Стохастическая модель процесса.

22.05.2019

В последних главах настоящей книги стохастические процессы почти всегда представляются с использованием линейных дифференциальных систем, возбуждаемых белым шумом. Это представление стохастического процесса обычно имеет следующую форму. Предположим, что

а - белый шум. Выбирая такое представление стохастического процесса V, его можно моделировать. Использоваййе таких моделей может быть обосновано следующим образом.

а) В природе часто встречаются стохастические явления, связанные с воздействием быстро меняющихся флуктуаций на инерционную дифференциальную систему. Типичным примером белого шума, действующего на дифференциальную систему, является тепловой шум в электронной цепи.

б) Как будет видно из дальнейшего, в линейной теории управления почти всегда рассматриваются только среднее значение и. ковариация Стохастического процесса. Для линейной модели ксегда можно аппроксимировать любые полученные экспериментально характеристики среднего значения и ковариационной матрицы с произвольной точностью.

в) Иногда возникает задача моделирования стационарного стохастического процесса с известной спектральной плотностью энергии. В этом случае всегда имеется возможность генерировать стохастический процесс как процесс на выходе линейной дифференциальной системы; при этом матрица спектральных плотностей анергии аппроксимирует с произвольной точностью матрицу спектральных плотностей энергии исходного стохастического процесса.

Примеры 1.36 и 1.37, так же как и задача 1.11, иллюстрируют метод моделирования.

Пример 1.36. Дифференциальная система первого порядка

Предположим, что измеренная ковариационная функция стохастического скалярного процесса о котором известно, что он является стационарным, описывается экспоненциальной функцией

Этот процесс можно моделировать при как состояние дифференциальной системы первого порядка (см. пример 1.35)

где - белый шум интейсивности - стохастическая величина с нулевым средним и дисперсией .

Пример 1.37. Смесительный бак

Рассмотрим смесительный бак из примера 1.31 (разд. 1.10.3) и вычислим для него матрицу дисперсий выходной переменной примере 1.31 предполагалось, что флуктуации концентраций в потоках описываются экспоненциально коррелированными шумами и, таким образом, могут быть смоделированы как решение системы первого порядка, возбуждаемой белым шумом. Добавим теперь к дифференциальному уравнению смесительного бака уравнения моделей стохастических процессов Получим

Здесь - скалярный белый шум интенсивности чтобы

получить дисперсию процесса равной примем Для процесса используем аналогичную модель. Таким образом, получим систему уравнений

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пример построения стохастической модели процесса

В процессе функционирования банка очень часто возникает необходимость в решении проблемы выбора вектора активов, т.е. инвестиционного портфеля банка, и неопределенные параметры, которые необходимо учитывать в этой задаче, связаны в первую очередь с неопределенностью цен на активы (ценные бумаги, реальные вложения и т.д.). В качестве иллюстрации можно привести пример с формированием портфеля государственных краткосрочных обязательств.

Для задач данного класса принципиальный вопрос - это построение модели стохастического процесса изменения цен, поскольку в распоряжении исследователя операции, естественно, имеется только конечный ряд наблюдений реализаций случайных величин - цен. Далее излагается один из подходов к решению этой проблемы, который развивается в ВЦ РАН в связи с решением задач управления стохастическими марковскими процессами.

Рассматриваются М видов ценных бумаг, i =1,… , M , которые торгуются на специальных биржевых сессиях. Бумаги характеризуются величинами - выраженными в процентах доходностями в течение текущей сессии. Если бумага вида в конце сессии покупается по цене и продается в конце сессии по цене, то.

Доходности - это случайные величины, формирующиеся следующим образом. Предполагается существование базовых доходностей - случайных величин, образующих марковский процесс и определяемых по следующей формуле:

Здесь, - константы, а - стандартные нормально распределенные случайные величины (т.е. с нулевым математическим ожиданием и единичной дисперсией).

где - некоторый масштабный коэффициент равный (), а - случайная величина, имеющая смысл отклонения от базового значения и определяемая аналогично:

где - также, стандартные нормально распределенные случайные величины.

Предполагается, что некоторая оперирующая сторона, называемая в дальнейшем оператором, в течение некоторого времени управляет своим капиталом, вложенным в бумаги (во всякий момент в бумагу ровно одного вида), продавая их в конце текущей сессии и тут же покупая на вырученные деньги другие бумаги. Управление, выбор приобретаемых бумаг, производится по алгоритму, зависящему от информированности оператора о процессе, формирующем доходности бумаг. Нами будут рассматриваться различные гипотезы об этой информированности и, соответственно, различные алгоритмы управления. Будем предполагать, что исследователь операции, разрабатывает и оптимизирует алгоритм управления, используя имеющийся ряд наблюдений за процессом, т.е., используя информацию о ценах закрытия на биржевых сессиях, а также, возможно, и о величинах, на некотором промежутке времени, соответствующем сессиям с номерами. Целью экспериментов является сравнение оценок ожидаемой эффективности различных алгоритмов управления с их теоретическим математическим ожиданием в условиях, когда алгоритмы настраиваются и оцениваются на одном и том же ряду наблюдений. Для оценки теоретического математического ожидания используется метод Монте-Карло «прогонкой» управления по достаточно объемному сгенерированному ряду, т.е. по матрице размерности, где столбцы соответствуют реализациям значений и по сессиям, а число определяется вычислительными возможностями, но при условии, чтобы элементов матрицы было не менее 10000. Необходимо, чтобы «полигон» был одним и тем же во всех проводимых экспериментах. Имеющийся ряд наблюдений имитирует сгенерированная матрица размерности, где значения в ячейках имеют тот же смысл, что и выше. Число и значения в этой матрице будут в дальнейшем варьироваться. Матрицы обоих видов формируются посредством процедуры генерации случайных чисел, имитирующей реализацию случайных величин, и расчета по этим реализациям и формулам (1) - (3) искомых элементов матриц.

Оценка эффективности управления на ряду наблюдений производится по формуле

где - индекс последней сессии в ряду наблюдений, а - номер облигаций, выбранных алгоритмом на шаге, т.е. того вида облигаций, в которых, согласно алгоритму, будет находиться капитал оператора в течение сессии. Кроме того, будем рассчитывать также месячную эффективность. Число 22 приблизительно соответствует числу торговых сессий за месяц.

Вычислительные эксперименты и анализ результатов

Гипотезы

Точное знание оператором будущих доходностей.

Индекс выбирается как. Этот вариант дает верхнюю оценку для всех возможных алгоритмов управления, даже в случае, если дополнительная информация (учет каких-то дополнительных факторов) позволит уточнить модель прогноза цен.

Случайное управление.

Оператор не знает закона ценообразования и проводит операции случайным выбором. Теоретически, в данной модели математическое ожидание результата операций совпадает с тем, как если бы оператор вкладывал капитал не в одну бумагу, а во все поровну. При нулевых математических ожиданиях величин математическое ожидание величины равно 1. Расчеты по данной гипотезе полезны только в том смысле, что позволяют в некоторой степени проконтролировать корректность написанных программ и сгенерированной матрицы значений.

Управление при точном знании модели доходностей, всех ее параметров и наблюдаемой величины .

В этом случае оператор в конце сессии, зная значения и для сессий, и, а в наших расчетах, используя строки, и, матрицы, вычисляет по формулам (1) - (3) математические ожидания величин и выбирает для покупки бумагу с наибольшей из этих значений величин.

где, согласно (2), . (6)

Управление при знании структуры модели доходностей и наблюдаемой величине , но неизвестных коэффициентах .

Будем предполагать, что исследователь операции не только не знает значения коэффициентов, но не знает и число влияющих на формирование величин, предшествующих значений этих параметров (глубину памяти марковских процессов). Не знает также, одинаковы или различны коэффициенты при разных значениях. Рассмотрим различные варианты действий исследователя - 4.1, 4.2, и 4.3, где второй индекс обозначает предположение исследователя о глубине памяти процессов (одинаковой для и). К примеру, в случае 4.3 исследователь предполагает, что формируется согласно уравнению

Здесь, для полноты описания, добавлен свободный член. Однако, этот член может быть исключен либо из содержательных соображений, либо статистическими методами. Поэтому для упрощения расчетов мы в дальнейшем свободные члены при настройке параметров из рассмотрения исключаем и формула (7) приобретает вид:

В зависимости от того, предполагает ли исследователь одинаковыми или различными коэффициенты при разных значениях, будем рассматривать подслучаи 4.m. 1 - 4.m. 2, m = 1 - 3. В случаях 4.m. 1 коэффициенты будут настраиваться по наблюденным значениям для всех бумаг вместе. В случаях 4.m. 2 коэффициенты настраиваются для каждой бумаги отдельно, при этом исследователь работает в рамках гипотезы, что коэффициенты, различны при разных и, к примеру, в случае 4.2.2. значения определяются модифицированной формулой (3)

Первый способ настройки - классический метод наименьших квадратов. Рассмотрим его на примере настройки коэффициентов при в вариантах 4.3.

Согласно формуле (8),

Требуется найти такие значения коэффициентов, чтобы минимизировать выборочную дисперсию для реализаций на известном ряду наблюдений, массиве при условии, что математическое ожидание значений определяется формулой (9).

Здесь и в дальнейшем знак «» указывает на реализацию случайной величины.

Минимум квадратичной формы (10) достигается в единственной точке, в которой все частные производные равны нулю. Отсюда получаем систему трех алгебраических линейных уравнений:

решение которой дает искомые значения коэффициентов.

После того как коэффициенты верифицированы, выбор управлений проводится так же, как и в случае 3.

Замечание. Для того, чтобы облегчить работу над программами, принято процедуру выбора управления, описанную для гипотезы 3, сразу писать, ориентируясь не на формулу (5), а на ее модифицированный вариант в виде

При этом в расчетах для случаев 4.1.m и 4.2.m, m = 1, 2, лишние коэффициенты обнуляются.

Второй способ настройки состоит в выборе значений параметров так, чтобы максимизировать оценку из формулы (4). Задача эта аналитически и вычислительно безнадежно сложна. Поэтому здесь можно говорить только о приемах некоторого улучшения значения критерия относительно исходной точки. За исходную точку можно взять значения, полученные методом наименьших квадратов, и затем произвести обсчет вокруг этих значений по сетке. При этом последовательность действий такова. Сначала обсчитывается сетка на параметрах (квадрат или куб) при фиксированных остальных параметрах. Затем для случаев 4.m. 1 обсчитывается сетка на параметрах, а для случаев 4.m. 2 на параметрах при фиксированных остальных параметрах. В случае 4.m. 2 далее так же оптимизируются параметры. Когда этим процессом исчерпываются все параметры, процесс повторяется. Повторения производятся до тех пор, пока новый цикл дает улучшение значений критерия по сравнению с предыдущим. Чтобы число итераций не оказалось слишком большим, применим следующий прием. Внутри каждого блока расчетов на 2-х или 3-х-мерном пространстве параметров сначала берется достаточно грубая сетка, затем, если лучшая точка оказывается на краю сетки, то исследуемый квадрат (куб) сдвигается и расчет повторяется, если же лучшая точка внутренняя, то строится новая сетка вокруг этой точки с меньшим шагом, но с тем же общим числом точек, и так некоторое, но разумное число раз.

Управление при ненаблюдаемом и без учета зависимости между доходностями разных бумаг.

Имеется в виду, что исследователь операции не замечает зависимости между разными бумаги, ничего не знает о существовании и пытается прогнозировать поведение каждой бумаги по отдельности. Рассмотрим, как обычно, три случая, когда исследователь моделирует процесс формирования доходностей в виде марковского процесса глубиной 1, 2, и 3:

Коэффициенты для прогноза ожидаемой доходности не важны, а коэффициенты настраиваются двумя способами, описанными в п. 4. Управления выбираются, аналогично тому, как это делалось выше.

Замечание: Так же, как и для выбора управления, для метода наименьших квадратов имеет смысл написать единую процедуру с максимальным числом переменных - 3. Если настраиваемые переменные, скажем, то для из решения линейной системы выписывается формула, в которую входят только константы, определяется через, а через и. В случаях, когда переменных меньше чем три, значения лишних переменных обнуляются.

Хотя расчеты в различных вариантах проводятся сходным образом, число вариантов довольно велико. Когда подготовка инструментов для расчетов во всех перечисленных вариантах оказывается затруднительным, рассматривается на экспертном уровне вопрос о сокращении их числа.

Управление при ненаблюдаемом с учетом зависимости между доходностями разных бумаг.

Это серия экспериментов имитирует те манипуляции, которые были произведены в задаче с ГКО . Мы предполагаем, что исследователь практически ничего не знает о механизме формирования доходностей. Он располагает только рядом наблюдений, матрицей. Из содержательных соображений он делает предположение о взаимозависимости текущих доходностей разных бумаг, группирующихся около некоторой базовой доходности, определяемой состоянием рынка в целом. Рассматривая графики доходностей бумаг от сессии к сессии, он делает предположение, что в каждый момент времени точки, координатами которых являются номера бумаг и доходности (в реальности это были сроки до погашения бумаг и их цены), группируются возле некоторой кривой (в случае с ГКО - параболы).

Здесь - точка пересечения теоретической прямой с осью ординат (базовая доходность), а - ее наклон (то, что должно быть равным 0.05).

Построив таким образом теоретические прямые, исследователь операции может рассчитать значения - отклонения величин от их теоретических значений.

(Заметим, что здесь имеют несколько иной смысл, чем в формуле (2). Отсутствует размерный коэффициент, и рассматриваются отклонения не от базового значения, а от теоретической прямой.)

Следующей задачей является прогноз значений по известным в момент значениям, . Поскольку

для прогноза значений исследователю требуется ввести гипотезу о формировании величин, и. По матрице исследователь может установить значительную корреляцию между величинами и. Можно принять гипотезу о линейной зависимости между величинами от: . Из содержательных соображений коэффициент сразу полагается равным нулю, и методом наименьших квадратов ищется в виде:

Далее, как и выше и моделируются посредством марковского процесса и описываются формулами, аналогичными (1) и (3) с разным числом переменных в зависимости от глубины памяти марковского процесса в рассматриваемом варианте. (здесь определяется не по формуле (2), а по формуле (16))

Наконец, как и выше реализуются два способа настройки параметров методом наименьших квадратов, и посредством непосредственной максимизации критерия и делаются оценки.

Эксперименты

Для всех описанных вариантов рассчитывались оценки критериев, при разных матрицах. (матрицы с числом строк 1003, 503, 103 и для каждого варианта размерности реализовывались порядка ста матриц). По результатам расчетов для каждой размерности оценивались математическое ожидание и дисперсия величин, и их отклонение от величин, для каждого из подготовленных вариантов.

Как показали первые серии вычислительных экспериментов при малом числе настраиваемых параметров (порядка 4), выбор метода настройки не оказывает существенного влияния на значение критерия в задаче.

2. Классификация средств моделирования

стохастический моделирование банк алгоритм

Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру признаков, по сфере приложения и т.д.

Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и систем.

материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира.

По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира. В свою очередь в материальном моделировании можно выделить: пространственное, физическое и аналоговое моделирование.

В пространственном моделировании используются модели, предназначенные для того, чтобы воспроизвести или отобразить пространственные свойства изучаемого объекта. Модели в этом случае геометрически подобны объектам исследования (любые макеты).

Модели, используемые в физическом моделировании предназначены для воспроизводства динамики процессов, происходящих в изучаемом объекте. Причем общность процессов в объекте исследования и модели основана на сходстве их физической природы. Этот метод моделирования широко распространен в технике при проектировании технических систем различного вида. Например, исследование летательных аппаратов на основе экспериментов в аэродинамической трубе.

Аналоговое моделирование связано с использованием материальных моделей, имеющих другую физическую природу, но описывающихся теми же математическими соотношениями, что и изучаемый объект. Оно основано на аналогии в математическом описании модели и объекта (изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями, но более удобной в проведении экспериментов).

Во всех случаях материального моделирования модель-это материальное отражение исходного объекта, а исследование состоит в материальном воздействии на модель, то есть в эксперименте с моделью. Материальное моделирование по своей природе является экспериментальным методом и в экономических исследованиях не используется.

От материального моделирования принципиально отличается идеальное моделирование , основанное на идеальной, мыслимой связи между объектом и моделью. Методы идеального моделирования широко используются в экономических исследованиях. Их условно можно разделить на две группы: формализованное и неформализованное.

В формализованном моделировании моделью служат системы знаков или образов, вместе с которыми задаются правила их преобразования и интерпретации. Если в качестве моделей используются системы знаков, то моделирование называется знаковым (чертежи, графики, схемы, формулы).

Важным видом знаковой моделирования является математическое моделирование , основанное на том факте, что различные изучаемые объекты и явления могут иметь одинаковое математическое описание в виде совокупности формул, уравнений, преобразование которых осуществляется на основе правил логики и математики.

Другой формой формализованного моделирования является образное, в котором модели строятся на наглядных элементах (упругие шары, потоки жидкости, траектории движения тел). Анализ образных моделей осуществляется мысленно, поэтому они могут быть отнесены к формализованному моделированию, когда правила взаимодействия объектов, используемых в модели четко фиксированы (например, в идеальном газе столкновение двух молекул рассматривается, как соударение шаров, причем результат соударения мыслится всеми одинаково). Модели такого типа широко используются в физике, их принято называть «мысленными экспериментами».

Неформализованное моделирование. К нему можно отнести такой анализ проблем разнообразного типа, когда модель не формируется, а вместо нее используется некоторое точно не зафиксированное мысленное отображение реальной действительности, служащее основой для рассуждения и принятия решения. Таким образом, всякое рассуждение не использующее формальную модель можно считать неформализованным моделированием, когда у мыслящего индивидуума имеется некоторый образ объекта исследования, который можно интерпретировать как неформализованную модель реальности.

Исследование экономических объектов в течение долгого времени проводилось только на основе таких неопределенных представлений. В настоящее время анализ неформализованных моделей остается наиболее распространенным средством экономического моделирования, а именно всякий человек, принимающий экономическое решение без использования математических моделей вынужден руководствоваться тем или иным описанием ситуации, основанной на опыте и интуиции.

Основным недостатком этого подхода является то, что решения может оказаться мало эффективным или ошибочным. Еще долгое время, по-видимому, эти методы останутся основным средством принятия решений не только в большинстве обыденных ситуаций, но и при принятий решений в экономике.

Размещено на Allbest.ru

...

Подобные документы

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.

    реферат , добавлен 15.06.2015

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа , добавлен 17.10.2014

    Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.

    реферат , добавлен 23.05.2015

    Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация , добавлен 18.03.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат , добавлен 21.06.2010

    Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.

Как следует из названия, данный вид моделей ориентирован на описание систем, которые проявляют статистически закономерное случайное поведение, а время в них можно рассматривать как дискретную величину. Сущность дискретизации времени такая же, как и в дискретно-детерминированных моделях. Модели систем такого рода могут быть построены на основе двух схем формализованного описания. Во-первых, это конечно-разностные уравнения, среди переменных которых используют функции, задающие случайные процессы. Во-вторых, в них применяют вероятностные автоматы .

Пример построения дискретно-стохастической системы. Пусть имеется некоторая производственная система, структура которой изображена на рис. 3.8. В рамках этой системы перемещается однородный материальный поток, проходящий стадии складирования и производства.

Пусть, например, поток сырья состоит из металлических болванок, которые складируются на входном складе. Затем эти болванки поступают на производство, где из них производят какое-то изделие. Готовые изделия складируются на выходном складе, откуда их забирают для дальнейших действий с ними (передают на следующие фазы производства или на реализацию). В общем случае такая производственная система преобразует материальные потоки сырья, материалов и полуфабрикатов в поток готовой продукции.

Пусть шаг изменения времени в данной производственной системе будет равен единице (Д?= 1). За единицу мы примем смену работы этой системы. Будем считать, что процесс изготовления изделия длится один временной шаг.

Рис. 3.8, Схема производственной системы

Управление производственным процессом осуществляется специальным регулирующим органом, которому задан план выпуска изделий в виде директивной интенсивности выпуска продукции (количество изделий, которое необходимо изготовить за единицу времени, в данном случае за смену). Обозначим эту интенсивность d t . Фактически это скорость выпуска продукции. Пусть d t =а+ bt, т. е. является линейной функцией. Это означает, что с каждой последующей сменой план увеличивается на величину bt.

Поскольку мы имеем дело с однородным материальным потоком, то считаем, что в среднем объем сырья, приходящего в систему в единицу времени, объем производства в единицу времени, объем готовой продукции, уходящей в единицу времени из системы, должны быть равны d t .

Входной и выходной потоки для регулирующего органа неуправляемы, их интенсивность (или скорость - число болванок либо изделий в единицу времени, соответственно приходящих в систему и уходящих из нее) должны быть равны d t . Однако в процессе транспортировки болванки могут быть утеряны, или часть из них будет некачественной, или по каким-то причинам их поступит больше, чем нужно, и т.п. Поэтому будем считать, что входной поток обладает интенсивностью:

х t вх =d t + ξ t вх,

где ξ 1 вх - равномерно распределенная случайная величина от -15 до +15.

Примерно те же самые процессы могут происходить с выходным потоком. Поэтому выходной поток обладает следующей интенсивностью:

х t в ы х =d t + ξ t вых,

где ξ t вых - нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией, равной 15.

Будем считать, что и в процессе производства имеются случайности, связанные с неявкой рабочих на работу, поломкой станков и т.п. Описывает эти случайности нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией, равной 15. Обозначим ее ξ t/ Процесс производства длится единицу времени, за которую с входного склада изымается x t сырья, затем это сырье обрабатывается и передается на выходной склад за ту же единицу времени. Регулирующий орган получает информацию о работе системы тремя возможными способами (они отмечены цифрами 1, 2, 3 на рис. 3.8). Мы считаем, что эти способы получения информации по каким-либо причинам являются в системе взаимоисключающими.

Способ 1. Регулирующий орган получает только информацию о состоянии входного склада (например, об изменении запасов на складе либо об отклонении объема запасов от их нормативного уровня) и по ней судит о скорости протекания производственного процесса (о скорости изымания сырья со склада):

1) ( u t вх - u t-1 вх )- изменение объема запасов на складе (u t вх - объем сырья на входном складе в момент времени t);

2) (ù- u t вх) - отклонение объема сырья на входном складе от нормы запасов.

Способ 2. Регулирующий орган получает информацию непосредственно с производства (x t - фактическая интенсивность производства) и сравнивает ее с директивной интенсивностью (d t -x t).

Способ 3. Регулирующий орган получает информацию, как и при способе 1, но с выходного склада в виде ( u t вых - u t-1 вых )- или (ù -u t вых). Он также судит о производственном процессе на основания косвенных данных - росте или уменьшении запасов готовой продукции.

Чтобы поддержать заданную интенсивность выпуска продукции d t , регулирующий орган принимает решения y t , (либо (y t - y t - 1)), нацеленные на изменение фактической интенсивности выпуска x t . В качестве решения регулирующий орган сообщает производству значения интенсивности, с которой надо работать, т. е. x t = y t . Второй вариант управляющего решения - (y t -y t-1), т.е. регулирующий орган сообщает производству, на сколько нужно увеличить или уменьшить интенсивность производства (х t -х t-1 ).

В зависимости от способа получения информации и вида переменной, описывающей управляющее воздействие, на принятие решений могут влиять следующие величины.

1. База решения (величина, которой должна быть равна фактическая интенсивность производства, если бы не было отклонений):

директивная интенсивность выпуска в момент t(d t);

темп изменения директивной интенсивности выпуска в момент t(d t -d t-1).

2. Величина отклонения:

отклонение фактического выпуска от директивного (d t -x t);

отклонение фактического объема выпуска от планового объема


Σ d τ - Σ х τ

изменение уровня запасов на входном (( u t вх - u t-1 вх) или выходном

(u t вых - u t-1 вых) складах;

отклонение уровня запасов на входном (ù- u t вх) или выходном (ù -u t вых) складах от нормативного уровня.

В общем случае управленческое решение, принимаемое регулирующим органом, состоит из следующих составляющих:

Примеры решений:

y t = d t +y(d t-1 -x t-1);

y t = d t -y(ù -u t вых)

Принимая различные по форме решения, регулирующий орган стремится достичь главную цель - приблизить фактическую интенсивность выпуска к директивной. Однако он не всегда может непосредственно ориентироваться в своих решениях на степень достижения этой цели (d t - x t). Конечные результаты могут выражаться в достижении локальных целей - стабилизации уровня запасов на входном или выходном складе (и t вх(вых) - и t -1 вх(вых)) либо в приближении уровня запасов на складе к нормативному - и вх (вых)). В зависимости от достигаемой цели в управляющем решении определяется вид знака (+ или -) перед долей рассогласования, используемой для регулирования.

Пусть в нашем случае регулирующий орган получает информацию о состоянии входного склада (изменение уровня запасов). Известно, что в любой системе управления имеют место запаздывания по выработке и реализации решения. В данном примере информация о состоянии входного склада поступает в орган регулирования с запаздыванием на один временной шаг. Такое запаздывание называется запаздыванием по выработке решения и означает, что к моменту получения информации в регулирующем органе реальное состояние уровня запасов на входном складе будет уже другим. После того как регулирующий орган принял решение у t также потребуется время (в нашем примере это будет единица времени) для доведения решения до исполнителя. Значит, фактическая интенсивность производства равна не y t , а тому решению, которое управляющий орган принял единицу времени назад. Это - запаздывание по реализации решения.

Для описания нашей производственной системы имеем следующие уравнения:

x t BX = d t + ξ t вх

x t вых = d t + ξ t вых;

y t = d t + y(u -u t-2 вх)

x t = y t-1 + ξ t

u t вх - u t-1 вх = x t вх - x t

Данная система уравнений позволяет построить модель производственной системы, в которой входными переменными будут d t , ξ t вх, ξ t вых, ξ t ,а

выходной - x t . Это так, поскольку внешний наблюдатель рассматривает наше производство как систему, получающую сырье с интенсивностью d t и производящую продукцию с интенсивностью x t , подвергаясь случайностям ξ t вх, ξ t вых, ξ t . Осуществив все подстановки в полученной системе уравнений, приходим к одному уравнению динамики, характеризующему поведение x t в зависимости от d t , ξ t вх, ξ t вых, ξ t .

Рассмотренная выше модель не содержала ограничений на объемы складов и мощности производства. Если принять, что емкость входного склада равна V вх, емкость выходного склада - V BX , a мощность производства - М, то новая система уравнений для такой нелинейной производственной системы будет следующей:

x t BX =min((d t + ξ t вх),(V вх - u t вх)) - нельзя на входной склад положить больше, чем позволит место;

x вых =min((d t + ξ t вых),(V вых -u t вых)) - нельзя взять с выходного склада больше изделий, чем там имеется;

y t =d t + y(u t вх -u t-1 вх)

x t BX = min((u t вх, (y t-1 + ξ t вх), М, (V вых - u t вых)) - нельзя произвести больше изделий, чем приказано, ограничивающими факторами являются число имеющихся заготовок и наличие свободного места на выходном складе;

u t вх -u t-1 вх = x t BX - x t


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Особенности стохастического моделирования.

Особенности стохастического мод-ия: стохастическое моделирование – моделирование случайных воздействий.

Стохастическое моделирования (СМ) - м оделирование случайных процессов и случайных событий.

Суть СМ – многократное повторение модельных экспериментов с целью получения статистики о свойствах системы, получения данных о свойствах случайных событий и величин.

Цель – в результате СМ для параметров объектов должна быть получена оценка мат ожидания, дисперсии и закона распределения случайной величины.

Понятие случайного события и случайной величины.

Случайным событием называется любой факт, который в результате опыта может произойти или не произойти. Случайные события могут быть: Достоверными (событие, которое происходит в каждом опыте). Невозможными (событие, которое в результате опыта произойти не может).

Числовая величина, принимающая то или иное значение в результате реализации опыта случайным образом, называется случайной величиной .

Характеристики случайных величин и случайных событий.

Характеристики случайного события:

Частота появления события - вероятность появления того или иного события при неограниченном количестве опытов.

Характеристики случайной величины:

    Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины.

    Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Плотности распределения вероятности - вид функции, которой определяет закон распределения случайных величин.

Моделирование случайных событий.

Исходные данные:

Вероятность события Pa;

Требуется построить модель события A, которое происходит с вероятностью Pa.

Алгоритм моделирования:

Используется датчик случайных чисел с равномерным законом распределения от 0 до 1:

Randomize(RND)  x i . 0<=x i <=1

Если выполняется Xi<=Pa то событие A произошло. В противном случае произошло событие не A.

Моделирование полной группы случайных событий.

Группа несовместимых событий называется полной, если при испытаниях только одно событие произойдет обязательно (алгоритм).

Примеры стохастических моделей.

Модели для прогнозирования изменений состояния автотр. предприятия .

Литература: , .

3. Имитационное моделирование

Понятие имитационного моделирования.

Суть ИМ – компьютерный эксперимент – исследования свойств объекта путем экспериментирования с его компьютерной моделью.

Актуальность имитационного моделирования.

1)моделирование сложных систем (когда аналитически использовать объект невозможно)

2)моделирование действия случайных факторов (необходимо многократное повторение)

3)отсутствие математической модели (при исследовании неизвестных явлений).

4)необходимость получения результатов к определенному сроку (скорее всего самая главная причина)

Примеры задач имитационного моделирования: модели систем массового обслуживания, модели случайных событий, клеточные автоматы, модели сложных систем и т.д.

1. Модели систем массового обслуживания

Схема СМО

Цель СМО : определение оптимальных параметров системы

Пример: очередь в супермаркете

На обслуживание могут поступать заявки с более высоким приоритетом. Пример: бензоколонка (скорая, полиция).

2. Модели случайных событий

Случайным называют событие, которое в результате испытания может наступить, а может и не наступить. Исчерпывающей характеристикой случайного события является вероятность его наступления. Примеры: объемы выпускаемой продукции предприятием каждый день; котировки валют в обменных пунктах; интервал времени до появления очередного клиента, длительность проведения технического обслуживания автомобиля.

3. Клеточные автоматы

Клеточный автомат – система, представляющая собой совокупность одинаковых клеток. Все клетки образуют, так называемую, решетку клеточного автомата. Каждая клетка является конечным автоматом, состояния которого определяются состояниями соседних клеток и ее собственным состоянием. Впервые, идея таких автоматов отмечена в работах Неймана в 1940-х годах.

Пример: игра «Жизнь». Была в 1970 году Джоном Конвэем.