Солнечные батареи с рекордным кпд. Солнечные батареи высшего качества – чёрные, монокристалл

21.07.2019

Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, растет их КПД.

При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца необходимо предварительно разобраться в отличиях оборудования, ведь для различных климатических зон используются разные типы солнечных панелей.

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.

Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи

Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения. Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.

Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов

Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов. Принцип их работы при этом не изменяется.

Типы фотоэлектрических преобразователей

Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя. Различают такие виды батарей по типу устройства:

  • гибкие;
  • жесткие.

Гибкие тонкопленочные солнечные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.

Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект

По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:

  1. Кремниевые:
    • монокристаллические;
    • поликристаллические;
    • аморфные.
  2. Теллурий-кадмиевые.
  3. На основе селенида индия- меди-галлия.
  4. Полимерные.
  5. Органические.
  6. На основе арсенида галлия.
  7. Комбинированные и многослойные.

Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида. Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.

Галерея изображений

Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25 °C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.

Характеристики панелей на основе кремния

Кремний для солнечных батарей изготавливают из кварцевого порошка — размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны. Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.

Монокристаллические кремниевые панели

Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.

Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности

Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.

Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.

Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.

К преимуществам монокристаллических кремниевых батарей относят:

  1. Высокий КПД со значением 17-25%.
  2. Меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
  3. Достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.

Недостатков у таких батарей всего два:

  1. Высокая стоимость и длительная окупаемость.
  2. Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.

Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.

Поликристаллические солнечные батареи

Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.

Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.

Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы. На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.

Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.

Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени

К достоинствам солнечных батарей с разнонаправленными кристаллами относят:

  1. Высокая эффективность в условиях рассеянного света.
  2. Возможность стационарного закрепления на крышах зданий.
  3. Меньшая стоимость по сравнению с монокристаллическими панелями.
  4. Падение эффективности через 20 лет эксплуатации составляет всего 15-20%.

Недостатки у поликристаллических панелей также имеются:

  1. Пониженный КПД со значением 12-18%.
  2. Требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.

Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.

Солнечные панели из аморфного кремния

Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку. В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.

Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе

На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%. Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.

За счет особенностей данной производственной технологии создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.

Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями. Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.

При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги

Подытоживая, можно указать такие преимущества аморфных солнечных панелей:

  1. Возможность изготовления гибких и тонких панелей.
  2. Высокий КПД при рассеянном свете.
  3. Установка батарей на любые архитектурные формы.
  4. Стабильная работа при высоких температурах.
  5. Простота и надежность конструкции. Такие панели практически не ломаются.
  6. Меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов

Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS). Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Какую солнечную панель выбрать?

Выбор солнечных панелей для загородных домов на широте 45-60 ° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели. При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.

Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены

Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.

Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.

Выводы и полезное видео по теме

Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.

Правила выбора солнечных панелей и сопутствующего оборудования:

Виды солнечных панелей:

Тестирование монокристаллической и поликристаллической панелей:

Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что в ближайшие десятилетия энергия солнца станет главным источником электроэнергии во многих загородных домах и дачах.

Солнечные батареи – это уникальная система, позволяющая преобразовывать солнечные лучи в электрическую и тепловую энергию. Растущий спрос на гелиопродукцию, на сегодня, обуславливается ее быстрой окупаемостью и долговечностью, доступностью теплоносителя. Но, какое напряжение способны вырабатывать солнечные батареи? О том, насколько эффективны гелиосистемы, и от чего зависит коэффициент их полезного действия – читайте в статье.

Солнечные батареи с высоким КПД: виды преобразователей

КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.

Так, пластины солнечных батарей могут быть:

  • Тонкопленочными;
  • Многопереходными.

Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.

Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.

Так, тонкопленочные солнечные батареи делятся на такие виды:

  • Кремниевые;
  • Кадмиевые.

Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.


Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Скопление на экране снега, пыли и грязи может уменьшить КПД устройства на 7%.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Мощность солнечных батарей на квадратный метр

Как было замечено выше, в среднем, один квадратный метр фотоэлектрических преобразователей обеспечивает выработку 13-18% от мощности попадающих на него солнечных лучей. То есть, при самых благоприятных условиях, с квадратного метра солнечных батарей можно получить 130-180 Вт.

Мощность гелиосистем можно увеличивать, наращивая панели и увеличивая площадь фотоэлектрических преобразователей.

Получить большую мощность можно и, установив панели с более высоким КПД. Тем не менее, достаточно низкий (в сравнении, например, с индукционными преобразователями) коэффициент полезного действия доступных солнечных батарей является главной преградой на пути к их широкому использованию. Увеличение мощности и КПД гелиосистем является первостепенными задачами современной энергетики.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.


Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

КПД солнечных батарей (видео)

Современные солнечные батареи, как экологически чистые устройства преобразования энергии с неиссякаемым теплоносителем, набирают всю большую популярность. Уже сегодня девайсы с фотоэлектрическими преобразователями используют для бытовых целей (зарядки телефонов, планшетов). Эффективность солнечных установок пока уступает альтернативным способам получения энергии. Но, повышение КПД преобразователей – это первостепенная задача современной энергетики.

Наука и технологии не стоят на месте в сфере использования альтернативной энергетики, а использование солнечной энергии в быту и промышленности будет дальше развиваться и совершенствоваться, пытаясь вытеснить традиционные источники энергии. К сожалению, до глобального доминирования гелиоэнергетики пока далеко и виной тому низкий КПД солнечных батарей.

Факторы влияющие на эффективность солнечных батарей

На эффективность работы солнечных батарей влияют объективные и субъективные факторы, такие как:

  • материалы, используемые в изготовлении,
  • технологии,
  • место использования (широта),
  • угол падения солнечных лучей,
  • запыленность и повреждения.

Причем все эти факторы связаны и зависимы между собой по влиянию на КПД солнечных батарей. Но начальным фактором, который определяет КПД является себестоимость изготовления элемента солнечной батареи.

Лидеры энергоэффективности солнечных батарей

Рассмотрим лидеров в изготовлении наиболее эффективных компонентов солнечных панелей и отсортируем по их эффективности:

  • 44,7% КПД от первого из неуниверситетских научно-исследовательских институтов Германии. Результат получен для концентраторов тройного перехода слоев сложного состава полупроводника (Ga 0,35 В 0,65 P / Ga 0,83 В 0,17 As / Ge). Такие солнечные элементы сложны, не используются в жилых или коммерческих целях, потому что они очень дороги. Они используются в космической технике таких производителей, как NASA, где мало пространства.
  • 37,9% эффективности получено из однослойного модуля полупроводникового перехода (InGaP / GaAs / InGaAs). При этом результат получен исключительно для 90° нормали к Солнцу. Эти солнечные элементы также сложны и трудоемки в изготовлении, но их промышленное производство видится более перспективным.
  • 32,6% добились испанские исследователи с института (IES) и университета (UPM). Они использовали мульти-модули из концентраторов с двумя переходами полупроводников. Опять же, эти элементы еще далеки от широкого использования для коммерческих или жилых объектов.

Баланс эффективности солнечных батарей

Есть около десятка крупнейших производителей, выпускающих солнечные батареи со сравнительно неплохим КПД и умеренной стоимостью. Ведущие компании производящие солнечные батареи при самых современных технологиях могут промышленно изготавливать солнечные элементы с эффективностью близкой к 25%. При этом хорошо налажено массовое производство модулей с КПД солнечных батарей, как правило, не превышающих показатель 14-17%. Главной причиной этой разницы в эффективности является то, что методы исследования, используемые в лабораториях, не подходят для коммерческого производства фотоэлектрической продукции и, следовательно, более доступные технологии имеют сравнительно низкие затраты в производстве, что и приводит к понижению показателя КПД в использовании.

Для этого покажем на графике зависимость стоимости готового модуля к стоимости произведенной электроэнергии для технологических серий солнечных батарей с характерными для них показателями КПД.

На сравнительном графике хорошо видна экономическая эффективность солнечных батарей с начальными лабораторными показателями КПД, изготовленных по разным технологиям, в отношении оптимальной стоимости произведенной электроэнергии в 6 центов за кВт-час (3,4 руб/кВт-ч).

Таким образом, самые доступные и недорогие в изготовлении солнечные элементы из аморфного кремния в виде тонкой гнущейся пленки окупают себя при сравнительно небольших размерах, но экономически не эффективны при больших потребностях в электроэнергии. Они широко применяются для переносных зарядок телефонов, светильников и т. д.

Батареи из поликристаллического кремния уже становятся эффективны при применении для жилых домов и небольших теплиц.

Элементы опытных солнечных электростанции изготовлены на основе монокристаллов кремния высокой степени очистки (99,999). Обладают оптимальными показателями эффективности и имеют экономически обоснованный срок окупаемости.

Новейшие научные разработки фотоэлементов, имеющие, самый высокий КПД применяются исключительно в тех отраслях науки и промышленности, где стоимость не является основным критерием выбора.

Применение солнечных батарей все больше входит в различные сферы нашей жизни, но к сожалению, из-за несовершенства технологии производства (и как следствие достаточного низкого КПД) при значительной стоимости не имеет широко применения.

Солнечной панелью принято считать источник электрической энергии, который работает непосредственно от светового потока. Если говорить о конструктивном исполнении, любая гелиопанель представляет определенный набор фотоячеек, соединенных между собой, помещенных в защитный корпус и закрытых передней панелью из стекла.

Что собой представляет фотоячейка

Фотоячейка является полупроводниковым элементом, который объединяет в себе два типа проводимости, отличающиеся недостатком или избытком электронов:

  • n — проводимость;
  • p — проводимость.

Она состоит из двух полупроводников, в которых электроны исходного материала поглощают энергию, получаемую из солнечного потока, что придает им дополнительный импульс. Покидая свою орбиту, направленный поток электронов генерирует постоянный фототок, который и используется в практических целях.

Применение в повседневной жизни

Сфера применения подобных устройств очень широка и охватывает различные отрасли, среди которых можно отметить следующие направления:

  • Микроэлектроника (часы, калькуляторы).
  • Электроника, используемая в быту (внешние аккумуляторы для смартфонов, планшетов, ноутбуков).
  • Обеспечение электроэнергией как отдельно стоящих зданий, так и удаленных районов.
  • Использование в передвижных средствах связи и различных комплексах.
  • Автомобильная промышленность (электромобили).
  • Космическая отрасль (космические станции).

Преимущества использования

Среди прочих альтернативных источников энергии солнечные панели обладают рядом неоспоримых преимуществ, а именно:

  • Являются энергонезависимым источником энергии, не нуждаются в сложном обслуживании и замене агрегатных узлов или соединений. Максимальный уход заключается в очистке стеклянного покрытия от возникающих загрязнений.
  • Работают независимо, не требуют коммутирующих включений и выключений и всегда находятся в рабочем состоянии. Также отличаются бесшумностью действия и абсолютно экологически безопасны.
  • Небольшой период окупаемости.
  • Срок службы приравнивается к 25 годам, при этом в процессе работы не происходит снижения мощности элементов. По заявлениям производителей, снижение выходной мощности должно быть не более 5%.
  • При их использовании существует возможность конфигурирования конечной установки в зависимости от требуемой мощности и напряжения, что проблематично осуществить с другими источниками энергии.

Виды используемых устройств

Как уже было сказано, все они имеют в своем составе фотоэлементы, которые могут быть представлены следующими полупроводниками:

Кремниевые гелиопанели

В настоящее время для производства фотоячеек используется монокристаллический, поликристаллический и аморфный кремний.

  • Из монокристаллического кремния. Как видно из названия, основным материалом в данных приборах считается очищенный кремний. По внешнему виду они выполнены в виде пчелиных сот, соединенных в единую структуру. Конструктивно очищенный монокристаллический кремний представляет собой тончайшие пластины (до 300 микрон), связанные электродной сеткой. Главным преимуществом признана их высокая эффективность, которая может составлять до 20%.
  • Поликристаллические элементы. Подобные виды значительно дешевле предыдущего варианта в связи с более простой технологией изготовления (охлаждения кремниевой субстанции). Заметим, что образование внутри поликристаллов приводит к тому, что стабильность работы становится значительно ниже, а показатели конечного коэффициента полезного действия не превышают 18%.
  • Гелиопанели из аморфного кремния. Можно отнести как к пленочным, так и к кремниевым, так как основным полупроводниковым материалом в них является силан (или кремневодород). Тонкая пленка силана наносится на специально подготовленную подожку, которая и образует фотоячейку. Не смотря на то, что КПД составляет всего порядка 5%, данный тип нашел широкое применение. Фотоячейки обладают хорошим светопоглощением, благодаря чему несмотря на малый КПД, способны работать при отсутствии прямого солнца и в пасмурную погоду. В связи с этим применяют сочетание монокристаллических (или поликристаллических) ячеек с аморфными, так как сборные секции способны работать в любых погодных условиях.

Пленочные гелиопанели

Бывают двух видов:

  • На основе теллурида кадмия. Имеют низкий КПД (до 10%) и ядовитое вещество в своем составе, но не смотря на это низкая стоимость обуславливает их популярность. На основе селенида меди-индия. Основные материалы, применяемые для создания ячеек – медь, селен и индий. Также являются достаточно дешевыми, однако имеют эффективность порядка 20%.
  • Полимерные. В настоящий момент являются более популярными в связи с их дешевизной и доступностью. В качестве полупроводников используется полифенилен или фталоцианин меди. Эффективность составляет всего 5%, однако в связи с их доступностью, легкостью установки и монтажа, а также экологической безопасностью, они применяются не только в промышленных, но и в бытовых целях.

Эффективность работы

В самом начале, еще на этапе появления солнечных батарей на рынке, коэффициент полезного действия был достаточно невелик, но на сегодняшний момент их производительность поднялась на довольно высокий уровень. Сейчас для монокристаллических кремниевых батарей она доходит до 24%, для поликристаллических – 20%, кремниевых тонкопленочных – 15%, а для тонкопленочных на основе арсенида галлия – 24%. Для многослойных гелиопанелей КПД доходит до 30%.

Если обратиться к производителям подобных устройств, то лучшие солнечные батареи с высоким КПД представлены следующими компаниями:

  • Панели, созданные институтом Soitec & Fraunhofer Institute на сегодняшний день являются лидером по эффективности использования. КПД достигает невероятных 46%, однако ввиду колоссальной стоимости они используются только в научно-космической сфере.
  • Компания Sharp — безусловный лидер с 55-ти летним стажем. Выпускают солнечные батареи практически для всех отраслей, начиная от калькуляторов и заканчивая космическими станциями. Сейчас КПД производимых ими солнечных панелей доходит до 19.8%. В своих разработках компании удалось достигнуть производительности в 44,4%, однако эти технологии сейчас крайне дорогостоящие и не предлагаются на рынке.
  • На третьем месте испанский институт IES (Spanish solar research institute). Им удалось добиться эффективности в 32,6%.

Однако вернемся на землю, цифры выше – из области высоких технологий, которые пока недоступны для использования для коммерческих или жилых объектов. При выборе гелиосистемы для дома – самые эффективные солнечные панели из тех, что Вы сможете найти на рынке, вряд ли превысят КПД в 20%. Со своей стороны можем порекомендовать Вам обратить внимание на таких производителей как Amonix, Sun Power, SunTech Power, Q-Cells, Sanyo и First Solar.

Как правильно рассчитать количество гелиопанелей

Для того чтобы определиться с количеством устанавливаемых батарей в быту, необходимо принимать во внимание следующие факторы:

  • Рассчитать необходимое количество электроэнергии в доме.
  • В зависимости от местоположения (региона) уточнить уровень солнечной радиации в течение года. Как правило, данные имеются у местных метеорологических служб.
  • Рассчитать мощность в сутки. При этом необходимо учитывать потери на зарядку аккумулятора (не более 20%) – W.
  • С учетом летних и зимних коэффициентов получить мощность (выработку) одной секции в сутки N, при этом летний поправочный коэффициент – 0,5, зимний – 0,7.
  • Разделив W на N, получим необходимое количество батарей, требуемых для обеспечения потребности в электроэнергии.

При расчете можно прикинуть, что для регионов средней полосы России количество необходимых панелей, обеспечивающих требуемую электроэнергию, в зимний период в несколько раз больше, чем летом.

При этом на выработку влияет не только мощность отдельной секции, но и угол ее наклона, наличие или отсутствие поворотных приводов и концентрирующих устройств. В любом случае, при недостаточной выработке электроэнергии количество секций можно увеличить, что поможет решить проблему.

Повышение эффективности работы солнечных панелей

С учетом того, что их коэффициент полезного действия достаточно низок, перед производителями, как и перед пользователями остро стоит проблема его повышения. Эффективность работы солнечных батарей зависит от множества факторов, потому для увеличения КПД и производительности следует придерживаться основных пунктов:

  • Правильный выбор материала. В отличие от поликристаллических моделей, индий-галлиевые или же ячейки из кадмий-теллура способны значительно повысить производительность.
  • Правильное расположение поверхности секции под прямым углом к световому потоку, что достигается установкой специальных приводов и датчиков, реагирующих на направление света.
  • Как и для любого другого прибора, перегрев крайне опасен, потому вместе с установкой панелей необходимо предусмотреть систему их вентиляции и охлаждения.
  • Исключить падение тени от стоящих неподалеку высоких объектов, так как это может понизить производительность установки в несколько раз.
  • Условия эксплуатации, правильное и своевременное обслуживание всех узлов, входящих в состав управления панелями (приводы, контроллеры, инверторы, аккумуляторы и прочее).

Конечно, установка гелиопанелей не решит полностью проблему по автономному питанию необходимым количеством электроэнергии, но поможет поднять ее выработку для запитки хотя бы части электроприборов.