открытом тексте нельзя считать независимыми друг от друга. В связи с этим А.А. Марковым отмечена еще одна устойчивая закономерность открытых текстов, связанная с чередованием гласных и согласных букв. Им были подсчитаны частоты встречаемости биграмм вида гласная-гласная (г, г ), гласная-согласная (г, с ), согласная-гласная (с, г ), согласная-согласная (с, с ) в русском тексте длиной в знаков. Результаты подсчета отражены в следующей таблице:

Таблица 6.2. Чередование гласных и согласных
Г С Всего
Г 6588 38310 44898
С 38296 16806 55102

Пример 6.2 Открытый текст, сохраняя пробелы между словами, записали в таблицу. Начало было в первой строке, текст записывали слева направо, переходя со строки на следующую, шифрование заключалось в перестановке столбцов. Найдите открытый текст.

Шифрованный текст:

Д В Ы Т
Г О Е Р О
У Ь Д У Б
М М Я Ы Р П

Решение. Присвоим столбцам номера в порядке их следования. Наша задача - найти такой порядок столбцов, при котором текст будет осмысленным.

Составим таблицу:

1 2 3 4 5 6
1 Х
2 Х
3 Х
4 Х
5 Х
6 Х

Клетка (, ) в этой таблице означает, что столбец с номером следует за столбцом с номером . Знаком "Х" отметим невозможные случаи.

Сочетания столбцов 1, 2 и 5, 2 невозможны, так как гласная не может находиться перед мягким знаком. Невозможны и следования столбцов 2, 1 и 2, 5. Теперь из третьей строки следует, что 1, 5 и 5, 1 невозможны, так как УУ - нехарактерная для русского языка биграмма. Далее, два пробела подряд не могут быть в тексте, значит, ставим "Х" в клетках 3, 4 и 4, 3. Снова обратимся к третьей строке. Если бы столбец 2 следовал за столбцом 4, то слово начиналось бы с мягкого знака. Ставим "Х" в клетке 4, 2. Из первой строки: невозможна комбинация 4, 5, невозможна и 3, 5. Итог наших рассуждений представлен в таблице:

1 2 3 4 5 6
1 Х Х Х
2 Х Х Х
3 Х Х Х
4 Х Х Х Х
5 Х Х Х
6 Х

Итак, после столбца 6 обязательно следует столбец 5. Но тогда поставим "Х" в клетке 6, 2 и получим: столбец 2 следует за столбцом 3. Далее, мы вычеркнули 5, 1 и 2, 1, следовательно, надо проверить варианты: ...6532... и...65432... . Но (4, 3) вычеркнуто ранее. Итак, остались варианты расположения столбцов:

  • 1, 6, 5, 3, 2, 4
  • 6, 5, 3, 2, 4, 1
  • 4, 1, 6, 5, 3, 2
  • 1, 4, 6, 5, 3, 2

Запишем 6, 5, 3, 2 столбцы подряд:

6 5 3 2
т ы - в
о р о г
б у д ь
п р я м

Попытка поставить столбец 1 перед столбцом 6 приведет к биграмме МП в последней строке и сочетанию ДТЫ в первой. Остались варианты: 653241, 146532.

Ответ: 653241 - ключ, открытый текст: ты\_в\_дороге\_будь\_упрямым (строка из популярной в 1970-е годы песни).

Приведем еще один пример криптоанализа шифра столбцовой перестановки.

Пример 6.3 Расшифровать: СВПООЗЛУЙЬСТЬ\_ЕДПСОКОКАЙЗО

Решение. Текст содержит 25 символов, что позволяет записать его в квадратную матрицу 5х5. Известно, что шифрование производилось по столбцам, следовательно, расшифровывание следует проводить, меняя порядок столбцов.

Простая перестановка без ключа - один из самых простых методов шифрования. Буквы перемешиваются по каким-либо правилам, но эти правила могут быть разными - и простыми и сложными.

Транспозиция

Допустим, у нас есть фраза: «МОЖНО, НО НЕЛЬЗЯ» . И мы хотим её зашифровать. Самый простой способ - это записать всю фразу задом наперёд: «ЯЗЬЛЕН ОН, ОНЖОМ» . Можно порядок слов в предложении оставить исходным, но каждое слово записать задом наперёд: «ОНЖОМ, ОН ЯЗЬЛЕН» . А можно менять местами каждые две буквы: «ОМНЖ,ООНЕНЬЛЯЗ» . Это называется «транспозиция» или простая перестановка в чистом виде.

Транспонирование

В этом шифре используется таблица. Сообщение записывается в таблицу по строкам, а для образования шифрованного текста считывается по столбцам. Ну или наоборот - записывается на столбцам, а считывается по строкам. Мы как бы переворачиваем таблицу относительно её диагонали, проходящей через верхний левый и нижний правый углы. Математики называют такой способ переворота таблицы транспонированием.

Для шифрования нужно нарисовать подходящего размера таблицу, вписать туда построчно шифруемый текст, а затем выписать его по столбцам в одну строку. Для расшифровки нужно лишь будет сообщить ключ шифра в виде размера таблицы. На рисунке ниже из ABCDEFGHIJKL получается ADGJBEHKCFIL . Согласитесь, понять без картинки, что это был алфавит, уже практически невозможно.

Итак, например, нам нужно зашифровать текст «Я памятник себе воздвиг нерукотворный, к нему не зарастёт народная тропа» . В нём 72 символа. 72 - удобное число, оно делится без остатка на 2,4,6,8,12,18,24,36, поэтому можно использовать таблицы 2х36, 3х24, 4х18, 6х12, 8х9, 9х8, 12х6, 18х4, 24х3, 36х2:). Определяемся с ключом (размером таблицы), вписываем текст по строкам, а затем переписываем его по столбцам.

На рисунке выше показаны варианты с таблицами 9×8, 8×9, 4×18 и 18×4. Для третьего варианта (таблица 4×18) получится вот такой текст:

«Ямиеввнкой у атрар якбоиеор,н зс ояопт езгртн енатнд панс д увыкмерёанта (4:18) »

В данном случае я взял текст «как есть», то есть с пропусками между словами и со знаками препинания. Но если текст осмысленный, то знаки препинания и пропуски между словами можно и не использовать.

Штакетник

Упрощённый вариант транспонирования (с двухстрочной таблицей) - «штакетник». Напоминает «по конструкции» забор-шахматку.

Это очень простой способ шифровки, часто применяемый школьниками. Фраза записывается в две строки: в верхней пишутся нечётные буквы, в нижней - чётные. Затем нужно выписать подряд сначала верхнюю строку, затем нижнюю. Такое шифрование легко проделать и в уме, не выписывая сначала две строки.

«Я памятник себе воздвиг нерукотворный» превращается в «ЯАЯНКЕЕОДИНРКТОНЙ ПМТИСБВЗВГЕУОВРЫ».

Скитала

Известно, что в V веке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью «скиталы», первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который и назывался «скитала», наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично. Для восстановления текста требовалась скитала такого же диаметра.

По сути скитала - это наша обычная плоская таблица, обёрнутая вокруг цилиндра.

Считается, что автором способа взлома шифра скиталы является Аристотель, который наматывал ленту на конусообразную палку до тех пор, пока не появлялись читаемые куски текста. Изначально древний аппарат использовался в качестве сохранения секретных рецептов. Сейчас вместо узкой полоски пергамента можно использовать серпантин, а роль скиталы выполнит карандаш.

Сдвиг

Похожий результат можно получить, если буквы сообщения писать через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Ниже пример готовой головоломки, составленной по таким правилам. «Три дробь четыре» - это подсказка, что зашифровано три слова, читать надо каждую четвёртую букву (4-8-12-16-..), по достижению конца переходить снова к началу со сдвигом на 1 букву влево (3-7-11-15-..) и т.д. На рисунке ниже зашифровано «Идите назначенным маршрутом».

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу, очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы не сдвигаются, а переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Кодируемая фраза записывается в подходящую таблицу построчно. Затем над таблицей вставляется пустая строка и в неё вписывается ключевое слово/фраза/последовательность чисел. Затем это ключевое слово/фраза/последовательность сортируется по алфавиту/значению, вместе с ней сортируются столбцы, тем самым перемешивая всю таблицу. Затем зашифрованная фраза выписывается построчно из этой перемешанной таблицы.

Например, можно сделать головоломку на основе судоку. Разгадывающему даётся текст «-УРОМКУЛО ЬУЁЗЕБЯДЛ НЗЯАТЛЫЙА ЦЬБАДНЕПУ ЕММДНИТОЁ ИЧТЮКЬНОО УНЁЙВЫЧЁС ХИЕПОТОДЦ ПРМГОУИК-» и предлагается решить судоку, в которой одна из строк помечена.

Решать эту головоломку придётся так: сначала нужно записать текст в таблицу 9×9, затем разгадать судоку, нарисовать пустую таблицу 9×9, надписать над ней ключевую строку из помеченной строки, и затем в таблицу под номерами вписать столбцы согласно их порядковым номерам в исходной таблице.

Для детей можно использовать этот же метод, но попроще, даже без цифр, а сразу нарисовав порядок перестановки в виде путей.

Двойная перестановка

Для дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Этот способ известен под названием «двойная перестановка». Для этого размер второй таблицы подбирают так, чтобы длины её строк и столбцов были не такие, как в первой таблице. Лучше всего, если они будут взаимно простыми. Кроме того, в первой таблице можно переставлять столбцы, а во второй строки.

Маршрутная перестановка

Обычное транспонирование таблицы (заполняем по строкам, читаем по столбцам) можно усложнить и считывать не по столбцам, а змейкой, зигзагом, по спирали или каким-то другим способом, т.е. задавать маршрут обхода таблицы. Такие способы заполнения таблицы если и не усиливают стойкость шифра, то делают процесс шифрования гораздо более занимательным. Правда, процесс расшифровки при этом усложняется, особенно, если маршрут неизвестен, и его ещё надо узнать.

На рисунке сверху последовательность символов «АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ.,?» вписана построчно в таблицу 6×6, а затем считана по маршруту, указанному линиями. Получаются следующие шифровки:

    АЁЛСЧЭБЖМТШЮВЗНУЩЯГИОФЪ.ДЙПХЫ,ЕКРЦЬ?

    АЁЛСЧЭЮЯ.,?ЬЦРКЕДГВБЖМТШЩЪЫХПЙИЗНУФО

    АБЁЛЖВГЗМСЧТНИДЕЙОУШЭЮЩФПКРХЪЯ.ЫЦЬ,?

    АЁЛСЧЭЮШТМЖБВЗНУЩЯ.ЪФОИГДЙПХЫ,?ЬЦРКЕ

    НЗВБАЁЖМЛСТШЧЭЮЯЩУФЪ.,?ЬЫХЦРПЙКЕДГИО

А здесь нужно обходить таблицу «ходом коня», причём маршрут уже нарисован, так что это совсем для маленьких:)

Но если подать эту головоломку так, как показано ниже, то будет уже совсем не просто, так как вариантов обхода ходом коня может быть много, и нужно будет найти из всех этих вариантов единственный правильный.

Зашифровано «Пушкин. Медный всадник».

Перестановка "Волшебный квадрат"

Волшебными (или магическими) квадратами называются квадратные таблицы со вписанными в их клетки последовательными натуральными числами от 1 до n 2 (где n - размерность квадрата), которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

В известном ещё в Древнем Китае квадрате Ло-Шу третьего порядка (3×3) константа квадрата 15 повторяется 8 раз:

    по трём горизонталям: 2+9+4 = 7+5+3 = 6+1+8 = 15

    по трём вертикалям: 2+7+6 = 9+5+1 = 4+3+8 = 15

    по двум диагоналям: 2+5+8 = 4+5+6 = 15

Кстати, константу нечетного квадрата легко посчитать, умножив среднее число ряда, из которого составлен квадрат, на порядок квадрата. Для квадрата 3-го порядка (3×3) константа равна 1234 5 6789 *3=15.

Далее, чтобы зашифровать какое-то послание, нужно сначала подобрать или составить подходящий по размеру волшебный квадрат, затем нарисовать пустую таблицу такого же размера, и вписать буквы текста по очереди в таблицу в соответствии с номерами в волшебном квадрате. Затем просто выписываем построчно буквы из таблицы в одну длинную строку. Порядок квадрата должен быть равен округлённому в большую сторону корню из длины шифруемой строки, чтобы строка полностью вошла в квадрат. Если строка короче, то остаток можно заполнить произвольными буквами или цифрами.

На первый взгляд кажется, будто магических квадратов очень мало. Тем не менее, их число очень быстро возрастает с увеличением размера квадрата. Так, существует лишь один магический квадрат размером 3х3, если не принимать во внимание его повороты и отражения. Счёт волшебным квадратам 4-го порядка уже идёт на сотни, 5-го - на сотни тысяч. Поэтому магические квадраты больших размеров могли быть хорошей основой для надежной системы шифрования того времени, так как ручной перебор всех вариантов ключа для этого шифра был немыслим.

Есть очень простой метод составления нечётных волшебных квадратов, т.е. размером 3×3, 5×5, 7×7 и т.д. Это метод «террас» или «пирамидок».

Рисуется квадрат нужного размера и к нему пририсовываются ступенчатые «террасы» (обозначены пунктиром). Далее по диагоналям сверху вниз направо квадрат заполняется последовательными числами. После этого «террасы» переносятся внутрь квадрата: правые - налево, левые - направо, верхние - вниз, а нижние - наверх. Получается волшебный квадрат!

На базе этого метода можно составлять разные головоломки. Если использовать метод напрямую, то получится вот такая головоломка:

Чтобы решить эту головоломку, нужно буквы из «террас» перенести в квадрат, тогда в квадрате прочитается полное сообщение. Здесь зашифрована фраза «За мостом засада, пройти нельзя, переходите речку в брод.»

А если использовать метод наоборот, то получится головоломка типа такой.

Чтобы её решить, надо вытащить соответствующие буквы из квадрата в «террасы».

Для квадратов 4×4, 6×6 и т.д. таких простых способов их составления не существует, поэтому проще использовать готовые. Например, квадрат Дюрера.