Сопротивление катушки индуктивности по постоянному току. Схема замещения катушки с последовательным соединением элементов

23.05.2019

Магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом . В электромагнитных реле называют обмоткой реле , реже - электромагнитом.

При использовании для накопления энергии называют индукционным накопителем .

Конструкция

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые , флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ , когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где - магнитная постоянная - относительная магнитная проницаемость материала сердечника (зависит от частоты) - площадь сечения сердечника - длина средней линии сердечника - число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом . Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.

Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи , потерь на перемагничивание ферромагнетика гистерезис .

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика - добротность . Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) - сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 - для идеальной катушки.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ - это параметр, характеризующий зависимость индуктивности катушки от температуры.

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности

См. также

Примечания

Ссылки

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор · Мемристор
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод ·

Катушка индуктивности – элемент электрических цепей, способствующий накоплению энергии магнитного поля. С использованием изделий изготавливаются колебательные резонансные контуры. Катушка называется потому, что вокруг бобины-сердечника обматывается нить проволоки. Часто в радиотехнике элементы именуют индуктивностями. Подходит случаю, конструкции иной раз мало напоминают катушку.

История создания катушки индуктивности

Катушки индуктивности наматываются фиксированным числом проводов. Этот факт скрывают на уроках физики, избегая забивать ученикам мозги. Потом догадываются бедняги, пытаясь уловить смысл термина бифилярная обмотка двигателя. Нитей бывает больше, выделяют катушки индуктивности:

  • трифилярные;
  • тетрафилярные;
  • пентафилярные.

Обычные катушки индуктивности называют унифилярными – нить проволоки одна. Сразу возникает справедливый вопрос – зачем конструкции? Изобретатель катушку индуктивности неизвестен. Ответы дают, виноват Тесла… Далеко от истины.

Дроссель

Один знаток Майл.ру – не исключено, админ ресурса – ответил: отцом катушек индуктивности является Майкл Фарадей, якобы, открыл магнитную индукцию (согласно англоязычной страничке Википедии). Напрашивается вывод, историковед не владеет вопросом. Главная причина критики «Ответов» Майл — некомпетентность. Фарадей открыл индукцию, применив тороидальный трансформатор с двумя изолированными обмотками. Намного сложнее конструкция, нежели катушка, явление заключалось сопровождалось выходом скачка тока при изменении магнитного поля сердечника.

Произошло описанное в 1831 году, первый электромагнит сконструирован малоизвестным в России Уильямом Стердженом. Знаете, как выглядел прибор? Правильно – катушка индуктивности из 18 витков оголенной медной проволоки с хорошим лакированным ферромагнитным сердечником формы лошадиной подковы. При пропускании по обмотке тока железо в округе притягивалось устройством. Годом выхода первого электромагнита в свет историки считают 1824. Раньше, нежели Фарадей начал эксперименты.

Наставник Хампфри Дэви счел работу плагиатом. Ученик не решался продолжить, конфликтовать открыто. Получилось, в 1829 году безвременно Хампфри Дэви ушел из жизни, благодаря чему Майкл Фарадей возобновил работу. Не потому считаем неверными скудные сведения рунета по рассматриваемому вопросу. Вторая причина кроется в гальванометрах: первый сконструирован 16 сентября 1820 года Иоганном Швейггером. Годом позже великий Ампер усовершенствовал прибор, угадайте, что входило в состав новинки? Правильно – катушка индуктивности, составленная несколькими витками проволоки.

В 1826 году Феликс Савари разряжал лейденскую банку через несколько витков проволоки, обмотанной вокруг стальной иглы. Наблюдая остаточную намагниченность металла. Фактически Савари создал первый колебательный контур, правильно сделав выводы о происходящих процессах.

Майкл Фарадей бессилен стать изобретателем индуктивности. Скорее ученый работал в этом направлении, вел некоторые исследования, получил новый закон касательно электромагнетизма. В результате вопрос об изобретателе катушки индуктивности оставляем открытым. Рискнем предположить, у субъекта темы два отца:

  1. Лаплас на основе доклада Эрстеда высказал предположение: действие тока на магнитную стрелку можно усилить, изогнув провод.
  2. Швейггер реализовал услышанное на практике, создав первый в мире гальванометр, использовав доклады Ампера о зависимости угла отклонения стрелки от силы тока.

Конструкция катушки индуктивности

Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, демонстрируя упорядоченную ориентацию металлической пыли в момент замыкания контактов. Конструкция способна запасать впрок магнитное поле подобно конденсатору, накапливающему заряд. Катушками называют только индуктивности, содержащие намотку лакированного провода. В микрополосковой технологии напыляемые для запасания магнитного поля элементы логично именовать индуктивностями.

Если в катушке, совсем как в той, что используют швеи, несколько витков провода расположить один за другим бок о бок так, чтобы ось была общей, линии напряженности магнитного поля суммируются. Простейшая индуктивность, способная накапливать энергию магнитного поля. При резком пропадании напряжения образуется явление обратной-ЭДС широко известное технике. Выступает причиной искрения коллекторных двигателей. Используется лакированный (с лаковой изоляцией) медный провод нужного сечения. Количество витков, форма сердечника определяются предварительно расчетами или по имеющемуся образцу.

Бифилярные катушки сегодня широко используются. Что касается обратной ЭДС, служит причиной розжига разрядных ламп (дневного света). Вернемся к конструкции. В первом электромагните проволока оголенная, современные катушки индуктивности наматываются лакированным. Тонкая изоляция при необходимости может быть легко снята (например, токсичной муравьиной кислотой), в исходном состоянии надежно защищает конструкцию против короткого замыкания.

Внутри катушки находится сердечник из ферромагнитного материала. Форма не важна, сечение лучше брать круглым. На высоких частотах магнитный поток (см. ) выходит на поверхность сердечника, смысл применения ферромагнитных сплавов пропадает, иногда используется латунь (даже композитные материалы, диэлектрики). Снижает индуктивность, на высоких частотах запасаемая за период мощность невелика. Трюк проходит. У многих возникает вопрос – зачем нужен сердечник?

Сердечник катушки индуктивности выступает опорой, долговечным каркасом, усиливая магнитное поле. Индукция связана с напряженностью поля через постоянную магнитной проницаемости среды. У ферромагнитных материалов параметр поистине велик. В тысячи раз больше, нежели воздуха, большинства металлов. С ростом частоты необходимость в сердечнике снижается, возникают некоторые негативные эффекты, два из которых особенно важны:

Линии магнитного поля, сформированные опилками

  1. Переменное магнитное поле наводит вихревые токи, посредством которых функционируют индукционные плитки. Результат представите сами: какой нагрев сердечника вызовет. Сердечники силовых трансформаторов собираются из специальной электротехнической стали с высоким сопротивлением, разбиваются тонкими листами, изолированными взаимно слоем лака. Шихтование позволит сильно снизить влияние вихревых токов.
  2. Второй эффект называется перемагничиванием. Отнимает энергию поля, вызывает нагрев материала. Явление характерно для ферромагнитных материалов, устраняется использованием латуни.

В микрополосковой технологии предусмотрено исполнение индуктивностей в виде плоских спиралей: проводящий материал через трафарет напыляется на подложку (возможный метод). Напоминает конструкцию Николы Тесла. Номинал катушка индуктивности имеет весьма малый, иного не надо на частотах СВЧ. Расчет ведется по специальным справочникам, хотя пользуются преимущественно инженеры-конструкторы.

Для намотки индуктивности изготавливают специальные приспособления, напоминающие катушку спиннинга. На ось одевается сердечник с ограничителем по бокам, вращая ручку, мастер внимательно считает количество оборотов, отмеряет нужную длину. Медленно, по способу челнока рука двигается влево-вправо, витки ровно ложатся последовательно.

Зачем нужны бифилярные катушки индуктивности

Иногда катушка наматывается в две и более проволочных нитей. Тесла конструкцию применял для увеличения емкостных качеств. В результате становилось возможным экономить материалы – говорили выше. Что касается состояния на современном этапе развития технологий, причиной создания бифилярных катушек может быть следующее:

Параметры катушек индуктивности

Главной характеристикой катушек называют индуктивность. Физическая величина, в СИ измеряемая Гн (генри), характеризующая величину мнимой составляющей сопротивления конструкции. Параметр показывает, как много магнитного поля запасет катушка. Для простоты энергию за период считают пропорциональной произведению LI2, где L — индуктивность, I – протекающий в системе ток.

Формула расчета индуктивности

Теоретический расчет главного параметра катушек сильно определен конструкцией. Выпускаются специальные методические пособия, формула (см. рисунок: S – площадь сечения намотки, l – длина катушки, N – количество витков проволоки, в формуле — магнитная постоянная и магнитная проницаемость сердечника), приведенная на картинке, частный вариант. Когда индуктивность напоминает катушку. Имеются специальные программы для персонального компьютера, упрощающие процесс.

К вторичным параметрам катушек индуктивности относят:

  • Добротность. Характеризует потери на активном сопротивлении.
  • Собственная индуктивность (см. выше).
  • Температурная стабильность параметров.
Катушка индуктивности. Дроссель Возьмем отрезок медного провода и намотаем его на карандаш, а затем снимем с карандаша полученную спираль. У нас получился очень необходимой в радиоэлектронике элемент под названием катушка индуктивности. В дальнейшем такую спираль будем называть катушкой. Полученная нами катушка в электронике называется "однослойная цилиндрическая катушка без сердечника".

В промышленности катушки наматывают проводами с низким удельным сопротивлением - медь, алюминий, серебро и т.д. Провода покрывают электротехническим лаком для проедотвращения замыкания между витками катушки. В цепях постоянного тока и в цепях переменного тока катушка обладает различными свойствами, о чем в дальнейшем и будет идти речь.
Вспомним, из физики, что вокруг всякого проводника, по которому протекает электрический ток, образуется магнитное поле. Так как катушка - это проводник скрученный в спираль, то вокруг катушки также образуется магнитное поле. При протекании через катушку постоянного тока iL силовые линии магнитного поля направлены так, как показано на рисунке.


Чем больше количество витков и чем больше сила тока через катушку, тем больше величина магнитного поля.
Параметры катушки характеризуются величиной L которая называется: "индуктивность". Индуктивность зависит от геометрических размеров катушки и количества витков намотки. Следовательно, чем больше ток через катушку и больше индуктивность, тем сильнее магнитное поле.
Если в катушку ввести сердечник из магнитного материала (например сталь), то индуктивность катушки возрастет во много раз. Сам сердечник введенный в катушку, при подаче на катушку постоянного напряжения, намагнитится.


Из сказанного следует, что мы можем рассматривать катушку с сердечником как электрический магнит.
Электромагниты широко используются как в промышленности, так и в быту. Свойства электромагнита используются в электродвигателях постоянного тока. Более всего электромагниты распространены в таких приборах, как электромагнитные реле. Реле, это такие приборы, при подаче напряжения на которые включается электромагнит и происходит замыкание или размыкание мощных контактов.

Реле, следовательно могут коммутировать большие токи и напряжения. Реле, так же, широко используют в системах автоматики. При определенном включении реле могут выполнять логические функции.
Несмотря на простоту конструкции, расчёт индуктивности катушки весьма сложен. Приходится учитывать геометрические размеры, форму, количество витков, тип сердечника и т.д.
Для примера приведём формулу расчета индуктивности L простой однослойной цилиндрической катушки диаметром D, длиной намотки l, числом витков W, без сердечника:
L(мкГн) = W 2 * D * 10 -3 *l / (D + 0,45).
Индуктивность катушки измеряется в единицах - генри (Гн). Величина в 1 генри очень большая единица, поэтому на практике часто применяют кратные единицы:
миллигенри (мГн), 1мГн = 1*10 -3 Гн;
микрогенри (мкГн), 1мкГн = 1*10 -6 Гн.

Вернемся к катушке в цепи постоянного тока. Если катушку из нескольких витков, с сердечником, использовать в качестве электромагнита, т.е. подключить ее к источнику тока, то она перегорит (если мощность источника достаточно велика).

Произойдет это потому, что сопротивление катушки постоянному току очень мало, и соответственно ток через катушку и мощность будут максимальны. В связи с этим, для катушек в цепи постоянного тока, важна не индуктивность, а сопротивление катушки постоянному току. У электромагнитных реле, например, в справочниках указывается сопротивление обмотки и рабочее напряжение.
Как получить высокое сопротивление обмотки катушки, если провод которым они наматываются имеет низкое удельное сопротивление? Для этого используют провод с малой площадью поперечного сечения и наматывают большое количество витков в несколько слоев, например распространенное реле РЭС-9 имеет обмотку проводом диаметром 0,1мм и числом витков порядка 2000.
Иначе обстоит дело, когда катушка включена в цепь переменного тока. Так как ток переменный, то и магнитное поле создаваемое катушкой, тоже будет переменным. Переменное магнитное поле будет создавать сопротивление прохождению тока через катушку. Причем, чем больше частота переменного тока, при неизменной индуктивности катушки, тем больше получается сопротивление.


Избавиться от помех можно если в цепи питания поставить фильтр состоящий из катушки и конденсаторов. Так как катушка имеет низкое сопротивление постоянному току, то постоянное напряжение питания проходит через катушку без затухания, а для помехи сопротивление катушки велико и сигнал помехи ослабляется. Сопротивление конденсатора для помехи наоборот мало и помеха заземляется.
Назначение индуктивно-емкостного фильтра не только защита от помех. Фильтры широко используют для частотной селекции (разделения, выделения) сигналов. Например частота звукового сигнала (частота которую в состоянии услышать человеческое ухо) лежит в диапазоне от 20 Гц до 20000 Гц. Для качественного воспроизведения звуковых сигналов в акустических системах применяют 3 динамика - для воспроизведения низких (НЧ), средних (СЧ) и высоких (ВЧ) частот звукового диапазона.


Динамики включаются через фильтры которые выделяют именно тот диапазон частот, какой должен воспроизводить конкретный динамик.

В связи с тем, что конструктивный расчет катушек индуктивности очень сложен, на практике, в основном, применяют готовые (стандартные) катушки индуктивности. Для фильтров применяют катушки которые называют "дроссель". В радиоаппаратуре применяют катушки с изменяемой индуктивностью - сердечник такой катушки делается подвижным и может перемещаться внутри катушки.


В зависимости от применяемого сердечника индуктивность может возрастать или наоборот уменьшаться. Если применен сердечник из магнитного материала - сталь, феррит..., то индуктивность катушки увеличивается; если сердечник из диамагнитного материала - латунь, алюминий..., то индуктивность катушки уменьшается.
Катушки индуктивности, так же, как резисторы и конденсаторы, для получения заданной индуктивности, можно включать как последовательно, так и параллельно. Формулы расчета результирующей индуктивности Lr аналогичны формулам расчета результирующего сопротивления, а именно: для параллельного включения катушек: 1/Lr = 1/L1 + 1/L2 + ... + 1/Ln; для последовательного включения - Lr = L1 + L2 + ... + Ln.

Трансформаторы Мы знаем, что вокруг катушки, через которую протекает переменный электрический ток, образуется переменное магнитное поле. Если рядом с такой катушкой установить еще одну катушку, то магнитное поле первой катушки создаст в второй катушке электродвижущую силу (ЭДС), то есть на выводах второй катушки появится переменное напряжение.


Такое электромагнитное устройство, состоящее из двух (а иногда и более) катушек, одна из которых подключается и источнику переменного тока называется трансформатор. Трансформаторы широко используются в радио и электронике для преобразования одного напряжения в другое той же частоты.

Для усиления индуктивной связи катушки (в трансформаторах они называются "обмотки") размещаются на одном общем сердечнике. Обмотка подключенная к источнику питания называется первичной, а обмотка к которой подключена нагрузка называется вторичной.
Трансформаторы предназначенные для питания радио и электронной аппаратуры называются силовыми. Силовые трансформаторы, обычно, используют для понижения высокого (220V) напряжения осветительной сети в низкое напряжение порядка 9 ... 80V. В радиоаппаратуре применяют, обычно, стандартные трансформаторы. Кроме вторичного напряжения, для силовых трансформаторов обязательно указывается мощность которую трансформатор может отдавать в нагрузку. Показанный на рисунке трансформатор типа ТП-200 имеет мощность 200 Ватт.


Отношение (k) числа витков первичной обмотки (W1) к числу витков (W2) вторичной обмотки трансформатора называется коэффициентом трансформации k = W1 / W2. Если k больше 1 то трансформатор является понижающим, т.е. напряжение на вторичной обмотке будет меньше напряжения на первичной обмотке в k раз.


Если k меньше 1 то трансформатор является повышающим и напряжение на вторичной обмотке будет больше напряжения на первичной обмотке в k раз. В общем случае напряжение на вторичной обмотке (U2) будет: U2 = U1/k, где U1 - напряжение на первичной обмотке.

Колебательный контур. Рассмотрим схему показанную на Рис.1. Здесь конденсатор С подключен к источнику питания GB через переключатель SA.

Через определенный промежуток времени конденсатор зарядится. Как только конденсатор зарядится переключим переключатель SA на катушку L (Рис.2). Конденсатор С разрядится через низкое сопротивление катушки L, но на этом процесс в цепи параллельно включенных катушки и конденсатора не закончится.
Вспомним, что при прохождении тока через катушку индуктивности вокруг нее образуется магнитное поле. Как только конденсатор разрядился магнитное поле катушки создает в катушке ЭДС, которая создает ток заряда конденсатора (В данном случае I2. Смотрите рисунок.).

Как видно из рисунка направление тока I2 противоположно току I1. За счет ЭДС катушки конденсатор заряжается. Как только конденсатор зарядился он тут же начинает разряжаться через низкое сопротивление катушки и процесс повторяется. В связи с потерями энергии в катушке и конденсаторе ток заряда - разряда постепенно уменьшается и процесс затухает. На графике этот процесс выглядит так, как показано но рисунке.
Параллельное включение катушки и конденсатора называется: "параллельный колебательный контур" или просто "колебательный контур". Колебательный контур обладает замечательными свойствами. Одно из свойств колебательного контура, это равенство периодов (Т) колебательного процесса, то есть частота колебаний (f) является постоянной величиной (смотрите график на рисунке).

Частота колебаний зависит от емкости конденсатора и индуктивности катушки. Частота колебательного контура называется "резонансной частотой" (fр). На рисунке показана математическая запись расчета резонансной частоты колебательного контура. Компьютернаязапись той же формулы выглядит так:
fp = 1 / (2 * pi * sqrt(L * C)), где sqrt означает - корень квадратный.
Рассмотрим схему показанную на рисунке.

Здесь к генератору (G) переменного тока подключен колебательный контур (LC). Ток I проходящий через контур измеряет амперметр переменного тока (А). Мы можем плавно изменять частоту генератора от f1 (см. график) которая меньше резонансной частоты колебательного контура до f2 которая больше резонансной частоты. На этих частотах величина тока максимальна. На частоте резонанса контура fp ток через контур резко падает. Это еще одно замечательное свойство колебательного контура. Мы знаем, что чем больше сопротивление цепи, тем меньше ток в этой цепи. Тогда резонансное сопротивление колебательного контура Rp, будет максимальным именно на частоте резонанса.
Свойство колебательного контура, когда резонансное сопротивление контура на частоте резонанса стремится к бесконечности, широко используется на практике. Например, рассмотрим как работает простой радиоприемник. Радиостанции передают радиосигнал в эфир на определенной частоте. За каждой радиостанцией закреплены определенные частоты.

В нашем примере (см. рисунок) радиостанция имеет частоту передающего сигнала 1200 KHz (килогерц). Приемник принимает через антенну радиосигналы. Радиосигналов в эфире очень много и все они имеют разные частоты. Как нам выделить сигнал нужной радиостанции (в нашем примере с частотой 1200 KHz)?
Для настройки радиоприемника на нужную частоту воспользуемся свойствами колебательного контура. Рассмотрим схему показанную на рисунке. Антенна (А) принимает радиосигналы различных частот. Предположим, что колебательный контур (LC) имеет частоту резонанса равную 1200 KHz, именно ту частоту которая нам нужна.

Тогда радиосигналы у которых частоты не равны 1200 KHz практически без помех пройдут через колебательный контур на землю. Для сигнала с частотой 1200 KHz сопротивление колебательного контура велико, поэтому сигнал пойдет не на землю, а на преобразователь радиосигнала высокой частоты в сигнал звуковой частоты (называется "детектор") и далее на усилитель и динамик.
Для настройки на другую частоту, обычно, в колебательном контуре применяют конденсатор переменной ёмкости (рис.1) С изменением емкости конденсатора изменяется и резонансная частота контура fp, то есть изменяется настройка на другую частоту.

В простых приёмниках (например рассмотренного нами) возникает такое явление, как наравне с основной радиостанцией, на частоту которой настроен колебательный контур, прослушивается и другая радиостанция (с меньшей громкостью) имеющая частоту близкую к частоте основной радиостанции. Это явление возникает потому, что частота (fp1) мешающей радиостанции близка к частоте основной радиостанции и резонансное (Rp1) сопротивление колебательного контура велико (Рис. 2).
Относительно высокое сопротивление колебательного контура, не на частоте резонанса, позволяет мешающему сигналу проходить на детектор и соответственно на усилитель и динамик. Поэтому для колебательного контура существует такое понятие как добротность контура.

На графике представлены две кривые зависимости (А и Б) сопротивления контура от частоты сигнала. Очевидно, что сопротивление Rp1 кривой А, на частоте fp1, больше сопротивления Rp2 кривой Б. Из этого следует, что ослабление мешающего сигнала лучше у контура имеющего кривую Б. В радио и электронике принято говорить, что чем острей кривая, тем лучше добротность контура. Добротность контура зависит от качества изготовления катушки индуктивности и качества применяемого конденсатора переменной ёмкости.
Колебательные контуры, в радиоэлектронике применяются не только для настройки на радиостанции. Широкое применение колебательные контуры нашли в радиоэлектронике как фильтры различных сигналов, а так же в качестве стабилизаторов частоты генераторов переменного тока применяемых в передатчиках и других приборах.

Сегодня нами будет рассмотрена катушка индуктивности в цепи переменного тока, узнаем, в чем бы была разница, если бы цепь питалась от постоянного тока, а также много интересных особенностей этого простого, но очень важного радиоэлемента.

Для начала давайте определим назначение этой детали, а также основные понятия и термины, связанные с ней.

Что такое катушка индуктивности

Катушка индуктивности – это радиоэлемент, применяющийся в разных схемах для следующего:

  • Сглаживание биений;
  • Подавление помех;
  • Ограничение переменного тока;
  • Накопление энергии и прочее.

Представляет собой данный элемент спиральную, винтовую или винтоспиральную катушку, сделанную из изолированного проводника. Деталь обладает относительно малой емкостью и малым активным сопротивлением, при этом у него имеет высокая индуктивность, то есть способность возникновения ЭДС (электродвижущей силы) в проводнике, при протекании в цепи электрического тока.

  • Катушка индуктивности, в зависимости от места и цели применения может иметь и другие названия. Например, если элемент используется для изоляции по высокой частоте в разных частях схемы, накоплении энергии магнитного поля сердечника, сглаживания пульсаций и подавления помех, катушку называют дросселем либо реактором (второе название употребляется редко).
  • Если говорить про силовую электротехнику, то там устоялось название ректор – его применяют при необходимости ограничения тока, например, если произошло замыкание на ЛЭП.

  • Бывают также и цилиндрические катушки индуктивности, называемые соленоидами. Длина такого цилиндра в несколько раз превышает его диаметр.

Интересно знать! Магнитное поле внутри соленоида однородно. Данное магнитное поле может выполнять механическую работу, втягивая ферритовый сердечник.

  • Применяются катушки индуктивности и в электромагнитных реле, где их называют обмоткой реле.
  • Устанавливаются подобные элементы и в индукционные нагреватели – тут их называют нагревательными индукторами.

  • Также можно услышать термины вроде индукционного накопителя или накопительного дросселя, если речь идет об устройствах импульсной стабилизации напряжения.

Конструкционные особенности

Конструкционно катушка индуктивности представляет собой намотанную по спирали или винтом изолированную одножильный или многожильный проводник (чаще, лакированная медная проволока), вокруг диэлектрического сердечника (каркаса). Форма сердечника может быть круглой, тороидальной, прямоугольной, квадратной. Материалы, применяемые для сердечника, имеют магнитную проницаемость выше, чем у воздуха, что дополнительно удерживает магнитное поле возле катушки, а значит, увеличивается и индуктивность.

Существуют и катушки, вовсе не имеющие сердечника, или же он является регулируемым, что позволяет менять индуктивность детали.

Намотка проводника может быть как однослойной, ее еще называют рядовой с шагом, или многослойной (применяются названия универсал, внавал, рядовая). Расстояние между витками называется шагом.

Применение

Используются катушки в схемах обработки сигналов и аналоговых схемах. В сочетании с конденсаторами и прочими радиокомпонентами могут формировать участки схем, которые усиливают или отфильтровывают определенные сигналы.

Широко применяются дроссели в источниках питания, где они вместе с конденсаторами фильтра призваны устранить остаточные помехи и прочие колебания, возникающие на выходе.

Если две катушки соединить одним магнитным полем, то получится трансформатор – устройство, способное передавать электричество от одной части цепи к другой, за счет электромагнитной индукции, попутно меняя величину напряжения.

Для справки! Трансформаторы способны функционировать только с переменным током.

Основные характеристики катушек индуктивности

Прежде чем разбираться с тем, как ведет себя ток, проходя в цепи через катушку индуктивности, давайте сначала узнаем главные характеристики этого элемента.

  • Прежде всего, нас интересует индуктивность – значение, численно выражающаяся соотношением потока магнитного поля, которое создается протекающим током, к силе этого самого тока. Измеряется этот параметр в Генри (Гн).
  • Если говорить более простым языком, то это явление можно описать так. При протекании тока через катушку индуктивности создается электромагнитное поле, которое напрямую связано с ЭДС, которая оказывает противодействие изменению переменного напряжения, то есть в цепи возникает ток, который течет в обратном направлении основному.
  • Измерение силы тока на катушке индуктивности и переменного напряжения, противостоят данной силе, точнее наоборот. Это свойство элемента называется индуктивным сопротивлением, которое находится в противофазе реактивному емкостному сопротивлению конденсатора, включенному в цепь переменного тока.

Катушка индуктивности в цепи переменного тока

Катушка индуктивности в цепи переменного тока ведет себя не так, как резистор. Если резисторы просто противостоят потоку электронов (напряжение на них прямопропорционально току), то катушки индуктивности противостоят изменению проходящего через них тока (напряжение на них прямопропоционально скорости изменения тока). Согласно Закону Ленца, индуцированное напряжение всегда имеет такую полярность, которая пытается сохранить текущее значение силы тока. То есть, если величина тока возрастает, то индуцированное напряжение будет "тормозить" поток электронов; если величина тока уменьшается, то полярность напряжения развернется и будет "помогать" электронному потоку оставаться на прежнем уровне. Такое противостояние изменению величины тока называется реактивным сопротивлением.

Математическая взаимосвязь между напряжением на катушке индуктивности и скоростью изменения тока через нее выглядит следующим образом:

Отношение di/dt представляет собой скорость изменения мгновенного тока (i) с течением времени, и измеряется в амперах в секунду. Индуктивность (L) измеряется в Генри, а мгновенное напряжение (u) - в вольтах. Чтобы показать, что происходит с переменным током, давайте проанализируем простую индуктивную схему:

Простая индуктивная цепь: ток катушки отстает от напряжения на 90 o .

Если мы построим график тока и напряжения для этой простой цепи , то он будет выглядеть примерно так:


Как вы помните, изменение напряжения на катушке индуктивности является реакцией на изменение тока, проходящего через нее. Отсюда можно сделать вывод, что мгновенное напряжение равно нулю всякий раз, когда мгновенное значение тока находится в пике (нулевое изменение, или нулевой наклон синусоидальной волны тока), и мгновенное напряжение равно своему пиковому значению всякий раз, когда мгновенный ток находится в точках максимального изменения (точки самого крутого наклона волны тока, в которых она пересекает нулевую линию). Все это приводит к тому, что волна напряжения на 90 o не совпадает по фазе с волной тока. На графике видно, как волна напряжения дает "фору" волне тока: напряжение "ведет" ток, а ток "запаздывает" за напряжением.


Ели мы на этот график нанесем значения мощности нашей схемы, то все станет еще более интересным:


Поскольку мгновенная мощность представляет собой произведение мгновенного напряжения и мгновенного тока (p = iu), она будет равна нулю, если мгновенное напряжение или ток будут равны нулю. Всякий раз, когда мгновенные значения тока и напряжения имеют положительные значения (выше нулевой линии), мощность так же будет положительна. Аналогично примеру с резистивной цепью, мощность примет положительное значение и в том случае, если мгновенный ток и напряжение будут иметь отрицательные значения (ниже нулевой линии). Однако, вследствие того, что волны напряжения и тока не совпадают по фазе на 90 o , бывают случаи, когда ток положителен, а напряжение отрицательно (или наоборот), в результате чего появляются отрицательные значения мгновенной мощности.

Но, что такое отрицательная мощность? Отрицательная мощность означает, что катушка индуктивности отдает энергию обратно в цепь. Положительная же мощность означает, что катушка индуктивности поглощает энергию из цепи. Так как положительные и отрицательные циклы питания равны по величине и продолжительности, в течение полного цикла катушка индуктивности отдает обратно в схему столько же энергии, сколько она потребляет из нее. В практическом смысле это означает, что реактивное сопротивление катушки не рассеивает никакой энергии, чем оно и отличается от сопротивления резистора, рассеивающего энергию в виде тепла. Однако, все вышесказанное справедливо только для идеальных катушек индуктивности, провода которых не имеют никакого сопротивления.

Сопротивление катушки индуктивности, изменяющее силу тока, интерпретируется как сопротивление переменному току в целом, у которого по определению постоянно меняется мгновенная величина и направление. Это сопротивление переменному току похоже на обычное сопротивление, но отличается от него тем, что всегда приводит к фазовому сдвигу между током и напряжением, а так же рассеивает нулевую мощность. Из-за указанных различий, данное сопротивление носит несколько иное название - реактивное сопротивление. Реактивное сопротивление, как и обычное, измеряется в Омах, только обозначается оно символом Х, а не R. Для большей конкретики, реактивное сопротивление катушки индуктивности обычно обозначают заглавной буквой Х с буквой L в качестве индекса: X L .

Поскольку напряжение на катушке индуктивности пропорционально скорости изменения тока, оно будет больше для быстро меняющихся токов, и меньше - для токов с более медленным изменением. Это означает, что реактивное сопротивление любой катушки индуктивности (в Омах) прямопропорционально частоте переменного тока. Точная формула расчета реактивного сопротивления выглядит следующим образом:

Если на катушку индуктивностью 10 мГн воздействовать частотами 60, 120 и 2500 Гц, то ее реактивное сопротивление примет следующие значения:

В уравнении реактивного сопротивления выражение “2πf” имеет важное значение. Оно означает число в радианах в секунду, характеризующее "вращение" переменного тока (один полный цикл переменного тока представляет собой одно полное круговое вращение). Радиан - это единица измерения углов: в одном полном круге есть 2π радиан, точно так же, как в нем есть 360 o . Если генератор переменного тока двухполюсный, то он произведет один полный цикл для каждого полного оборота вала, что будет означать 2π радиан или 360 o . Если постоянную 2π умножить на частоту в герцах (циклах в секунду), то результатом будет число в радианах в секунду, известное как угловая (циклическая) частота переменного тока.

Помимо выражения 2πf, угловая частота переменного тока может обозначаться строчной греческой буквой ω (Омега). В этом случае формула X L = 2πfL может быть написана как X L = ωL.

Необходимо понимать, что угловая частота является выражением того, насколько быстро проходит полный цикл волны, равный 2π радиан. Она необязательно представляет фактическую скорость вала генератора, производящего переменный ток. Если генератор имеет более двух полюсов, его угловая частота будет кратной скорости вращения вала. По этой причине ω иногда выражается в единицах электрических радиан в секунду, чтобы отличить ее от механического движения.

При любом способе выражения угловой частоты очевидно, что она прямопропорциональна реактивному сопротивлению катушки индуктивности. При увеличении частоты переменного тока (или скорости вращения вала генератора), катушка индуктивности будет оказывать большее сопротивление прохождению тока и наоборот. Переменный ток в простой индуктивной цепи равен напряжению (в Вольтах) поделенному на реактивное сопротивление катушки индуктивности (в Омах). Как видите, это аналогично тому что переменный или постоянный ток в простой резистивной цепи равен напряжению (в Вольтах) поделенному на сопротивление (в Омах). В качестве примера давайте рассмотрим следующую схему:

Однако, мы должны иметь в виду, что напряжение и ток имеют разные фазы. Как было сказано ранее, напряжение имеет фазовый сдвиг +90 o по отношению к току (рисунок ниже). Если представить фазовые углы напряжения и тока математически (в виде комплексных чисел), то мы увидим, что сопротивление катушки индуктивности переменному току обладает следующим фазовым углом:

Ток на катушке индуктивности отстает от напряжения на 90 o .

Математически можно сказать, что фазовый угол сопротивления катушки индуктивности переменному току составляет 90 o . Фазовый угол реактивного сопротивления току очень важен при анализе цепей. Особенно эта важность проявляется при анализе сложных цепей переменного тока, где реактивные и простые сопротивления взаимодействуют друг с другом. Он также окажется полезным для представления сопротивления любого компонента электрическому току с точки зрения комплексных чисел (а не скалярных величин сопротивления и реактивного сопротивления).