SuperRAM от AMIC Technology. Статическая память

07.08.2019

□ tдост - время поиска информации на носителе;

□ Vсчит ~~ скорость считывания смежных байтов информации подряд (трансфер). Напомним общепринятые сокращения: с - секунда, мс - миллисекунда, мкс - микросекунда, нc - наносекунда; 1 с = 106мс = 106мкс = 109нс.

Статическая и динамическая оперативная память

Оперативная память может строиться на микросхемах динамического (Dinamic Random Access Memory - DRAM) или статического (Static Random Access Me­mory - SRAM) типа.

Статический тип памяти обладает существенно более высоким быстродействием, но значительно дороже динамического. В статической памяти элементы (ячейки) построены на различных вариантах триггеров - схем с двумя устойчивыми со­стояниями. После записи бита в такую ячейку она может пребывать в этом состо­янии сколь угодно долго - необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при по­мощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время срабатывания (единицы наносекунд), однако микросхемы на их основе имеют низкую удельную емкость (единицы мегабит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве микропроцессорной и буферной (кэш­память).

В динамической памяти ячейки построены на основе полупроводниковых облас­тей с накоплением зарядов (своеобразных конденсаторов), занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. Конденсаторы расположены на пересечении вертикальных и горизон­тальных шин матрицы; запись и считывание информации осуществляется подачей электрических импульсов по тем шинам матрицы, которые соединены с элемента­ми, принадлежащими выбранной ячейке памяти. При обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe - строб адреса строки), затем, через некоторое время - адрес столбца, сопровождаемый сигналом С AS (Column Address Strobe - строб адреса столбца). Поскольку конденсаторы постепенно разряжаются (заряд сохраняется в ячейке в течение нескольких миллисекунд), во избежание потери хранимой ин­формации заряд в них необходимо постоянно регенерировать, отсюда и название памяти - динамическая. На подзаряд тратится и энергия и время, и это снижает производительность системы.

Ячейки динамической памяти по сравнению со статической имеют большее время срабатывания (десятки наносекунд), но большую удельную плотность (порядка десятков мегабит на корпус) и меньшее энергопотребление. Динамическая память используется для построения оперативных запоминающих устройств основной памяти ПК.

DIV_ADBLOCK23">

Микропроцессоры, начиная от МП 80486, имеют свою встроенную в основное ядро МП кэш-память (или кэш-память 1-го уровня - L1), чем, в частности, и обуслов­ливается их высокая производительность. Микропроцессоры Pentium имеют кэш­память отдельно для данных и отдельно для команд: у Pentium емкость этой памя­ти небольшая - по 8 Кбайт, у Pentium MMX - по 16 Кбайт. У Pentium Pro и выше кроме кэш-памяти 1-го уровня есть и встроенная на микропроцессорную плату кэш-память 2-го уровня (L2) емкостью от 128 до 2048 Кбайт. Эта встроенная кэш­память работает либо на полной тактовой частоте МП, либо на его половинной тактовой частоте.

Следует иметь в виду, что для всех МП может использоваться дополнительная кэш-память 2-го (L2) или 3-го (L3) уровня, размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайт (кэш на MB отно­сится к уровню 3, если МП, установленный на этой плате, имеет кэш 2-го уровня). Время обращения к кэш-памяти зависит от тактовой частоты, на которой кэш ра­ботает, и составляет обычно 1-2 такта. Так, для кэш-памяти L1 МП Pentium ха­рактерно время обращения 2-5 не, для кэш-памяти L2 и L3 это время доходит до 10 не. Пропускная способность кэш-памяти зависит и от времени обращения, и от пропускной способности интерфейса и лежит в широких пределах от 300 до 3000 Мбайт/с.

Использование кэш-памяти существенно увеличивает производительность систе­мы. Чем больше размер кэш-памяти, тем выше производительность, но эта зависи­мость нелинейная. Имеет место постепенное уменьшение скорости роста общей

производительности компьютера с ростом размера кэш-памяти. Для современных ПК рост производительности, как правило, практически прекращается после 1 Мбайт кэш-памяти L2. Создается кэш-память на основе микросхем статической памяти.

Примечание------ -

В современных ПК часто применяется и кэш-память между внешними запоминаю­щими устройствами на дисках и оперативной памятью, обычно относящаяся к 3-му уровню, реже, если есть кэш L3 на системной плате, к 4-му. Кэш-память для ВЗУ создается либо в поле оперативной памяти, либо непосредственно в модуле само­го ВЗУ.

DIV_ADBLOCK25">

Считываемая или записываемая информация поступает в регистр данных (Рег.-данных), непосредственно связанный с кодовыми шинами данных. Управляющие сигналы, определяющие, какую операцию следует выполнить, поступают по кодо­вым шинам инструкций. Куб памяти содержит набор запоминающих элементов - собственно ячеек памяти.

Основная память (ОП) содержит оперативное (RAM - Random Access Memory) и постоянное (ROM - Read Only Memory) запоминающие устройства.

Оперативное запоминающее устройство (ОЗУ) предназначено для хранения ин­формации (программ и данных), непосредственно участвующей в вычислитель­ном процессе в текущий интервал времени. ОЗУ - энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется. Ос­нову ОЗУ составляют микросхемы динамической памяти DRAM. Это большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих

элементов - полупроводниковых конденсаторов. Наличие заряда в конденсаторе обычно означает «1», отсутствие заряда- «О». Конструктивно элементы опера­тивной памяти выполняются в виде отдельных модулей памяти - небольших плат с напаянными на них одной или, чаще, несколькими микросхемами. Эти модули вставляются в разъемы - слоты на системной плате. На материнской плате может быть несколько групп разъемов (банков) для установки модулей памяти; в один банк можно ставить только блоки одинаковой емкости; блоки разной емкости можно устанавливать в разных банках.

DIV_ADBLOCK26">

Модули памяти характеризуются конструктивом, емкостью, временем обращения и надежностью работы. Важным параметром модуля памяти является его надеж­ность и устойчивость к возможным сбоям. Надежность работы современных мо-

дулей памяти весьма высокая - среднее время наработки на отказ составляет сот­ни тысяч часов, но тем не менее предпринимаются и дополнительные меры повы­шения надежности. Вопросы обеспечения надежности и достоверности ввиду их важности специально рассмотрены в части 6 учебника. Здесь лишь укажем, что одним из направлений, повышающих надежность функционирования подсисте­мы памяти, является использование специальных схем контроля и избыточного кодирования информации.

Модули памяти бывают с контролем четности (parity) и без контроля четности (nоn parity) хранимых бит данных. Контроль по четности позволяет лишь обнару­жить ошибку и прервать исполнение выполняемой программы. Существуют и бо­лее дорогие модули памяти с автоматической коррекцией ошибок - ЕСС-память, использующие специальные корректирующие коды с исправлением ошибок (см. раздел «Обеспечение достоверности информации» главы 20).

ПРИМЕЧАНИЕ

Некоторые недобросовестные фирмы (китайские, например) с целью повышения кон­курентоспособности своих изделий в глазах неопытных покупателей ставят в модули специальный имитатор четности - микросхему-сумматор, выдающую при считыва­ нии ячейки всегда правильный бит четности. В этом случае никакого контроля нет, а лишь имитируется его выполнение. Надо сказать, что эта имитация иногда и полез­на, ибо существуют системные платы, требующие для своей корректной работы при­ сутствия бита контроля четности.

https://pandia.ru/text/78/135/images/image006_129.gif" width="491">микросхемами памяти типа DIP. SIMM бывают двух разных типов: короткие на 30 контактов (длина 75 мм) и длинные на 72 контакта (длина 100 мм). Модули SIMM имеют емкость 256 Кбайт, 1,4, 8, 16, 32 и 64 Мбайт. Модули SIMM выпус­каются с контролем и без контроля по четности и с эмуляцией контроля по четно­сти. SIMM отличаются также быстродействием - обычно они имеют время обраще­ния 60 и 70 нc. Сейчас такое время обращения считается нежелательным, поэтому модули SIMM встречаются только в устаревших ПК.

DIMM (Dual In line Memory Module) - более современные модули, имеющие 168-контактные разъемы (длина модуля 130 мм); могут устанавливаться только на те типы системных плат, которые имеют соответствующие разъемы. Появление DIMM стимулировалось использованием процессоров Pentium, имеющих шину данных 64 бит. Необходимое число модулей памяти для заполнения шины называется бан­ком памяти. В случае 64-разрядной шины для этого требуется два 32-битных 72-контактных модуля SIMM или один 64-битный модуль DIMM, имеющий 168 кон­тактов. Модуль DIMM может иметь разрядность 64 бита (без контроля четности), 72 бита (с контролем четности) и 80 бит (память ЕСС). Емкость модулей DIMM: 16, 32, 64,128, 256 и 512 Мбайт. Время обращения, характерное для современных модулей DIMM, работающих на частоте 100 и 133 МГц (модули РС100, РС133), лежит в пределах 6-10 нc.

RIMM (Rambus In line Memory Module) - новейший тип оперативной памяти. Появление памяти Direct Rambus DRAM потребовало нового конструктива для модулей памяти. Микросхемы Direct RDRAM собираются в модули RIMM, внешне подобные стандартным DIMM, что, кстати, и нашло отражение в названии моду­лей нового конструктива. На плате модуля RIMM может быть до 16 микросхем памяти Direct RDRAM, установленных по восемь штук с каждой стороны платы. Модули RIMM могут быть использованы на системных платах с форм-фактором ATX, BIOS и чипсеты которых рассчитаны на использование данного типа памя­ти. Среди микросхем фирмы Intel это чипсеты i820, i840, i850 и их модификации. На системной плате может быть до четырех разъемов под данные модули. Необхо­димо отметить, что модули RIMM требуют интенсивного охлаждения. Это связа­но со значительным энергопотреблением и, соответственно, тепловыделением, что обусловлено высоким быстродействием данных модулей памяти (время обраще­ния 5 не и ниже). Хотя внешне модули RIMM напоминают модули DIMM, они имеют меньшее число контактов и с обеих сторон закрыты специальными металли­ческими экранами, которые защищают модули RIMM, работающие на больших ча­стотах, экранируя их чувствительные электронные схемы от внешних электромаг­нитных наводок. В настоящее время спецификации определяют три типа модулей, отличающихся рабочими частотами и пропускной способностью. Обозначаются они как RIMM PC800, RIMM PC700, RIMM PC600. Наиболее быстродействующими являются модули RIMM PC800, работающие с чипсетом i850, на внешней такто­вой частоте 400 МГц и имеющие пропускную способность 1,6 Гбайт/с. Модули

RIMM PC600 и RIMM PC700 предназначены для работы на повышенных часто­тах шины памяти, например на частоте 133 МГц, поддерживаемой современными чипсетами.

Типы оперативной памяти

Различают следующие типы оперативной памяти:

□ DRDRAM и. д.т.

FPM DRAM

FPM DRAM (Fast Page Mode DRAM) - динамическая память с быстрым стра­ничным доступом, активно используется с микропроцессорами 80386 и 80486. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную ус­тановку адреса столбца, стробируемого CAS. Это позволяет ускорить блочные пе­редачи, когда весь блок данных или его часть находятся внутри одной строки мат­рицы, называемой в этой системе страницей. Существует две разновидности FPM DRAM, отличающиеся временем обращения: 60 и 70 нc. Ввиду своей медлитель­ности они не эффективны в системах с процессорами уровня Pentium II. Модули FPM DRAM в основном выпускались в конструктиве SIMM.

RAM EDO

RAM EDO (EDO - Extended Data Out, расширенное время удержания данных на выходе), фактически представляет собой обычные микросхемы FPM, к которым добавлен набор регистров-«защелок», благодаря чему данные на выходе могут удер­живаться в течение следующего запроса к микросхеме. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходе содержимое последней выбранной ячейки, в то время как на их входы уже подает­ся адрес следующей выбираемой ячейки. Это позволяет примерно на 15 % по срав­нению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память никакого выигрыша в быстродействии не дает. Память типа RAM EDO имеет минимальное время обращения 45 нc и макси­мальную скорость передачи данных по каналу процессор-память 264 Мбайт/с. Модули RAM EDO выпускались в конструктивах SIMM и DIMM.

BEDO DRAM

BEDO DRAM (Burst Extended Data Output, EDO с блочным доступом). Совре­менные процессоры благодаря внутреннему и внешнему кэшированию команд

и данных обмениваются с основной памятью преимущественно блоками слов мак­симальной длины. Этот вид памяти позволяет читать данные пакетно (блоками), так что данные считываются блоками за один такт. В случае памяти ВЕDО отпа­дает необходимость постоянной подачи последовательных адресов на входы мик­росхем с соблюдением необходимых временных задержек - достаточно строби-ровать переход к очередному слову блока. Этот метод позволяет BEDO DRAM работать очень быстро. Память BEDO DRAM поддерживают некоторые чипсеты фирм VIA Apollo (580VP, 590VP, 680VP) и Intel (i480TX и т. д.) на частоте шины не выше 66 МГц. Активную конкуренцию этому виду памяти составляет память SDRAM, которая постепенно ее и вытесняет. BEDO DRAM представлена модуля­ми и SIMM и DIMM.

SDRAM (Synchronous DRAM - синхронная динамическая память), память с син­хронным доступом, увеличивает производительность системы за счет синхрони­зации скорости работы ОЗУ со скоростью работы шины процессора. SDRAM так­же осуществляет конвейерную обработку информации , выполняется внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также под­держивает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где удается исклю­чить дополнительные такты ожидания. Память SDRAM может устойчиво рабо­тать на высоких частотах: выпускаются модули, рассчитанные на работу при час­тотах 100 МГц (спецификация РС100) и 133 МГц (РС133). В начале 2000 года фирма Samsung объявила о выпуске новых чипов SDRAM с рабочей частотой 266 МГц. Время обращения к данным в этой памяти зависит от внутренней такто­вой частоты МП и достигает 5-10 нc, максимальная скорость передачи данных процессор-память при частоте шины 100 МГц составляет 800 Мбайт/с (фактиче­ски равна скорости передачи данных по каналу процессор-кэш). Память SDRAM дает общее увеличение производительности ПК примерно на 25 %. Правда, эта циф­ра относится к работе ПК без кэш-памяти - при наличии мощной кэш выигрыш в производительности может составить всего несколько процентов. SDRAM обыч­но выпускается в 168-контактных модулях типа DIMM. Используется не только в качестве оперативной памяти, но и как память видеоадаптеров, где она полезна при просмотре живого видео и при работе с трехмерной графикой.

DDR SDRAM

DDR SDRAM (Double Data Rate SDRAM - SDRAM 2). Вариант памяти SDRAM, осуществляющий передачу информации по обоим фронтам тактового сигнала. Это позволяет удвоить пропускную способность по сравнению с традиционной памя­тью SDRAM (до 1,6 Гбайт/с при частоте шины 100 МГц). Кроме того, DDR SDRAM может работать на более высокой частоте - в начале 2000 года были выпущены 143, 166 и 183 МГц 64-мегабитные модули DDR SDRAM. Модули DDR DRAM конструктивно совместимы с традиционными 168-контактными DIMM. Исполь-

зуется не только в качестве элементов оперативной памяти, но и в высокопроизво­дительных видеоадаптерах. Сейчас они ориентированы в первую очередь на ры­нок видеоадаптеров.

DRDRAM (Direct Rambus DRAM - динамическая память с прямой шиной для RAM). DRDRAM - перспективный тип оперативной памяти, обеспечивающий зна­чительный рост производительности компьютеров. Высокое быстродействие па­мяти Direct RDRAM достигается рядом особенностей, не встречающихся в других типах. В частности, применением собственной двухбайтовой шины RAM Bus с ча­стотой 800 МГц, обеспечивающей пиковую пропускную способность до 1,6 Гбайт/с. Контроллер памяти Direct RDRAM управляет шиной Rambus и обеспечивает пре­образование ее протокола с частотой 800 МГц в стандартный 64-разрядный интер­фейс с частотой шины до 200 МГц. Фирма Intel выпустила чипсеты i820, i840, i850 с поддержкой. DRDRAM Модули Direct RDRAM - RIMM внешне подобны мо­дулям DIMM. Массовый выпуск памяти DRDRAM и ее интенсивное использова­ние в компьютерах ожидается в ближайшем будущем.

Постоянные запоминающие устройства

Постоянное запоминающее устройство (ПЗУ или ROM - Read Only Memory , па­мять только для чтения) также строится на основе установленных на материн­ской плате модулей (кассет) и используется для хранения неизменяемой инфор­мации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS) и т. д.

К ПЗУ принято относить энергонезависимые постоянные и полупостоянные за­поминающие устройства, из которых оперативно можно только считывать инфор­мацию, запись информации в ПЗУ выполняется вне ПК в лабораторных условиях или при наличии специального программатора и в компьютере. По технологии записи информации можно выделить ПЗУ следующих типов:

□ микросхемы, программируемые только при изготовлении - классические или масочные ПЗУ или ROM;

□ микросхемы, программируемые однократно в лабораторных условиях - про­
граммируемые ПЗУ (ППЗУ) или programmable ROM (PROM);

□ микросхемы, программируемые многократно, - перепрограммируемые ПЗУ
или erasable PROM (EPROM). Среди них следует отметить электрически пе­
репрограммируемые микросхемы EEPROM (Electrical Erasable PROM), в том
числе ФЛЭШ-память (FLASH-память).

Устанавливаемые на системной плате ПК модули и кассеты ПЗУ имеют емкость, как правило, не превышающую 128 Кбайт. Быстродействие у постоянной памяти меньшее, нежели у оперативной, поэтому для повышения производительности содержимое ПЗУ копируется в ОЗУ, и при работе непосредственно используется только эта копия, называемая также теневой памятью ПЗУ (Shadow ROM).

В настоящее время в ПК используются полупостоянные, перепрограммируемые запоминающие устройства - FLASH-память. Модули или карты FLASH-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость от 32 Кбайт до 15 Мбайт (в ПЗУ используется до 128 Кбайт), время обращения по считыванию 0,035-0,2 мкс, время записи одного байта 2-10 мкс; FLASH-память - энергонезависимое запоминающее устройство. Примером такой памяти может служить память NVRAM - Non Volatile RAM со скоростью записи 500 Кбайт/с. Обычно для перезаписи информации необходимо подать на специ­альный вход FLASH-памяти напряжение программирования (12 В), что исклю­чает возможность случайного стирания информации. Перепрограммирование FLASH-памяти может выполняться непосредственно с дискеты или с клавиатуры ПК при наличии специального контроллера либо с внешнего программатора, под­ключаемого к ПК. FLASH-память может быть весьма полезной как для создания весьма быстродействующих, компактных, альтернативных НМД запоминающих устройств - «твердотельных дисков», так и для замены ПЗУ, хранящего програм­мы BIOS, позволяя «прямо с дискеты» обновлять и заменять эти программы на более новые версии при модернизации ПК.

Логическая структура основной памяти

Структурно основная память состоит из миллионов отдельных ячеек памяти, емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 16 до 512 Мбайт. Емкость ОЗУ на один-два поряд­ка превышает емкость ПЗУ: ПЗУ занимает 128 Кбайт, остальной объем - это ОЗУ. Каждая ячейка памяти имеет свой уникальный (отличный от всех дру­гих) адрес. Основная память имеет для ОЗУ и ПЗУ - единое адресное про­странство.

Адресное пространство определяет максимально возможное количество непо­средственно адресуемых ячеек основной памяти. Адресное пространство зависит от разрядности адресных шин, ибо максимальное количество разных адресов опре­деляется разнообразием двоичных чисел, которые можно отобразить в п разря­дах, то есть адресное пространство равно 2", где п - разрядность адреса. За осно­ву в ПК взят 16-разрядный адресный код, равный по длине размеру машинного слова. При наличии 16-разрядного кода адреса можно непосредственно адресо­вать всего 4 К (К = 1024) ячеек памяти. Вот это 64-килобайтное поле памяти, так называемый сегмент, также является базовым в логической структу­ре ОП. Следует заметить, что в защищенном режиме размер сегмента может быть иным и значительно превышать 64 Кбайта.

Современные ПК (кроме простейших бытовых компьютеров) имеют основную память, емкостью существенно больше 1 Мбайт: память, емкостью 1 Мбайт явля­ется еще одним важным структурным компонентом ОП - назовем ее непосред­ственно адресуемой памятью (справедливо полностью только для реального ре- жима). Для адресации 1 Мбайт = 220= 1 ячеек непосредственно адресуемой памяти необходим 20-разрядный код, получаемый в ПК путем использования спе­циальных приемов структуризации адресов ячеек ОП.

Абсолютный (полный, физический) адрес (Аабс) формируется в виде суммы не­скольких составляющих, чаще всего используемыми из которых являются: адрес сегмента и адрес смещения.

Адрес сегмента (АССгм) - это начальный адрес 64-килобайтного поля, внутри кото­рого находится адресуемая ячейка.

Адрес смещения (Аасм) - это относительный 16-разрядный адрес ячейки внутри сегмента.

Асегм должен быть 20-разрядным, но если принять условие, что АсеГм должен быть обязательно кратным параграфу (в последних четырех разрядах должен содержать нули), то однозначно определять этот адрес можно 16-разрядным кодом, увеличен­ным в 16 раз, что равносильно дополнению его справа четырьмя нулями и превра­щению его, таким образом, в 20-разрядный код. То есть условно можно записать:

Аабс = 16 Х Асегм + Аасм.

Программисты иногда используют еще две составляющие адреса смещения: адрес базы и адрес индекса. Следует отметить, что процессор ПК может обращаться к ос­новной памяти, используя только абсолютный адрес, в то время как программист может использовать все составляющие адреса, рассмотренные выше.

В современных ПК существует режим виртуальной адресации (Virtual - кажу­щийся, воображаемый). Виртуальная адресация используется для увеличения ад­ресного пространства ПК при наличии ОП большой емкости (простая виртуаль­ная адресация) или при организации виртуальной памяти, в которую наряду с ОП включается и часть внешней (обычно дисковой) памяти. При виртуальной адреса­ции вместо начального адреса сегмента Ассгм в формировании абсолютного адреса Аабе принимает участие многоразрядный адресный код, считываемый из специаль­ных таблиц. Принцип простой виртуальной адресации можно пояснить следую­щим образом. В регистре сегмента (обычно регистр DS) содержится не АсеГм, а не­кий селектор, имеющий структуру:

https://pandia.ru/text/78/135/images/image011_103.gif" width="490 height=2" height="2">Здесь СЛ - вспомогательная служебная информация; F - идентификатор, опре­деляющий тип дескрипторной таблицы для формирования АсеГм (дескрипторные таблицы создаются в ОП при виртуальной адресации автоматически):

□ если F = 0, то используется глобальная дескрипторная таблица (GDT), общая
для всех задач, решаемых в ПК при многопрограммном режиме;

□ если F = 1, то используется локальная дескрипторная таблица (LDT), создава­
емая для каждой задачи отдельно;

□ ИНДЕКС - адрес строки в дескрипторной таблице.

В соответствии с индексом и идентификатором из GLT или LDT считывается 64-битовая строка, содержащая, в частности, и адрес сегмента. Разрядность этого ад­реса зависит от размера адресного пространства микропроцессора, точнее равна разрядности его адресной шины. Подобная виртуальная адресация используется при защищенном режиме работы микропроцессора. Для большей плотности раз-

мещения информации в оперативной памяти (уменьшения сегментированности, характерной для многопрограммного режима) часто используется сегментно-стра- ничная адресация, при которой поля памяти выделяются программам внутри сег­ментов страницами, размером от 2 до 4 Кбайт. Формирование сегментно-странич-ной структуры адресов выполняется автоматически операционной системой.

Виртуальная память создается при недостаточном объеме оперативной памяти, не позволяющем разместить в ней сразу всю необходимую информацию для выпол­няемого задания. При загрузке очередной задачи в оперативную память необходи­мо выполнить распределение машинных ресурсов, в частности оперативной памя­ти между компонентами одновременно решаемых задач (в принципе, оперативной памяти может не хватить и для решения одной сложной задачи). При подготовке программ используются условные адреса, которые должны быть затем привязаны к конкретному месту в памяти. Распределение памяти может выполняться или в статическом режиме до загрузки программы в ОП, или в динамическом режиме автоматически в момент загрузки программы. Статическое распределение памяти весьма трудоемко, поэтому применяется редко. Если очевидно, что реальная па­мять меньше требуемого программой адресного пространства, программист может вручную разбить программу на части, вызываемые в ОП по мере необходимос­ти, - создать оверлейную структуру программы. Обычно же используется режим динамического распределения памяти.

При динамическом распределении памяти в случае недостаточной емкости ОП по­лезно воспользоваться виртуальной памятью. В режиме виртуальной памяти пользо­ватель имеет дело не с физической ОП, действительно имеющейся в ПК, а с виртуаль­ ной (кажущейся) одноуровневой памятью, емкость которой равна всему адресному пространству микропроцессора. На всех этапах подготовки программы, включая ее загрузку в оперативную память, в программе используются виртуальные адреса и лишь при непосредственном исполнении машинной команды выполняется пре­образование виртуальных адресов в реальные физические адреса ОП. При этом ре­ально программа может размещаться частично в ОП, частично во внешней памяти. Технология организации виртуальной памяти следующая. Физические оператив­ная и дисковая (привлеченная к задаче) память и виртуальная память разбивают­ся на страницы одинакового размера по 4 Кбайта. Страницам виртуальной и фи­зической памяти присваиваются номера, которые сохраняются одними и теми же на весь период решения задачи. Операционная система формирует две таблицы:

□ страниц виртуальной памяти;

□ физического размещения страниц,

и устанавливает логические связи между ними (рис. 6.2).

На рисунке видно, что физические страницы могут находиться в текущий момент времени как в оперативной, так и во внешней памяти. Из внешней памяти вирту­альные страницы автоматически перемещаются в оперативную только тогда, ког­да к ним происходит обращение. При этом они замещают уже отработавшие стра­ницы. Страничные таблицы для каждой программы формируются операционной системой в процессе распределения памяти и изменяются каждый раз, когда фи­зические страницы перемещаются из ВЗУ в ОП. Виртуальная память может иметь

и сегментно-страничную организацию. В этом случае виртуальная память делится сначала на сегменты, а внутри них на страницы. Принцип организации такой па­мяти аналогичен рассмотренному выше.

Таблица страниц физической памяти

Расположена в памяти

№ физической страницы


Рис. 6.2.Таблица страниц

Существует много различных видов оперативной памяти, но их все можно подразделить на две основные подгруппы - статическая память (Static RAM) и динамическая память (Dynamic RAM).

Эти два типа памяти отличаются, прежде всего, различной в корне технологической реализацией - SRAM будет хранить записанные данные до тех пор, пока не запишут новые или не отключат питание, а DRAM может хранить данные лишь небольшое время, после которого данные нужно восстановить (регенерировать), иначе они будут потеряны.

Рассмотрим достоинства и недостатки SRAM и DRAM:

1. Память типа DRAM, в силу своей технологии, имеет гораздо большую плотность размещения данных, чем SRAM.

2. DRAM гораздо дешевле SRAM,

3. но последняя производительнее и надежнее, поскольку всегда готова к считыванию.

СТАТИЧЕСКАЯ RAM

В современных компьютерах SRAM используется как кэш второго уровня и имеет сравнительно небольшой объем (обычно 128...1024 Кб). В кэше она используется именно потому, что к нему предъявляются очень серьезные требования в плане надежности и производительности. Основную же память компьютера составляют микросхемы динамической памяти.

Статическую память делят на синхронную и асинхронную. Асинхронная память уже не используется в персональных компьютерах, она была вытеснена синхронной еще со времен 486-ых компьютеров.

Применение статической памяти не ограничивается кэш-памятью в персональных компьютерах. Серверы, маршрутизаторы, глобальные сети, RAID-массивы, коммутаторы - вот устройства, где необходима высокоскоростная SRAM.

SRAM - очень модифицируемая технология - существует множество ее типов, которые отличаются электрическими и архитектурными особенностями. В обычной синхронной SRAM происходит небольшая задержка, когда память переходит из режима чтения в режим записи.

Поэтому в 1997 г. несколько компаний представили свои технологии статической RAM без такой задержки. Это технологии ZBT (Zero-Bus Turnaround - нуль-переключение шины) SRAM от IDT, и похожая NoBL (No Bus Latency - шина без задержек). ДИНАМИЧЕСКАЯ RAM(вся память за исключением сегмента данных-64кб,стекопамяти-16кб,собственным телом программ)

Память типа DRAM гораздо шире распространена в вычислительной технике благодаря двум своим достоинствам перед SRAM - дешевизне и плотности хранения данных. Эти две характеристики динамической памяти компенсируют в некоторой степени ее недостатки - невысокое быстродействие и необходимость в постоянной регенерации данных.

Сейчас существуют около 25-ти разновидностей DRAM, так как производители и разработчики памяти пытаются угнаться за прогрессом в области центральных процессоров.

основные типы динамической памяти - от старых Conventional и FPM DRAM до еще не воплощенных в жизнь QDR, DDR SDRAM, RDRAM.

Оперативная память имеет 3 раздела:

  • 640 кб. DOS – осн. ОЗУ
  • 1мб основные модули Windows – верхняя ОЗУ
  • оставшиеся модули – расширенная ОЗУ

18. МОДУЛЬ ПАМЯТИ DIMM. ДРУГИЕ ТИПЫ МОДУЛЕЙ ПАМЯТИ.

Оперативная память компьютера относится к одному из важнейших элементов компьютера, определяющих производительность и функциональные возможности всей системы. Оперативная память представлена определенным количеством микросхем ОЗУ на материнской плате. Если сравнительно недавно микросхемы ОЗУ подключались через специальные панельки - разъемы, позволявшие менять отдельные микросхемы без пайки, то в настоящее время архитектура компьютера предусматривает их размещение на небольших платах-модулях. Такие модули памяти устанавливаются в специальные разъемы-слоты на материнской плате. Одним из вариантов такого решения явились SIMM-модули (SIMM - single in-line memory modules).

Миниатюрные SIMM-модули, или просто SIMM, представляют собой блоки оперативной памяти разной емкости. Широкое распространение нашли SIMM на 4, 8, 16, 32 и даже 64 Мбайт.

SIMM бывают двух разных типов: на 30 pin и 72 pin, где pin ("пин") означает число контактов подключения к специализированному разъему ОЗУ на материнской плате. При этом 30 pin и 72 pin SIMM - не взаимозаменяемые элементы.

Внешний вид модуля DIMM

Модули типа DIMM наиболее распространены в виде 168-контактных модулей, устанавливаемых в разъём вертикально и фиксируемых защёлками. В портативных устройствах широко применяются SO DIMM - разновидность DIMM малого размера (англ. SO - small outline), они предназначены в первую очередь для портативных компьютеров.

Внешний вид модуля RIMM

Модули типа RIMM менее распространены, в таких модулях выпускается память типа Direct RDRAM. Они представлены 168/184-контактными прямоугольными платами, которые обязательно должны устанавливаться только в парах, а пустые разъёмы на материнской плате занимаются специальными заглушками. Это связано с особенностями конструкции таких модулей.

19. ВНЕШНЯЯ ПАМЯТЬ. РАЗНОВИДНОСТИ УСТРОЙСТВ ВНЕШНЕЙ ПАМЯТИ.

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

Взу óОЗУ ó Кэш ó Процессор

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1. Накопители на гибких магнитных дисках

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.
Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавл

ивается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам ), которые делятся на секторы . Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive ), автоматически в нем фиксируется , после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2. Накопители на жестких магнитных дисках

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера .

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 10 до 100 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно . Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

4. Накопители на компакт-дисках

Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory - компакт диск, из которого можно только читать).

CD-ROM представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения - на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт . Информация наносится на диск при его изготовлении и не может быть изменена.

CD-ROM обладают высокой удельной информационной емкостью, что позволяет создавать на их основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну - спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

Для работы с CD-ROM нужно подключить к компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

Если в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.

Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD . Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных , т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука.

4. Накопитель на магнито-оптических компакт-дисках DVD

4,7 17 50-hd dvd 200 blue ray

Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

5. Накопители на магнитной ленте (стримеры)

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

  1. Флешка

Кристалл на который записывается информация –32гб

20. ЖИДКОКРИСТАЛЛИЧЕСКИЕ МОНИТОРЫ. МОНИТОРЫ, ПОСТОРЕННЫЕ НА ОСНОВЕ ЭЛТ

Видеосистема компьютера состоит из трех компонент:

монитор (называемый также дисплеем);

видеоадаптер ;

программное обеспечение (драйверы видеосистемы).

Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения - выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др.

Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ) , и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами.

1. Монитор на базе электронно-лучевой трубки

Основной элемент дисплея - электронно-лучевая трубка . Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором - специальным веществом, способным излучать свет при попадании на него быстрых электронов .

Люминофор наносится в виде наборов точек трёх основных цветов - красного , зелёного и синего . Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел - точку, из которых формируется изображение (англ. pixel - picture element, элемент картинки).

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,24 мм. При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксел, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска - тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.

Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Последняя не должна быть ниже 85 Гц, иначе изображение будет мерцать .

2. Жидкокристаллические мониторы

Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы - это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу - сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором. По компактности такие мониторы не знают себе равных. Они занимают в 2 - 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.

21. ПРИНТЕРЫ. ПЛОТТЕР. СКАНЕР

Существуют тысячи наименований принтеров. Но основных видов принтеров три: матричные, лазерные и струйные.

· Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.

· Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.

После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок - тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.

· Струйные принтеры генерируют символы в виде последовательности чернильных точек . Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов - ярко-голубого, пурпурного, желтого и черного.

Принтер связан с компьютером посредством кабеля принтера, один конец которого вставляется своим разъёмом в гнездо принтера, а другой - в порт принтера компьютера. Порт - это разъём, через который можно соединить процессор компьютера с внешним устройством .

Каждый принтер обязательно имеет свой драйвер - программу, которая способна переводить (транслировать) стандартные команды печати компьютера в специальные команды, требующиеся для каждого принтера.

Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.

Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.

Плоттеру, так же, как и принтеру, обязательно нужна специальная программа - драйвер , позволяющая прикладным программам передавать ему инструкции: поднять и опустить перо, провести линию заданной толщины и т.п.

Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры , которые прокатывают по поверхности документа рукой, и планшетные сканеры , по внешнему виду напоминающие копировальные машины.

Если при помощи сканера вводится текст, компьютер воспринимает его как картинку, а не как последовательность символов. Для преобразования такого графического текста в обычный символьный формат используют программы оптического распознавания образов.

22. ПОРТЫ УСТРОЙСТВ. ОХАРАКТЕРИЗОВАТЬ ОСНОВНЫЕ ВИДЫ ПОРТОВ.

Принцип открытой архитектуры заключается в следующем:

  • Регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Таким образом, компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями.
  • Компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями.

Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным .

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Портами также называют устройства стандартного интерфейса : последовательный, параллельный и игровой порты (или интерфейсы).

К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы .

23. АУДИОАДАПТЕР. ВИДЕОАДАПТЕР. ГРАФИЧЕСКИЙ АКСЕЛЕРАТОР. МОДЕМ.

Аудиоадаптер содержит в себе два преобразователя информации:

  • аналого-цифровой, который преобразует непрерывные (то есть, аналоговые) звуковые сигналы (речь, музыку, шум) в цифровой двоичный код и записывает его на магнитный носитель;
  • цифро-аналоговый, выполняющий обратное преобразование сохранённого в цифровом виде звука в аналоговый сигнал, который затем воспроизводится с помощью акустической системы, синтезатора звука или наушников.

Профессиональные звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нём сотнями тембров звучаний различных музыкальных инструментов. Звуковые файлы обычно имеют очень большие размеры. Так, трёхминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому платы Sound Blaster, помимо своих основных функций, обеспечивают автоматическое сжатие файлов.

Область применения звуковых плат - компьютерные игры, обучающие программные системы, рекламные презентации, "голосовая почта" (voice mail) между компьютерами, озвучивание различных процессов, происходящих в компьютерном оборудовании, таких, например, как отсутствие бумаги в принтере и т.п.

Наиболее распространенный видеоадаптер на сегодняшний день - адаптер SVGA (Super Video Graphics Array - супервидеографический массив), который может отображать на экране дисплея 1280х1024 пикселей при 256 цветах и 1024х768 пикселей при 16 миллионах цветов.

С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами широко используются разнообразные устройства компьютерной обработки видеосигналов :

· Графические акселераторы (ускорители) - специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

· Фрейм-грабберы , которые позволяют отображать на экране компьютера видеосигнал от видеомагнитофона, камеры, лазерного проигрывателя и т. п., с тем, чтобы захватить нужный кадр в память и впоследствии сохранить его в виде файла.

· TV-тюнеры - видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом можно следить за ходом передачи, не прекращая работу.

Цифровые сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи - непрерывных сигналов звуковой частоты.

Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток частоты звукового диапазона - этот процесс называется модуляцией , а также обратное преобразование, которое называется демодуляцией . Отсюда название устройства: модем - мо дулятор/дем одулятор.

Для осуществления связи один модем вызывает другой по номеру телефона, а тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуя подходящий им обоим режим связи . После этого передающий модем начинает посылать модулированные данные с согласованными скоростью (количеством бит в секунду) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии.

Управление модемом осуществляется с помощью специального коммутационного программного обеспечения .

Модемы бывают внешние , выполненные в виде отдельного устройства, и внутренние , представляющие собой электронную плату, устанавливаемую внутри компьютера. Почти все модемы поддерживают и функции факсов.

24. МУЛЬТИМЕДИА. ТЕХНОЛОГИИ МУЛЬТИМЕДИА.

Термин “мультимедиа ” образован из слов “мульти ” - много, и “медиа ” - среда, носитель, средства сообщения, и в первом приближении его можно перевести как “многосредность ” .


Похожая информация.



Статическая и динамическая оперативная память

Оперативная память - совокупность специальных электронных ячеек, каждая из которых может хранить конкретную 8-значную комбинацию из нулей и единиц - 1 байт (8 бит). Каждая такая ячейка имеет адрес (адрес байта) и содержимое (значение байта). Адрес нужен для обращения к содержимому ячейки, для записи и считывания информации. Оперативное запоминающее устройство (ОЗУ) хранит информацию только во время работы компьютера. Емкость оперативной памяти современного компьютера 32-138 Мбайт.
При выполнении микропроцессором вычислительных операций должен быть в любой момент обеспечен доступ к любой ячейке оперативной памяти. Поэтому ее называют памятью с произвольной выборкой - RAM (Random Access Memory). Оперативная память выполнена обычно на микросхемах динамического типа с произвольной выборкой (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла. Другой, более дорогой тип памяти - статический (Static RAM, SRAM) в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Статическая память
Статическая память (SRAM) в современных ПК обычно применяется в качестве кэш-памяти второго уровня для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхем и по способу доступа к данным может быть как асинхронной, так и синхронной. Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего - пятого поколения процессоров. Время доступа к ячейкам такой памяти составляло от 15 нс (33 МГц) до 8 нс (66 МГц).
Для описания характеристик быстродействия оперативной памяти применяются так называемые циклы чтения/записи. Дело в том, что при обращении к памяти на считывание или запись первого машинного слова расходуется больше тактов, чем на обращение к трем последующим словам. Так, для асинхронной SRAM чтение одного слова выполняется за 3 такта, запись - за 4 такта, чтение нескольких слов определяется последовательностью 3-2-2-2 такта, а запись - 4-3-3-3.
Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а синхронно с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных. В большинстве материнских плат пятого поколения используется разновидность синхронной памяти - синхронно-конвейерная SRAM (Pipelined Burst SRAM), для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3-1-1-1 такта при первом обращении и 1-1-1-1 при последующих обращениях, что обеспечивает ускорение доступа более, чем на 25%.

Динамическая память
Динамическая память (DRAM) в современных ПК используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известны DRAM и FPM DRAM, EDO DRAM и BEDO DRAM, EDRAM и CDRAM, Synchronous DRAM, DDR SDRAM и SLDRAM, видеопамять MDRAM, VRAM, WRAM и SGRAM, RDRAM.
В памяти динамического типа биты представляются в виде отсутствия и наличия заряда на конденсаторе в структуре полупроводникового кристалла. Конструктивно она выполняется в виде модуля SIMM (Single in line memory module). Каждый бит информации записывается в отдельной ячейке памяти, состоящей из конденсатора и транзистора. Наличие заряда на конденсаторе соответствует 1 в двоичном коде, отсутствие - 0. Транзистор при переключении дает возможность считывать бит информации или записывать новый бит в пустую ячейку памяти.
Поиск ячейки по адресу осуществляется специальными дешифрующими схемами, которые образуют матрицу, то есть пересекают кристалл памяти двумя полосами - по горизонтали и вертикали. Когда центральный процессор сообщает адрес ячейки, горизонтальные дешифраторы указывают нужный столбец, а вертикальные - строку. На пересечении находится искомая ячейка. После нахождения ячейки происходит выборка их нее байта данных.

Статическая память - SRAM (Static Random Access Memory), как и следует из ее названия, способна хранить информацию в статическом режиме - то есть сколь угодно долго при отсутствии обращений (но при наличии питающего напряжения). Ячейки статической памяти реализуются на триггерах - элементах с двумя устойчивыми состояниями. По сравнению с динамической памятью эти ячейки более сложны и занимают больше места в кристалле, однако они проще в управлении и не требуют регенерации. Быстродействие и энергопотребление статической памяти определяется технологией изготовления и схемотехникой запоминающих ячеек.
Самая экономичная статическая память КМОП (или CMOS Memory) в тоже время и самая медленная память такого типа, имеет время доступа более 100 наносекунд, но зато пригодна для длительного хранения информации при питании от маломощной батареи. Применяется CMOS память в персональных компьютерах для хранения данных о конфигурации и для реализации внутренних часов.
Самая быстродействующая статическая память имеет время доступа в несколько наносекунд, что позволяет ей работать на частоте системной шины процессора, не требуя от него тактов ожидания. Относительно высокая удельная стоимость хранения информации и высокое энергопотребление при низкой плотности упаковки элементов не позволяет использовать SRAM в качестве оперативной памяти компьютеров.
Статические запоминающие устройства (SRAM) имеют перед динамическими то преимущество, что у них время выборки практически равно времени цикла записи или чтения. Выполненная по той же технологии что и процессор, статическая память имеет высокое быстродействие. Главным ограничением в использовании статической памяти является стоимость. При равной емкости с динамической, статическая память примерно в четыре раза дороже. Поэтому данный вид памяти получил распространение в высокопроизводительных системах в качестве внешней (относительно процессора) кэш памяти. Соотношение цена/производительность в этих системах играет не столь существенную роль. Однако, с появлением микросхем статической памяти большой емкости и ее удешевлением произойдет изменение сложившегося стереотипа использования схем памяти и производители компьютеров, возможно, пойдут на замену динамической памяти статической, пока же элементы статической памяти используются в оперативной динамической памяти, как быстрый конвейерный буфер для подготовки данных к выдаче на шину данных каждый такт системной шины.
Структура микросхемы статической памяти
Элементом памяти в статических ОЗУ является триггер, выполненный на транзисторах. Структура микросхемы статической памяти (рис.1.) включает матрицу накопителя содержащую М x N элементов памяти.

Лекция №4 Система памяти
План:
Введение
1. Классификация типов памяти.
2. Память ROM, SRAM, DRAM.


Введение

Память – это свойство, которым обладает живое существо или устройство.

Компьютерная память (устройство хранения информации, запоминающее устройство) - часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени.

В персональных компьютерах «памятью» часто называют один из её видов - динамическая память с произвольным доступом (DRAM), - которая в настоящее время используется в качестве ОЗУ персонального компьютера.
Работоспособность всей компьютерной системы зависит не только от оперативной памяти, но и от подсистемы памяти в целом.

Подсистема памяти охватывает:
оперативную память;
кэш-память процессора;
контроллер памяти;
шины данных и команд.
Рост требуемых объемов оперативной (системной) памяти происходит практически непрерывно по мере развития технологии аппаратных средств и программных продуктов. Сегодня повсеместным стандартом для оперативной памяти становится объем 4 ГБ.

1. Классификация типов памяти

Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же - по технической реализации. Здесь рассматривается первая - таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.
Доступные операции над данными в памяти
Память только для чтения (read-only memory, ROM)
Память для чтения/записи
Память на программируемых и перепрограммируемых ПЗУ (ППЗУ и ПППЗУ) не имеет общепринятого места в этой классификации. Её относят либо к подвиду памяти «только для чтения», либо выделяют в отдельный вид.
Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM - предназначенные для хранения относительно неизменных данных.

Энергозависимость
Энергонезависимая память (англ. nonvolatile storage) - память, реализованная ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды памяти на ПЗУ и ППЗУ;
Энергозависимая память (англ. volatile storage) - память, реализованная ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относятся память на ОЗУ, кэш-память.
— Статическая память (англ. static storage) - энергозависимая память, которой для хранения информации достаточно сохранения питающего напряжения;
— Динамическая память (англ. dynamic storage) - энергозависимая памяти, в которой информация со временем разрушается (деградирует), и, кроме подачи электропитания, необходимо производить её периодическое восстановление (регенерацию).

Метод доступа
Последовательный доступ (англ. sequential access memory, SAM) - ячейки памяти выбираются (считываются) последовательно, одна за другой, в очерёдности их расположения. Вариант такой памяти - стековая память.
Произвольный доступ (англ. random access memory, RAM) - вычислительное устройство может обратиться к произвольной ячейке памяти по любому адресу.

Назначение
Буферная память (англ. buffer storage) - память, предназначенная для временного хранения данных при обмене ими между различными устройствами или программами.
Временная (промежуточная) память (англ. temporary (intermediate) storage) - память для хранения промежуточных результатов обработки.
Кеш-память (англ. cache memory) - часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.
Корректирующая память (англ. patch memory) - часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины «relocation table» и «remap table».
Управляющая память (англ. control storage) - память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
Разделяемая память или память коллективного доступа (англ. shared memory, shared access memory) - память, доступная одновременно нескольким пользователям, процессам или процессорам.

Организация адресного пространства
Реальная или физическая память (англ. real (physical) memory) - память, способ адресации которой соответствует физическому расположению её данных;
Виртуальная память (англ. virtual memory) - память, способ адресации которой не отражает физического расположения её данных;
Оверлейная память (англ. overlayable storage) - память, в которой присутствует несколько областей с одинаковыми адресами, из которых в каждый момент доступна только одна.

Удалённость и доступность для процессора
Первичная память доступна процессору без какого-либо обращения к внешним устройствам. Это регистры процессора(процессорная или регистровая память) и кэш процессора (если есть);
Вторичная память доступна процессору путём прямой адресацией через шину адреса (Адресуемая память) или через другие выводы. Таким образом доступна основная память (память, предназначенная для хранения текущих данных и выполняемых программ) и порты ввода-вывода (специальные адреса, через обращение к которым реализовано взаимодействие с прочей аппаратурой);
Третичная память доступна только путём нетривиальной последовательности действий. Сюда входят все виды внешней памяти - доступной через устройства ввода-вывода. Взаимодействие с третичной памятью ведётся по определённым правилам (протоколам) и требует присутствия в памяти соответствующих программ. Программы, обеспечивающие минимально необходимое взаимодействие, помещаются в ПЗУ, входящее во вторичную память (у PC-совместимых ПК - это ПЗУ BIOS);
Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ.

Управление процессором
Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) - память, непосредственно доступная в данный момент времени центральному процессору.
Автономная память.

Организация хранения данных и алгоритмы доступа к ним
Повторяет классификацию структур данных.
Адресуемая память - адресация осуществляется по местоположению данных.
Ассоциативная память (англ. associative memory, content-addressable memory, CAM) - адресация осуществляется по содержанию данных, а не по их местоположению.
Магазинная (стековая) память (англ. pushdown storage) - реализация стека.
Матричная память (англ. matrix storage) - ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
Объектная память (англ. object storage) - память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
Семантическая память (англ. semantic storage) - данные размещаются и списываются в

Физические принципы
Эта классификация повторяет соответствующую классификацию ЗУ.

Разновидности магнитной памяти
Память на магнитной ленте (англ. magnetic tape memory) - представляет собой пластиковую узкую ленту с магнитным покрытием и механизм с блоком головок записи-воспроизведения (БГЗВ). Лента намотана на бобину, и последовательно протягивается лентопротяжным механизмом (ЛПМ) возле БГЗВ. Запись производится перемагничиванием частиц магнитного слоя ленты при прохождении их возле зазора головки записи. Считывание записанной информации происходит при прохождении намагниченного ранее участка плёнки возле зазора головки воспроизведения.
Память на магнитных дисках (англ. magnetic disk memory) - представляет собой круглый пластиковый диск с магнитным покрытием и механизм с БГЗВ. Данные при этом наносятся радиально, при вращении диска вокруг своей оси и радиальном сдвиге БГЗВ на шаг головки. Запись производится перемагничиванием частиц магнитного слоя диска при прохождении их возле зазора головки записи. Считывание записанной информации происходит при прохождении намагниченного ранее участка возле зазора головки воспроизведения.
Память на магнитной проволоке (англ. plated wire memory) Использовалась в магнитофонах до магнитной ленты. В настоящее время по этому принципу конструируется большинство авиационных т. н. «чёрных ящиков» - данный носитель имеет наиболее высокую устойчивость к внешним воздействиям и высокую сохранность даже при повреждениях в аварийных ситуациях.
Ферритовая память (англ. core storage) - ячейка представляет собой ферритовый сердечник, изменение состояния которого (перемагничивание) происходит при пропускании тока через намотанный на него проводник. В настоящее имеет ограниченное применение, в основном в военной сфере.

Разновидности оптической памяти
Фазоинверсная память (англ. Phase Change Rewritable storage, PCR) - оптическая память, в которой рабочий (отражающий) слой выполнен из полимерного вещества, способного при нагреве менять фазовое состояние (кристаллическое↔аморфное) и отражающие характеристики в зависимости от режима нагрева. Применяется в перезаписываемых оптических дисках (CD-RW, DVD-RW).

2. Память ROM, SRAM, DRAM.

В современных компьютерах используются запоминающие устройства трех основных типов:
ROM (Read Only Memory). Постоянное запоминающее устройство — ПЗУ, неспособное выполнять операцию записи данных.
DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.
SRAM (Static RAM). Статическая оперативная память.

Память типа ROM
В памяти типа ROM (Read Only Memory), или ПЗУ (постоянное запоминающее устройство), данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска ПК, т.е. программное обеспечение, которое загружает систему.

Рисунок ROM-память

ROM и оперативная память — не противоположные понятия. На самом деле ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему.
Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы BIOS и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер. Платы, не нуждающиеся в драйверах на раннем этапе начальной загрузки, обычно не имеют ROM, потому что их драйверы могут быть загружены с жесткого диска позже — в процессе начальной загрузки.
Рисунок ROM-память

В настоящее время в большинстве систем используется одна из форм Flash-памяти, которая называется электрически стираемой программируемой постоянной памятью (Electrically Erasable Programmable Readonly Memory — EEPROM). Flash-память является по-настоящему энергонезависимой и перезаписываемой, она позволяет пользователям легко модифицировать ROM, программно-аппаратные средства системных плат и других компонентов (таких, как видеоадаптеры, платы SCSI, периферийные устройства и т.п.).

SRAM(кэш-память)
Существует тип памяти, совершенно отличный от других, — статическая оперативная память (Static RAM — SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не требуется периодической регенерации. Это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем DRAM, и может работать на той же частоте, что и современные процессоры.

Статическая память — это тип памяти, в котором значение бита информация хранится в ячейке определяющаяся наличием или отсутствием заряда на миниатюрном конденсаторе (управляемом транзисторами).
В статической памяти применяются специальные элементы — триггеры, реализованные на 4-6 транзисторах. Именно триггер является ячейкой статической памяти.

Рисунок Схема ячейки статической памяти

Транзистор – трехэлектродный полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника.
Триггер — логический элемент с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Такое устройство сохраняет свое состояние, до тех пор, пока подается питание. Время срабатывания триггера составляет в современных микросхемах не более 2нс (Pentium 4 3,6 GHz = 0.28нс; Athlon XP 2,2GHz = 0.41нс). SRAM различается по принципу работы.

Существует три типа:
1. Async SRAM (Asynchronous Static Random Access Memory) — асинхронная статическая память с произвольным порядком выборки;
2. SyncBurst SRAM (Synchronous Burst Random Access Memory) – синхронная пакетная статическая память с произвольным порядком выборки;
3. PipBurst SRAM (Pipelined Burst Random Access Memory) – конвейерная пакетная статическая память с произвольным порядком выборки;
Async SRAM – это устаревший тип памяти, асинхронный интерфейс которой схож с интерфейсом DRAM и включает в себя шины адреса, данных и управления.
SyncBurst SRAM – этот тип памяти синхронизирован с системной шиной и лучше всего подходит для выполнения пакетных операций. Ну а интерфейс PipBurst SRAM схож с интерфейсом SyncBurst SRAM, но позволяет получать данные без тактов ожидания.

Как правило, чем больше объем кэш, тем система производительней. Но сам по себе объем еще не гарантирует высокой производительности. Для кэш главное – контроллер.

Время доступа SRAM 2 нс. означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из шести транзисторов. Использование транзисторов без каких либо конденсаторов означает, что нет необходимости в регенерации. (Ведь если нет никаких конденсаторов, то и заряды не теряются.) Пока подается питание, SRAM будет помнить то, что сохранено.

По сравнению с DRAM быстродействие SRAM намного выше, но плотность ее гораздо ниже, а цена довольно высока. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластеризованное их размещение не только увеличивает габариты микросхем SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM. Например, емкость модуля DRAM может равняться 64 Мбайт или больше, в то время как емкость модуля SRAM приблизительно того же размера составляет только 2 Мбайт, причем их стоимость будет одинаковой. Таким образом, габариты SRAM в среднем в 30 раз превышают размер DRAM, то же самое можно сказать и о стоимости. Все это не позволяет использовать память типа SRAM в качестве оперативной памяти в персональных компьютерах.

Память типа DRAM
DRAM (Dynamic Random Access Memory) - тип энергозависимой полупроводниковой памяти с произвольным доступом (RAM), также запоминающее устройство, наиболее широко используемое в качестве ОЗУ современных компьютеров.

Физически память DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Рисунок Схема ячейки динамической памяти

Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную, например, 15 мкс. Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128×15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти, к сожалению, отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, расходы на регенерацию составляют 1% (или меньше) процессорного времени. Некоторые системы позволяют изменить параметры регенерации с помощью программы установки параметров CMOS, но увеличение времени между циклами регенерации может привести к тому, что в некоторыхячейках памяти заряд “стечет”, а это вызовет сбои памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры. При автоматической установке системная плата считывает параметры синхронизации из системы определения последовательности в ПЗУ (serial presence detect — SPD) и устанавливает частоту периодической подачи импульсов в соответствии с полученными данными.

В устройствах DRAM для хранения одного бита используется только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время имеются микросхемы динамической оперативной памяти емкостью 4Гбайт и больше. Это означает, что подобные микросхемы содержат более миллиарда транзисторов. В микросхеме памяти все транзисторы и конденсаторы размещаются последователь но, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур.

Транзистор для каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана 1; если заряда нет — записан 0. Заряды в крошечных конденсаторах все время стекают, вот почему память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приведет к потере заряда в ячейке DRAM, а следовательно, и к потере данных. В работающей системе подобное приводит к появлению “синего” экрана, глобальным отказам системы защиты, повреждению файлов или к полному отказу системы.

Динамическая оперативная память используется в персональных компьютерах; поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее устройство большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного “медленнее” процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику.

Характеристики памяти DRAM
Основными характеристиками DRAM являются рабочая частота и тайминги.

При обращении к ячейке памяти контроллер памяти задаёт номер банка, номер страницы в нём, номер строки и номер столбца и на все эти запросы тратится время, помимо этого довольно большой период уходит на открытие и закрытие банка после самой операции. На каждое действие требуется время, называемое таймингом.
Основными таймингами DRAM являются:

  • задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay), з
  • адержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay),
  • задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge).

Тайминги измеряются в наносекундах, и чем меньше величина этих таймингов, тем быстрее работает оперативная память.
Типы DRAM:
На протяжении долгого времени разработчиками создавались различные типы памяти. Они обладали разными характеристиками, в них были использованы разные технические решения. Основной движущей силой развития памяти было развитие компьютеров и центральных процессоров. Постоянно требовалось увеличение быстродействия и объёма оперативной памяти.
Страничная память
Страничная память (англ. page mode DRAM, PM DRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Память такого типа выпускалась в начале 1990-х годов, но с ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.
Быстрая страничная память
Быстрая страничная память (англ. fast page mode DRAM, FPM DRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела, а увеличение скорости работы достигалось путём повышенной нагрузки на аппаратную часть памяти. Данный тип памяти в основном применялся для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно.

3. Модули оперативной памяти SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM и др.

EDO DRAM - память с усовершенствованным выходом
C появлением процессоров Intel Pentium память FPM DRAM оказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ. extended data out DRAM, EDO DRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорами Intel Pentium и выше. Её производительность оказалась на 10-15 % выше по сравнению с памятью типа FPM DRAM. Её рабочая частота была 40 и 50 МГц, соответственно, время полного доступа - 60 и 50 нс, а время рабочего цикла - 25 и 20 нс. Эта память содержит регистр-защелку (англ. data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.

SDRAM - синхронная DRAM
В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDO DRAM стала заметно падать. Ей на смену пришла синхронная память (англ. synchronous DRAM, SDRAM). Новыми особенностями этого типа памяти являлись использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше).

Рисунок Модуль памяти SD RAM

Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка - несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа. Рабочие частоты этого типа памяти могли равняться 66, 100 или 133 МГц, время полного доступа - 40 и 30 нс, а время рабочего цикла - 10 и 7,5 нс.

С этим типом памяти применялась технология Virtual Channel Memory (VCM). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, была совместима с существующими SDRAM, что позволяло делать апгрейд системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.

Enhanced SDRAM (ESDRAM)
Для преодоления некоторых проблем с задержкой сигнала, присущих стандартной DRAM-памяти, было решено встроить небольшое количество SRAM в чип, то есть создать на чипе кеш.
- это, по существу, SDRAM с небольшим количеством SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кеш-памяти, SRAM-кеш предназначен для хранения и выборки наиболее часто используемых данных. Отсюда и уменьшение времени доступа к данным медленной DRAM.
Одним из таких решений являлась ESDRAM от Ramtron International Corporation.

Рисунок Модули ESDRAM

Пакетная EDO RAM
Пакетная память EDO RAM (англ. burst extended data output DRAM, BEDO DRAM) стала дешёвой альтернативой памяти типа SDRAM. Основанная на памяти EDO DRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типа SDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.

Рисунок Модуль EDORAM

Video RAM
Специальный тип оперативной памяти - Video RAM (VRAM) - был разработан на основе памяти типа SDRAM для использования в видеоплатах. Он позволял обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации изображений высокого качества. На основе памяти типа VRAM, появилась спецификация памяти типа Windows RAM (WRAM), иногда её ошибочно связывают с операционными системами семейства Windows. Её производительность стала на 25 % выше, чем у оригинальной памяти типа SDRAM, благодаря некоторым техническим изменениям.

Рисунок Микросхема Video RAM

DDR SDRAM
По сравнению с обычной памятью типа SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.

У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.

Рисунок Модуль DDR SDRAM

Память DDR SDRAM работает на частотах в 100, 133, 166 и 200 МГц, её время полного доступа - 30 и 22,5 нс, а время рабочего цикла - 5, 3,75, 3 и 2,5 нс.
Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти обозначаются DDR200, DDR266, DDR333, DDR400.

Direct RDRAM или Direct Rambus DRAM
Тип памяти RDRAM является разработкой компании Rambus. Высокое быстродействие этой памяти достигается рядом особенностей, не встречающихся в других типах памяти. Первоначальная очень высокая стоимость памяти RDRAM привела к тому, что производители мощных компьютеров предпочли менее производительную, зато более дешёвую память DDR SDRAM. Рабочие частоты памяти - 400, 600 и 800 МГц, время полного доступа - до 30 нс, время рабочего цикла - до 2,5 нс.

Рисунок Модули RD RAM

DDR2 SDRAM
Конструктивно новый тип оперативной памяти DDR2 SDRAM был выпущен в 2004 году. Основываясь на технологии DDR SDRAM, этот тип памяти за счёт технических изменений показывает более высокое быстродействие и предназначен для использования на современных компьютерах. Память может работать с тактовой частотой шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных соответственно будет 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти помимо стандартных частот выпускают и образцы, работающие на нестандартных (промежуточных) частотах. Они предназначены для использования в разогнанных системах, где требуется запас по частоте. Время полного доступа - 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла - от 5 до 1,67 нс.

Рисунок Модуль DDR2 SDRAM

DDR3 SDRAM
Этот тип памяти основан на технологиях DDR2 SDRAM со вдвое увеличенной частотой передачи данных по шине памяти. Отличается пониженным энергопотреблением по сравнению с предшественниками. Частота полосы пропускания лежит в пределах от 800 до 2400 МГц (рекорд частоты - более 3000 МГц), что обеспечивает большую пропускную способность по сравнению со всеми предшественниками.

Рисунок Модуль DDR3 SDRAM

Конструктивные исполнения памяти DRAM

Память типа DRAM конструктивно выполняют и в виде отдельных микросхем в корпусах типа DIP, SOIC, BGA, и в виде модулей памяти типа: SIPP, SIMM, DIMM, RIMM.

Первоначально микросхемы памяти выпускались в корпусах типа DIP (к примеру, серия К565РУхх), далее они стали производится в более технологичных для применения в модулях корпусах.
На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) - небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.
Модули SIPP
Модули типа SIPP (Single In-line Pin Package) представляют собой прямоугольные платы с контактами в виде ряда маленьких штырьков. Этот тип конструктивного исполнения уже практически не используется, так как он далее был вытеснен модулями типа SIMM.
Модули SIMM
Модули типа SIMM (Single In-line Memory Module) представляют собой длинные прямоугольные платы с рядом контактных площадок вдоль одной из её сторон. Модули фиксируются в разъёме (сокете) подключения с помощью защёлок, путём установки платы под некоторым углом и нажатия на неё до приведения в вертикальное положение. Имели несколько модификаций, среди которых наибольшее распространение получили три.
Первая - 30-контактный модуль, имевший объем от 256 КБайт до 16 МБайт и восьмиразрядную шину данных, дополняемую (иногда) девятой линией контроля четности памяти. Применялся в 286, 386 машинах. В случае процессоров 286, 386SX модули ставились парами, на 386DX - по четыре штуки одинаковой емкости.
30-контактный модуль SIMM.
С приходом 486 машин, для которых эти модули надо было бы ставить по четыре (как минимум) штуки был вытеснен 72-контактным модулем SIMM, который, по существу, объединил на себе 4 30-контактных модуля с общими линиями адреса и раздельными линиями данных. Таким образом, модуль становится 32-разрядным и достаточно всего одного модуля. Объем от 1 МБайт до 128 МБайт.
Характеристики:
Разрядность шины данных: 8 бит (9 бит у модулей с контролем четности)
Тип применяемых микросхем динамической памяти: FPM
Стандартные значения объема памяти модулей: 256 Кб, 1 Мб, 4 Мб, 16 Мб
Шаг расположения контактных площадок - 0,1″

Таким образом модули выпускались на 4, 8, 16, 32, 64, 128 Мбайт. Наиболее распространены 30- и 72-контактные модули SIMM.

Модули DIMM
Модули типа DIMM (Dual In-line Memory Module) представляют собой длинные прямоугольные платы с рядами контактных площадок вдоль обеих её сторон, устанавливаемые в разъём подключения вертикально и фиксируемые по обоим торцам защёлками. Микросхемы памяти на них могут быть размещены как с одной, так и с обеих сторон платы. DIMM (англ. Dual In-line Memory Module, двухсторонний модуль памяти) - форм-фактор модулей памяти DRAM. Данный форм-фактор пришёл на смену форм-фактору SIMM. Основным отличием DIMM от предшественника является то, что контакты, расположенные на разных сторонах модуля являются независимыми, в отличие от SIMM, где симметричные контакты, расположенные на разных сторонах модуля, замкнуты между собой и передают одни и те же сигналы. Кроме того, DIMM имеет 64 (без контроля чётности)или 72 (с контролем по чётности или коду ECC) линии передачи данных, в отличие от SIMM c 32 линиями.
Конструктивно представляет собой длинную прямоугольную плату с рядами контактных площадок вдоль обеих её сторон, устанавливаемую в разъём подключения вертикально и фиксируемый по обоим её торцам защёлками. Микросхемы памяти могут быть размещены как с одной, так и с обеих сторон платы.
В отличие от форм-фактора SIMM, используемого для асинхронной памяти FPM и EDO, форм-фактор DIMM предназначен для памяти типа SDRAM. Изготавливались модули рассчитаные на напряжение питания 3,3 В и (реже) 5 В.
В дальнейшем, в модули DIMM стали упаковывать память типа DDR, DDR II и DDR III, отличающуюся повышенным быстродействием.
Появлению форм-фактора DIMM способствовало появление процессора Pentium, который имел 64-разрядную шину данных. В профессиональных рабочих станциях, таких, как SPARCstation, такой тип памяти использовался с начала 1990-х годов. В компьютерах общего назначения широкий переход на этот тип памяти произошёл в конце 1990-х, примерно во времена процессора Pentium II.
Существуют следующие типы DIMM:
72-pin SO-DIMM (не совместима с 72-pin SIMM) - используется для FPM DRAM и EDO DRAM
100-pin DIMM - используется для принтеров SDRAM
144-pin SO-DIMM - используется для SDR SDRAM
168-pin DIMM - используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах)
172-pin MicroDIMM - используется для DDR SDRAM
184-pin DIMM - используется для DDR SDRAM
200-pin SO-DIMM - используется для DDR SDRAM и DDR2 SDRAM
214-pin MicroDIMM - используется для DDR2 SDRAM
204-pin SO-DIMM - используется для DDR3 SDRAM
240-pin DIMM - используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM DRAM
Модули памяти типа SDRAM наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM - в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM - 204-контактных модулей.

Модули RIMM
Модули типа RIMM (Rambus In-line Memory Module) менее распространены, в них выпускается память типа RDRAM. Они представлены 168- и 184-контактными разновидностями, причём на материнской плате такие модули обязательно должны устанавливаться только в парах, в противном случае в пустые разъёмы устанавливаются специальные модули-заглушки (это связано с особенностями конструкции таких модулей). Также существуют 242-контактные PC1066 RDRAM модули RIMM 4200, не совместимые с 184-контактными разъёмами, и уменьшенная версия RIMM - SO-RIMM, которые применяются в портативных устройствах.

Рисунок Модули памяти в различных форм факторах

История использовани я и основные характеристики
Массовый выпуск SDRAM начался в 1993 году. Первоначально этот тип памяти предлагался в качестве альтернативы для дорогой видеопамяти (VRAM), однако вскоре SDRAM завоевал популярность и стал применяться в качестве ОЗУ, постепенно вытесняя другие типы динамической памяти. Последовавшие затем технологии DDR позволили сделать SDRAM ещё эффективнее. За разработкой DDR SDRAM, последовал стандарт DDR2 SDRAM, а затем и DDR3 SDRAM.
SDR SDRAM

Первый стандарт SDRAM с появлением последующих стандартов стал именоваться SDR (Single Data Rate - в отличие от Double Data Rate). За один такт принималась одна управляющая команда и передавалось одно слово данных. Типичными тактовыми частотами были 66, 100 и 133 МГц. Микросхемы SDRAM выпускались с шинами данных различной ширины (обычно 4, 8 или 16 бит), но как правило, эти микросхемы входили в состав 168-пинного модуля DIMM, который позволял прочитать или записать 64 бита (в варианте без контроля чётности) или 72 бита (с контролем чётности) за один такт.

Использование шины данных в SDRAM оказалось осложнено задержкой в 2 или 3 такта между подачей сигнала чтения и появлением данных на шине данных, тогда как во время записи никакой задержки быть не должно. Потребовалась разработка достаточно сложного контроллера, который не позволял бы использовать шину данных для записи и для чтения в один и тот же момент времени.
Управляющие сигналы
Команды, управляющие модулем памяти SDR SDRAM, подаются на контакты модуля по 7 сигнальным линиям. По одной из них подается тактовый сигнал, передние(нарастающие) фронты которого задают моменты времени, в которые считываются команды управления с остальных 6 командных линий. Имена(в скобках — расшифровки имен) шести командных линий и описания команд приведены ниже:
CKE (clock enable) - при низком уровне сигнала блокируется подача тактового сигнала на микросхему. Команды не обрабатываются, состояние других командных линий игнорируется.
/CS (chip select) - при высоком уровне сигнала все прочие управляющие линии, кроме CKE, игнорируются. Действует как команда NOP (нет оператора).
DQM (data mask) - высокий уровень на этой линии запрещает чтение/запись данных. При одновременно поданной команде записи данные не записываются в DRAM. Присутствие этого сигнала в двух тактах, предшествующих циклу чтения приводит к тому, что данные не считываются из памяти.
/RAS (row address strobe) - несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /CAS и /WE кодирует одну из 8 команд.
/CAS (column address strobe) - несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /RAS и /WE кодирует одну из 8 команд.
/WE (write enable) - Вместе с /RAS и /CAS кодирует одну из 8 команд.
Устройства SDRAM внутренне разделены на 2 или 4 независимых банка памяти. Входы адреса первого и второго банка памяти (BA0 и BA1) определяют, какому банку предназначена текущая команда.
Принимаются следующие команды:

DDR SDRAM пришла на смену памяти типа SDRAM. При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200МГц (при сравнении с аналогом SDR SDRAM).

Описание:
Внешнее отличие — 184 контактов (по 92 с каждой стороны)
Микросхемы памяти DDR SDRAM выпускаются в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса
Напряжение питания микросхем: 2,6 В +/- 0,1 В
Потребляемая мощность: 527 мВт
Интерфейс ввода-вывода: SSTL_2

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: тактовая частота шины памяти x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти
В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 8, для модулей с ECC - кратно 9.
Спецификация чипов памяти:
DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц
DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц
DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц
DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц
DDR533: память типа DDR SDRAM, работающая на частоте 266 МГц
DDR666: память типа DDR SDRAM, работающая на частоте 333 МГц
DDR800: память типа DDR SDRAM, работающая на частоте 400 МГц

Характеристики чипов:
Объём чипа (DRAM density). Записывается в мегабитах, например 256 Мбит - чип объёмом 32 мегабайта.
Организация (DRAM organization). Записывается в виде 64M x 4, где 64M - это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») - разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт объёма, но не позволяют использовать функции Chipkill, memory scrubbing и Intel SDDC.
Модули памяти:
Модули DDR SDRAM выполнены в форм-факторе DIMM. На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип SPD. На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей:
Объём. Указывается в мегабайтах или гигабайтах.
Количество чипов (# of DRAM Devices). Кратно 8 для модулей без ECC, для модулей с ECC - кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество - 36 (9×4).
Количество строк (ранков) (# of DRAM rows (ranks)). Перед обращением к ячейке памяти DDR должна быть активирована строка, в которой находится эта ячейка, причём в модуле может быть активна только одна строка за раз. Чем больше строк в модуле, тем чаще в среднем придётся закрывать одну строку и активировать другую, что вызовет дополнительные задержки. С другой стороны, контроллер памяти некоторых чипсетов имеют ограничение на общее число ранков в установленных модулях памяти. Например чипсет Intel E7520/E7320 при использовании памяти PC2700 ограничен 8 ранками. Чтобы установить в материнскую плату на его основе с 8 слотами DIMM максимум памяти (2 Гб x 8 = 16 Гб), необходимо использовать только одноранковые (Single Rank) модули. Типичное число ранков - 1, 2 или 4. Разрядность строки равна разрядности шины памяти и составляет 64 бита для памяти без ECC и 72 бита для памяти с ECC.
Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.
Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 8/9, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.
Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа ранков на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа ранков модуля.

Спецификация модулей памяти

DDR2 SDRAM пришла на смену памяти типа DDR SDRAM.
Как и DDR SDRAM, DDR2 SDRAM использует передачу данных по обоим срезам тактового сигнала, за счёт чего при такой же частоте шины памяти, как и в обычной SDRAM, можно фактически удвоить скорость передачи данных (например, при работе DDR2 на частоте 100 МГц эквивалентная эффективная частота для SDRAM получается 200 МГц). Основное отличие DDR2 от DDR - вдвое большая частота работы шины, по которой данные передаются в буфер микросхемы памяти. При этом чтобы обеспечить необходимый поток данных, передача на шину осуществляется из четырёх мест одновременно. Итоговые задержки оказываются выше, чем для DDR.

Описание :
Внешнее отличие — 240 контактов (по 120 с каждой стороны)
Микросхемы памяти DDR2 производятся в новом корпусе типа BGA (FBGA).
Напряжение питания микросхем 1,8 В
Потребляемая мощность: 247 мВт
Интерфейс ввода-вывода: SSTL_18
Burst Length: 4/8
Prefetch Size: 4-bit
Новые функции: ODT, OCD Calibration, Posted CAS, AL (Additive Latency)

Спецификация чипов памяти:
Тип чипа Частота памяти Частота шины Передач данных в секунду
DDR2-400 100 МГц 200 МГц 400 млн.
DDR2-533 133 МГц 266 МГц 533 млн.
DDR2-667 166 МГц 333 МГц 667 млн.
DDR2-800 200 МГц 400 МГц 800 млн.
DDR2-1066 266 МГц 533 МГц 1066 млн.

Спецификация модулей памяти


DDR3 SDRAM пришла на смену памяти типа DDR2 SDRAM.
Возможности микросхем DDR3 SDRAM
Предвыборка 8 бит
Функция асинхронного сброса с отдельным контактом
Поддержка компенсации времени готовности на системном уровне
Зеркальное расположение контактов, удобное для сборки модулей
Выполнение CAS Write Latency за такт
Встроенная терминация данных
Встроенная калибровка ввода/вывода (мониторинг времени готовности и корректировка уровней)
Автоматическая калибровка шины данных

Возможности модулей DIMM DDR3
Последовательная топология управляющей шины (управление, команды, адреса) с внутримодульной терминацией
Высокоточные резисторы в цепях калибровки

Преимущества по сравнению с DDR2
Более высокая полоса пропускания (до 2400 МГц)
Сниженное тепловыделение (результат уменьшения напряжения питания)
Меньшее энергопотреблениие и улучшенное энергосбережение

Недостатки по сравнению с DDR2
Более высокая CAS-латентность (компенсируется большей пропускной способностью)
CAS-латентность (англ. column address strobe latency) - это время (в циклах) ожидания между запросом процессора на получение ячейки с информацией из памяти и временем, когда оперативная память сделает доступным для чтения первую ячейку.

Спецификация модулей памяти

Модули памяти SDR SDRAM могут иметь CAS-латентность, равную 1, 2 или 3 циклам. Модули DDR SDRAM могут иметь CAS-латентность, равную 2 или 2.5.
На модулях памяти CAS-латентность обозначается как CAS или CL. Пометка CAS2, CAS-2, CAS=2, CL2, CL-2 или CL=2 обозначает величину латентности, равную 2.
Особенности архитектуры памяти

Коррекция ошибок
Выявление и исправление ошибок (ЕСС - Error Checking and Correction) - этот специальный алгоритм, который заменил контроль четности в современных модулях памяти. Каждый бит данных включается более чем в одну контрольную сумму, поэтому при возникновении в нем ошибки возможно восстановить адрес и исправить сбойный бит. При сбоев двух и более битах ошибка лишь фиксируется, но не исправляется.

Система адресации
Для адресации ячеек памяти используют особенности матричной структуры. Полный адрес ячейки состоит из адресов строки и столбца. Для считывания (записи) информации на микросхему сначала подается сигнал RAS (Row Actress Strobe - импульс доступа к строке), а затем (одновременно или с небольшой задержкой) - код адреса строки. После этого через нормируемое время задержки должен быть подан код адреса столбца, перед которым проходит сигнал CAS (Column Adress Strobe - импульс доступа к столбцу). Под временем выборки микросхемы подразумевают промежуток между сигналами RAS. Следующее обращение к памяти возможно только через некоторое время, необходимое для восстановления внутренних/цепей. Этот промежуток называют временем перезарядки, причем оно составляет почти 90% от общего времени выборки. Данные из ячеек через усилители поступают в регистр микросхемы, откуда они становятся доступными после открытия линии DOUT (Data OUT). При операциях записи данные поступают по линии DIN (Data IN), а цикл происходит в обратном порядке.

Любое системное устройство, обладающее правом прямого доступа к памяти (по одному из каналов DMA - Direct Memory Acces), при необходимости посылает запрос, содержащий адрес и размер блока данных, а также управляющие сигналы. Так как доступ к памяти по каналам DMA одновременно могут иметь несколько устройств (например, процессор, видеокарта с интерфейсом AGP, контроллер шины PCI, жесткий диск), образуется очередь запросов, хотя каждому потребителю ресурсов памяти требуются собственные данные, часто расположенные не только в разных микросхемах, но и в разных банках памяти. Тем самым образуются значительные задержки при получении/записи данных. Технологии, позволяющие снизить или обойти перечисленные ограничения, описаны ниже.

Тайминг
Время пересылки данных измеряют в тактах микропроцессора и обычно записывают так: 6-2-2-2. Это означает, что на первую пересылку данных из произвольный ячейки памяти потребовалось 6 тактов шины, а на все последующие ячейки - по 2. Синхронная память обычно превосходит по быстродействию асинхронную. Например, при частоте системной шины 66 МГц память типа EDO 60 нc работает по схеме 5-2-2-2, а память типа SDRAM 10 нc, по схеме 5-1-1-1, что теоретически дает выигрыш в производительности около 30%.
На практике преимущество SDRAM меньше примерно на порядок, потому что далеко не все данные представляют собой последовательную выборку. Но уже при частоте системной шины 100 МГц память EDO 60 нc неработоспособна, a SDRAM 10 нc продолжает работу по схеме 5-1-1-1.

4. Производители и маркировка модулей памяти.

Для ориентировки приводим буквенный префикс обозначения продукции известных фирм, относящихся к группе major-производителей.
Fujitsu — MB;
Hyundai — НУ;
LG Semicon — GM;
Mitsubishi — M5M;
NEC — mPd;
Samsung — KM;
Texas Instruments — TMS;
Hitachi — HB;
IBM — IBM;
Micron — MT;
Mosel Vitelic — V;
Oki — MSM;
Siemens — HYB;
Toshiba — TC.

5. Альтернативная и перспективная память :
DDR4, SL DRAM,VCM DRAM, ESDRAM, FCRAM, FeRAM, MRAM.