Скорость передачи информации по каналу связи, единицы измерения, проблемы передачи в телефонных сетях. Скорость передачи данных

09.09.2019

Мы живем в эпоху стремительно развивающихся цифровых технологий. Современную реальность уже трудно представить без персональных компьютеров, ноутбуков, планшетов, смартфонов и прочих электронных гаджетов, которые функционируют не изолированно друг от друга, а объединены в локальную сеть и подключены к глобальной сети

Важной характеристикой всех этих устройств является пропускная способность сетевого адаптера, определяющая скорость передачи данных в локальной или глобальной сети. Кроме этого, имеют значение скоростные характеристики канала передачи информации. В электронных устройствах нового поколения возможно не только чтение текстовой информации без сбоев и зависаний, но и комфортное воспроизведение мультимедийных файлов (картинки и фотографии в высоком разрешении, музыка, видео, онлайн-игры).

В чем измеряется скорость передачи данных?

Чтобы определить этот параметр, надо знать время, за которые были переданы данные, и количество переданной информации. Со временем все понятно, а что такое количество информации и как его можно измерить?

Во всех электронных устройствах, являющихся по сути компьютерами, хранимая, обрабатываемая и передаваемая информация кодируется в двоичной системе нулями (нет сигнала) и единицами (есть сигнал). Один нуль или одна единица – это один бит, 8 бит составляют один байт, 1024 байт (два в десятой степени) – один килобайт, 1024 килобайта – один мегабайт. Далее идут гигабайты, терабайты и более крупные единицы измерения. Данные единицы обычно используются для определения объема информации, хранящейся и обрабатываемой на каком-либо конкретном устройстве.

Количество же передаваемой от одного устройства к другому информации измеряют в килобитах, мегабитах, гигабитах. Один килобит – это тысяча бит (1000/8 байт), один мегабит – тысяча килобит (1000/8 мегабайт) и так далее. Скорость, с которой передаются данные, принято указывать в количестве информации, проходящей за одну секунду (число килобит в секунду, мегабит в секунду, гигабит в секунду).

Скорость передачи данных по телефонной линии

В настоящее время для подключения к глобальной сети по телефонной линии, которая изначально была единственным каналом подключения к Интернету, используется преимущественно модемная технология ADSL. Она способна превратить аналоговые телефонные линии в средства высокоскоростной передачи данных. Интернет-соединение достигает скорости 6 мегабит в секунду, а максимальная скорость передачи данных по телефонной линии по древним технологиям не превышала 30 килобит в секунду.

Скорость передачи данных в мобильных сетях

Стандарты 2g, 3g и 4g используются в мобильных сетях.

2g пришел на замену 1g в связи с необходимостью перехода аналогового сигнала на цифровой в начале 90-х годов. На мобильных телефонах, поддерживавших 2g, стало возможно пересылать графическую информацию. Максимальная скорость передачи данных 2g превысила показатель 14 килобит в секунду. В связи с появлением мобильного интернета была также создана сеть 2,5g.

В 2002 году в Японии была разработана сеть третьего поколения, но массовое производство мобильных телефонов с поддержкой 3g началось значительно позже. Максимальная скорость передачи данных по 3g выросла на порядки и достигла 2 мегабит в секунду.

Обладатели новейших смартфонов имеют возможность воспользоваться всеми преимуществами сети 4g. Ее усовершенствование продолжается до сих пор. Она позволит людям, проживающим в малых населенных пунктах, свободно получать доступ в Интернет и сделает его значительно выгоднее подключения со стационарных устройств. Максимальная скорость передачи данных 4g просто огромная – 1 гигабит в секунду.

К тому же поколению, что и 4g, принадлежат сети lte. Стандарт lte является первой, самой ранней версией 4g. Следовательно, максимальная скорость передачи данных в lte существенно ниже и составляет 150 мегабит в секунду.

Скорость передачи данных по оптоволоконному кабелю

Передача информации по оптоволоконному кабелю на сегодняшний день является самой быстрой в компьютерных сетях. В 2014 году в Дании учеными была достигнута максимальная скорость передачи данных по оптоволокну 43 терабита в секунду.

Через несколько месяцев ученые из США и Нидерландов продемонстрировали скорость 255 терабит в секунду. Величина колоссальная, но это далеко не предел. В 2020 году планируется достижение показателя 1000 терабит в секунду. Скорость передачи данных по оптоволокну практически не ограничена.

Скорость загрузки информации по Wi-Fi

Wi-Fi – торговая марка, обозначающая беспроводные компьютерные сети, объединенные стандартом IEEE 802.11, в которых информация передается по радиоканалам. Теоретически максимальная скорость передачи данных wifi составляет 300 мегабит в секунду, а в реальности у лучших моделей роутеров она не превышает 100 мегабит в секунду.

Преимуществами Wi-Fi являются возможность беспроводного подключения к Интернету с помощью одного роутера сразу нескольких устройств и низкий уровень радиоизлучения, который на порядок меньше, чем у сотовых телефонов в момент их использования.

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

  • Состояние сетевого оборудования.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

Объем текстового файла

Кодирование информации в ПК заключается в том, что каждому символу ставится в соответствие уникальный двоичный код. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.

КОИ-8: 1 символ - 1 байт = 8 бит

UNICODE : 1 символ - 2 байта = 16 бит

ЗАДАЧА 1. Считая, что каждый символ кодируется одним байтом, оцените информационный объем сообщения:

РЕШЕНИЕ: Считаем количество символов в сообщении с учетом пробелов и знаков препинания. Получаем N =35. Т.к. один символ кодируется 1 байтом, то всё сообщение будет занимать в памяти компьютера 35 байт.

ЗАДАЧА 2. Оценить информационный объем сообщения в Unicode : Без труда не вытащишь рыбку из пруда!

РЕШЕНИЕ: Количество символов в сообщении 35. Т.к. в Unicode один символ кодируется 2 байтами, то всё сообщение будет занимать в памяти компьютера 70 байт.

ЗАДАЧА 3. Определить информационный объем книги (в Мбайтах) подготовленной на компьютере, состоящей из 150 страниц (каждая страница содержит 40 строк, 60 символов в каждой строке).

РЕШЕНИЕ:

1) Подсчитаем количество символов в книге 40 * 60 * 150 = 360 000

2) Информационный объем книги составит 360 000 * 1 байт = 360 байт

3) Переведем в заданные единицы 360 000 байт / 1024 = 351,5625 Кбайт / 1024 = 0,34332275 Мбайт

Длина фразы составляет примерно 40 символов. Следователь но, ее объем можно приблизительно оценить в 40 х 2 = 80 байт. Такого варианта ответа нет, попробуем перевести результат в би ты: 80 байт х 8 = 640 бит. Наиболее близкое значение из пред ложенных — 592 бита. Заметим, что разница между 640 и 592 составляет всего 48/16 = 3 символа в заданной кодировке и его можно считать несущественным по сравнению с длиной строки.

З амечание: Подсчетом символов в строке можно убедиться, что их ровно 37 (включая точку и пробелы), поэтому оценка 592 бита = 74 байта, что соответствует ровно 37 символам в двухбайтовой кодировке, является точной.

Алфавит – это набор букв, символов препинания, цифр, пробел и т.п.

Полное число символов в алфавите называют мощностью алфавита

ЗАДАЧА 4. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов. Второй текст в алфавите мощностью 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?

РЕШЕНИЕ: Если первый текст составлен в алфавите мощностью (К) 16 символов, то количество информации, которое несет 1 символ (1) в этом тексте, можно определить из соотношения: N = 2", таким образом, из 16 = 2" получим 1 = 4 бита. Мощность второго алфавита - 256 символов, из 256 = 2" получим 1 = 8 бит. Т.к. оба текста содержат одинаковое количество символов, количество информации во втором тексте больше, чем в первом, в 2 раза.

Скорость передачи информации

Скорость передачи данных по каналам связи ограничена пропускной способностью канала. Пропускная способность канала связи изменяется как и скорость передачи данных в бит/сек (или кратностью этой величины Кбит/с, Мбит/с, байт/с, Кбайт/с, Мбайт/с).
Для вычислении объема информации V переданной по каналу связи с пропускной способностью а за время t используют формулу:

V = а * t

ЗАДАЧА 1. Через ADSL- соединение файл размером 1000 Кбайт передавался 32 с. Сколько секунд потребуется для передачи файла размером 625 Кбайт.

РЕШЕНИЕ: Найдем скорость ADSL соединения: 1000 Кбайт / 32 с. = 8000 Кбит / 32 с. = 250 Кбит/с.
Найдем время для передачи файла объемом 625 Кбайт: 625 Кбайт / 250 Кбит/с = 5000 Кбит / 250 Кбит/с. = 20 секунд.

При решении задач на определении скорости и времени передачи данных возникает трудность с большими числами (пример 3 Мб/с = 25 165 824 бит/с), поэтому проще работать со степенями двойки (пример 3 Мб/с = 3 * 2 10 * 2 10 * 2 3 = 3 * 2 23 бита/с).

n

0
1
2
3
4
5
6
7
8
9
10

2 n

1
2
4
8
16
32
64
128
256
512
1024

ЗАДАЧА 2 . Скорость передачи данных через ADSL─соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.


РЕШЕНИЕ: Время передачи файла: 1 мин = 60 с = 4 * 15 с = 2 2 * 15 с
Скорость передачи файла: 512000 бит/c = 512 * 1000 бит/с = 2 9 * 125 * 8 бит/с (1 байт =8 бит)

2 9 * 125 байт/с = 2 9 * 125 бит/с / 2 10 = 125 / 2 Кб/с

Чтобы найти время объем файла, нужно умножить время передачи на скорость передачи:

(2 2 * 15 с) * 125 / 2 Кб/с = 2 * 15 * 125 Кб = 3750 Кб

Все неоднократно раз слышали про сети второго, третьего и четвертого поколения мобильной связи. Некоторые, возможно, уже читали и про сети будущего - пятого поколения. Но вопросы - что означает G, E, 3G, H, 3G+, 4G или LTE на экране смартфона и что среди этого быстрее до сих пор волнуют многих людей. Ответим на них.

Данные значки означают тип подключения вашего смартфона, планшета или модема к мобильной сети.

1. G (GPRS - General Packet Radio Services): самый медленный и давно устаревший вариант подключения пакетной передачи данных. Первый стандарт мобильного интернета, выполненный путем надстройки над GSM (после CSD-соединения до 9,6 кбит/с). Максимальная скорость GPRS-канала - 171,2 кбит/с. При этом реальная, как правило, на порядок ниже и интернет здесь не всегда работоспособен в принципе.

2. E (EDGE или EGPRS - Enhanced Data rates for GSM Evolution): более быстрая надстройка над 2G и 2,5G. Технология цифровой передачи данных. Скорость EDGE выше GPRS примерно в 3 раза: до 474,6 кбит/с. Однако она также относится ко второму поколению беспроводной связи и уже устарела. Реальная скорость EDGE обычно держится в районе 150-200 кбит/с и напрямую зависит от местонахождения абонента - то есть загруженности базовой станции в конкретном районе.

3. 3 G (Third Generation - третье поколение). Здесь по сети возможна не только передача данных, но и «голоса». Качество передачи речи в сетях 3G (если оба собеседника находятся в радиусе их действия) может быть на порядок выше, чем в 2G (GSM). Скорость интернета в 3G также значительно более высокая, а его качество, как правило, уже вполне достаточное для комфортной работы на мобильных устройствах и даже стационарных компьютерах через USB-модемы. При этом на скорость передачи данных может влиять ваше текущее положение, в т.ч. находитесь ли вы на одном месте или движетесь в транспорте:

  • Находитесь без движения: обычно до 2 Мбит/с
  • Движетесь со скоростью до 3 км/ч: до 384 кбит/с
  • Движетесь со скорость до 120 км/ч: до 144 кбит/с.

4. 3,5 G, 3 G+, H, H+ (HSPDA - High-Speed Downlink Packet Access): следующая надстройка высокоскоростной пакетной передачи данных - уже над 3G. В данном случае скорость передачи данных вплотную приближается к 4G и в режиме H она составляет до 42 Мбит/с. В реальной жизни мобильный интернет в таком режиме в среднем работает у мобильных операторов на скоростях 3-12 Мбит/с (иногда выше). Для не разбирающихся: это весьма быстро и вполне достаточно, чтобы при стабильном соединении смотреть онлайн-видео в не слишком высоком качестве (разрешении) или качать тяжелые файлы.

Также в 3G появилась функция видеозвонка:

5. 4G, LTE (Long-Term Evolution - долговременное развитие, четвертое поколение мобильного интернета). Данная технология используется только для передачи данных (не для «голоса»). Максимальная download-скорость здесь - до 326 Мбит/с, upload - 172,8 Мбит/с. Реальные значения опять же на порядок ниже заявленных, но все равно они составляют десятки мегабит в секунду (на практике часто сопоставимо с режимом H; в условиях загруженности Москвы обычно 10-50 Мбит/с). При этом более быстрый PING и сама технология делают 4G наиболее предпочтительным стандартом для мобильного интернета в модемах. Смартфоны и планшеты в сетях 4G (LTE) держат заряд батареи дольше, нежели в 3G.

6. LTE-A (LTE Advanced - модернизация LTE). Пиковая скорость передачи данных здесь - до 1 Гбит/с. В реальности интернет способен работать на скоростях до 300 Мбит/с (в 5 раз быстрее обычного LTE).

7. VoLTE (Voice over LTE - голос по LTE, как дополнительное развитие технологии): технология передачи голосовых вызовов по сетям LTE на базе IP Multimedia Subsystem (IMS). Скорость соединения - до 5 раз быстрее по сравнению с 2G/3G, а качество самого разговора и передачи речи - еще выше и чище.

8. 5 G (пятое поколение сотовой связи на базе IMT-2020). Стандарт будущего, пока находится на стадии разработки и тестирования. Скорость передачи данных в коммерческом варианте сетей обещается выше LTE до 30 раз: максимально передача данных сможет осуществляться до 10 Гбит/с.

Разумеется, воспользоваться любой из вышеперечисленных технологий вы сможете в случае ее поддержки вашим оборудованием. Также ее работа зависит от возможностей самого мобильного оператора в конкретной точке местонахождения абонента и его тарифного плана.

Скорость интернета – это объем информации, принятой и переданной компьютером за промежуток времени. Сейчас этот параметр чаще всего измеряется в Мегабитах в секунду, но это не единственная величина, также могут использоваться килобиты в секунду. Гигабиты пока еще в повседневной жизни не используются.

В то же время, размер переданных файлов измеряется обычно в байтах, но не берется в расчет время. Например: Байты, Мбайты или Гбайты.

Очень просто посчитать время, за которое получится скачать файл из сети, используя простую формулу. Известно, что наименьшее количество информации – это бит. Затем идет байт, в котором содержится 8 бит информации. Таки образом скорость в 10 Мегабит в секунду (10/8 = 1,25) позволяет передать 1,25 Мбайта в секунду. Ну а 100 Мбит/сек – 12,5 Мегабайт (100/8) соответственно.

Также можно рассчитать, за сколько загрузиться файл определенного размера из интернета. Например, фильм в 2 Гб загружаемый со скорость 100 Мегабит в секунду, можно скачать за 3 минуты. 2 Гб – это 2048 Мегабайт, которые следует поделить на 12,5. Получим 163 секунды, что равно примерно 3 минутам.
К сожалению, не все знакомы с единицами в которых принято измерять информацию, поэтому упомянем основные единицы:

1 байт – это 8 бит
1 Килобайт (Кб) соответствует 1024 байта
1 Мегабайт (Мб) будет равен 1024 Кб
1 Гигабайт (Гб) соответственно равняется 1024 Мб
1 Терабайт – 1024 Гб

Что влияет на скорость

То, с какой скоростью будет работать интернет на устройстве, зависит прежде всего:

От тарифного плана, предоставляемого провайдером
От пропускной возможности канала. Часто провайдер предоставляет общую скорость абонентам. То есть канал делится на всех, и если все пользователи активно используют сеть, то и скорость может снижаться.
От расположения и настроек сайта, к которому обращается пользователь. Некоторые ресурсы имеют ограничения и не позволяют превышать определенный порог при загрузке. Также сайт может находится на другом континенте, что также повлияет на загрузку.

На скорость передачи данных в некоторых случаях, влияют как внешние, так и внутренние факторы, среди которых:

Расположение сервера, к которому идет обращение
Настройка и ширина канал Wi-Fi роутера, если подключение происходит «по воздуху»
Приложения, запущенные на устройстве
Антивирусы и фаерволы
Настройка ОС и ПК