Такие каналы могут быть замаскированы. Скрытые каналы передачи данных

21.03.2019

1.1 Дискреционный контроль доступа.

1.2 Мандатный контроль доступа.

1.3 Модель контроля целостности Биба.

1.4 Ролевой контроль доступа.

1.5 Модель невмешательства.

1.6 Модель невыводимости.

2 Постановка задачи повышения эффективности борьбы со скрытыми логическими каналами в распределенной среде

2.1 Современные подходы к реализации распределенных систем

2.2 Определение и классификация скрытых логических каналов

2.3 Основные характеристики скрытых логических каналов

2.4 Причины возникновения скрытых логических каналов

2.5 Идентификация скрытых логических каналов

2.6 Парирование скрытых логических каналов утечки данных

2.7 Требования нормативных документов по защите от скрытых логических каналов.

3 Принципы исследования скрытых логических каналов

3.1 Факторы влияющие на пропускную способность.

3.2 Определение пропускной способности скрытых каналов.

4 Анализ скрытых логических каналов в распределенной среде и разработка методики защиты

4.1 Разработка гибридной формальной субъектно - объектной модели распределенной вычислительной системы.

4.2 Построение модели скрытого логического канала в распределенной среде.

4.3 Исследование модели скрытого логического канала.

4.4 Разработка метода парирования скрытого логического канала

4.5 Разработка средства защиты.

4.6 Эксперимент

4.7 Внедрение.

5 Заключение

Введение диссертации (часть автореферата) на тему "Защита данных от утечки по скрытым логическим каналам в телекоммуникационных сетях"

При проектировании современных телекоммуникационных сетей всегда остро стоит задача обеспечения их информационной безопасности. При этом решения в некоторых случаях являются настолько сложными и дорогостоящими, что для эффективного управления информационными потоками выполняется разделение архитектуры сетей по специальным, так называемым, профилям защищенности, которые указывают на степень решения этой задачи и оптимизацию на защиту от некоторого заранее определенного разработчиками перечня угроз.

Развивающаяся наука и техника предъявляют совершенно новые требования к телекоммуникационным сетям. При этом, удовлетворение большинства из требований уже не может выполняться в ограничениях этих заранее определенных профилей, так как развитие единой информационной среды Интернет, а также повсеместное внедрение информационных технологий в большинство технологических процессов, уже не позволяют рассматривать информацию как пассивную сущность с четким местом ее возникновения, обработки и хранения. Появление большого числа новых форматов данных, а также на несколько порядков возросшие скорости передачи информации сильно затрудняют ее анализ и требуют качественно новых подходов даже при использовании классических методов в обеспечении безопасности. Более того, современные методы обработки и обмена информацией в телекоммуникационных сетях создают новые риски, которые ранее не рассматривались как угрозы безопасности или их реализация прежде считалась невозможной.

В настоящее время особенно актуальны обозначенные проблемы при создании распределенных сетей. Так как в результате указанные проблемы проявляются в виде угроз качественно нового уровня. Они характеризуются чрезвычайно высокой сложностью при обнаружении и борьбе с ними в виду тесной интеграции компонентов систем между собой и соответственно значительно возросшей сложностью разделения уровней секретности. В результате даже небольшое повышение уровня защиты требует серьезного совершенствования подходов к обеспечению безопасности и научном обосновании принимаемых решений.

К способам реализации угроз качественно нового уровня часто относят скрытые логические каналы передачи информации. Традиционно, вопросы их исследования и разработки методов противодействия рассматривались в основном только применительно к автономным системам в контексте обеспечения конфиденциальности, целостности и доступности локально обрабатываемой информации. И поэтому в настоящее время известные способы защиты телекоммуникационных сетей в недостаточной степени учитывают многочисленные факторы и особенности взаимного влияния различных удаленных друг от друга компонентов. При этом, получаемые решения по обеспечению безопасности, основанные на использовании классических подходов, во многом являются частными и в виду их ориентации на индивидуальные особенности конкретной телекоммуникационной сети оказываются сложно переносимыми и весьма ограниченными в применении. Это обстоятельство ставит также задачу изменения подхода и к используемым моделям, вынуждая их становиться более масштабными и формальными, но тем не менее сохраняющими высокую степень адекватности в различных аспектах их применения.

Угрозы со стороны скрытых логических каналов направленны на нарушение конфиденциальности информации.

Современные методы защиты и требования нормативных документов, основанные на разделении всего спектра угроз по уровням безопасности, позволяют решить проблемы нарушения конфиденциальности информации и угроз от скрытых логических каналов лишь в общем виде, при этом сильно ограничивая функциональные возможности защищаемой сети. Это особенно остро ставит, помимо вышеуказанных, также разработки эффективных путей развития архитектуры сетей и выработки комплексных мер противодействия реализации угроз нового уровня.

Целью работы является определение методов и создание средства защиты от утечки данных по скрытым логическим каналам и повышение эффективности борьбы с угрозой нарушения конфиденциальности информации в распределенных телекоммуникационных сетях.

Предмет исследования - скрытые логические каналы несанкционированного доступа к ресурсам информационных сетей.

Объектом исследования данной работы является распределенная телекоммуникационная сеть.

Методы исследований примененные в данной работе для решения поставленных задач и анализа результатов эксперимента относятся к описанию модели безопасности Белла - ЛаПадула, синтаксического анализа потоков данных, анализа систем на невыводимость и невмешательство, методы построения матрицы разделяемых ресурсов, дискретной математики, теории вероятностей и математической статистики, теории множеств, теории графов и формальной логики. Помимо этого, для разработки программного обеспечения использовались методы построения конечных алгоритмов.

Научная новизна работы заключается в следующем:

На основе анализа разнородной информации о скрытых логических каналах создана классификация информационных угроз в телекоммуникационных сетях;

Создана методика исследования и обнаружения скрытых логических каналов в распределенных системах, основанная на использовании новых информационных моделей невыводимости и. невмешательства;

Разработан новый метод и алгоритм защиты от утечек информации по скрытым логическим каналам, использующим линии передачи данных в качестве разделяемого ресурса.

Достоверность результатов исследований обусловлена использованием в работе широко известных и признанных моделей невыводимости и невмешательства, апробированного математического аппарата, логической обоснованностью выводов, а также результатами экспериментальных исследований.

Практическая значимость исследования выражается в том, что на основе предложенных в работе моделей и методики защиты было разработано специальное программное обеспечение для тестирования сети с целью определения уровня угрозы со стороны скрытых логических каналов, а также законченное средство защиты информации позволяющее эффективно решать проблему парирования утечки данных по скрытым логическим каналам в сетях общего доступа. Разработаны рекомендации по быстрому внедрению средства защиты и его использованию на маршрутизаторах работающих под управлением операционной системы Linux. Разработанное программное обеспечение может быть полезно в различных отраслях промышленности и бизнеса, в организациях где реализуются меры противодействия компьютерной разведки, или же к защите информации предъявляются достаточно жесткие требования, а ее обработка ведется в распределенных телекоммуникационных сетях.

Среди областей применения средства защиты можно отметить различные территориально распределенные системы сбора и обработки информации а также стремительно набирающие популярность системы облачных вычислений, а также платежные системы.

Основные положения выносимые на защиту:

Среди многих каналов для реализации информационных атак возможна организация скрытого логического канала, использующего в качестве разделяемого ресурса канал сети передачи данных с методом доступа CSMA/CD;

Среди множества используемых характеристик уровня угроз несанкционированного доступа по скрытому логическому каналу, универсальной характеристикой уровня опасности должен служить критический уровень пропускной способности;

Для парирования угроз несанкционированного доступа по скрытым логическим каналам должна использоваться псевдослучайная нормализующая последовательность трафика;

Средство парирования угроз несанкционированного доступа по скрытым логическим каналам не влияет на скорость передачи данных по каналу легального доступа.

Структура работы

Работа состоит из четырех глав, введения, заключения, списка литературы и трех приложений.

В главе 1 приведен обзор традиционных методов и технологий защиты информации проведенный на основе и включающий в себя анализ дискреционной, мандатной и ролевой модели контроля и управления доступом, а также обеспечения целостности информации. Кроме этого, был проведен анализ моделей невыводимости и невмешательства используемых для изучения скрытых логических каналов.

В главе 2 был выполнен анализ технологий применяемых при построении современных распределенных вычислительных сетей, выявлены характерные недостатки их защиты. Проведено подробное исследование скрытых логических каналов, рассмотрены различные методы поиска и противодействия скрытым логическим каналам, а также проанализирована эффективность рассмотренных методов. На этой основе была сформулирована задача повышения эффективности защиты распределенных систем.

В главе 3 были рассмотрены специальные методы анализа скрытых логических каналов и расчета их точной пропускной способности необходимой для проведения дальнейших исследований.

В главе 4 была построена и исследована на безопасность модель распределенной вычислительной системы, в которой был проведен поиск скрытых логических каналов. Кроме этого, было проведено специальное исследование найденного скрытого логического канала и определен круг и уровень угроз этой уязвимости, выполнен анализ возможности применения рекомендаций нормативных документов и на основании чего была предложена эффективная методика борьбы со скрытым логическим каналом разработанная на основе моделей невыводимости и невмешательства, а также предложена реализация средства защиты.

Заключение диссертации по теме "Системы, сети и устройства телекоммуникаций", Усов, Павел Андреевич

5 Заключение

На основании приведенного в первой главе обзора традиционных моделей безопасности и их сравнительного анализа были выявлены их особенности и недостатки приводящие к реализации скрытых логических каналов утечки информации. В результате был сделан вывод, что нарушение безопасности модели с их помощью является целесообразным только в случае применения недискреционных политик. При этом, в самих формулировках таких политик аспекты защиты от скрытых логических каналов никак не оговариваются.

Для защиты от этой угрозы были разработаны информационные модели невмешательства и невыводимости, которые могут применяться для защиты конфиденциальной информации наряду с традиционными политиками безопасности. Однако, эти модели наряду с рассмотренными методами поиска скрытых логических каналов требуют чрезвычайно сложного анализа всей системы в целом, что сильно ограничивает возможности их практического использования, и как правило, их применение ограничивается исключительно областью научных исследований.

Перед исследованиями выполненными в рамках данной работы была поставлена цель проведения анализа использования скрытых логических каналов передачи данных в распределенных вычислительных системах и повышения эффективности борьбы с ними.

Обзор методов исследования скрытых логических каналов и средств борьбы показал, что методы защиты налагают множество ограничений на работу защищаемой информационной системы, как правило, значительно ухудшают ее функциональные возможности и характеристики. Поэтому был сделан вывод, что повышение эффективности борьбы со скрытыми логическими каналами можно достигнуть путем разработки нового метода защиты лишенного недостатков свойственных общепринятым подходам к этой проблеме.

Для решения поставленной задачи с целью поиска скрытых логических каналов и формирования теоретической базы для обоснования методов борьбы с ними была составлена обобщенная субъектно - объектная модель распределенной системы, сформулирована формальная политика безопасности и выполнена проверка ее целостности для заданного множества допустимых операций.

Исследование предложенной модели было произведено при помощи метода БЯМ, в результате чего, на основе анализа построенной матрицы разделяемых ресурсов, было выявлено множество характерных для распределенных систем скрытых логических каналов и определены конкретные причины приводящие к их реализации. Кроме этого, локализация обнаруженных проблем показала, что причины появления обнаруженных скрытых логических каналов сводятся к наличию в модели единственного разделяемого ресурса представляющего собой линию связи сети общего пользования.

Результатом проведенного исследования явилось построение модели такого скрытого логического канала включающей в себя точный алгоритм передачи по нему информации.

Для определения круга угроз был выполнен анализ моделей скрытого логического канала и распределенной системы с точки зрения информационных моделей невыводимости и невмешательства. При этом, угроза выводимости была охарактеризована как незначительная, поскольку она проявлялась лишь как частный случай. В то же время, вмешательство наблюдалось достаточно отчетливо и поэтому был сделан вывод о необходимости оценки его уровня.

Чтобы определить уровень угрозы возникающей в результате вмешательства, был проведен эксперимент в процессе которого выполнялось моделирование процессов приводящих к этой уязвимости. Он проводился при помощи специально разработанного программного обеспечения позволяющего организовать полноценный скрытый логический канал. В результате была рассчитана максимальная теоретическая пропускная способность такого канала реализованного при помощи исследуемых механизмов. На основе проведенных расчетов эта угроза была классифицирована как критическая, поскольку полученное значение скорости передачи оказалось значительно выше минимально допустимой стандартами.

В качестве средств борьбы с вмешательством была рассмотрена возможность применения стандартных средств и рекомендаций перечисленных в нормативных документах. Однако, анализ их практического использования показал, что это приводит к нарушению нормальной связности между узлами распределенной системы и невозможности выполнения ей своих функций. На этой основе был сделан вывод о необходимости разработки метода защиты лишенного таких недостатков, которые ведут к нарушению функциональности.

В качестве основы для разработки метода были взяты информационные модели невыводимости и невмешательства, а именно условие их безопасности, которое может быть достигнуто за счет удаления из информационной системы лишнего, с точки зрения этих моделей, вывода. На основе анализа обобщенной модели распределенной системы было выработано "нормальное" условие безопасности, а также способы его достижения из любого внутреннего состояния информационной системы при произвольной активности пользователей. При этом, в процессе разработки этой методики удалось добиться значительных результатов в сокращении ее негативного влияния на процесс обмена информацией между отдельными узлами распределенной системы.

На основе предложенной методики была также выполнена разработка высокоэффективного средства парирования скрытых логических каналов в телекоммуникационных сетях общего доступа. Средство парирования скрытых логических каналов имеет следующие характеристики:

Защита каналов связи легального достуа со скоростью передачи данных до 10 МБит/с;

Генерация трафика псевдослучайными последовательностями до 100 МБит/с;

Формирование "нормализующей" последовательности в реальном времени на скоростях до 10 МБит/с.

Его реализация основана на том факте, что вся обработка передаваемых данных в телекоммуникационном оборудовании является буферизированной. Оценка ввода пользователя и генерация "нормализующей" последовательности, требуемой для достижения безопасного состояния, выполняется при помощи широко используемых методов обеспечения качества обслуживания С^оБ. Кроме этого, использование в его разработке свободного программного обеспечения позволяет добиться простоты его внедрения, низкой стоимости и высоких эксплуатационных показателей по защите данных от утечки.

В итоге можно заключить, что все поставленные в диссертационной работе задачи были успешно выполнены.

Список литературы диссертационного исследования кандидат технических наук Усов, Павел Андреевич, 2011 год

1. B.W. Lampson. A Note on the Confident Problem. Communications of the ACM, 1973

2. M. Schaefer, B. Gold, R. Linde, J. Scheid. Program Confinement in KVM/370, New York, 1977

3. J.C. Huskamp. Covert Communication Channels in Timesharing Systems. University of California, 1978

4. DARPA Information Processing Techniques Office. RFC 793 Transmission Control Protocol, IETF, 1981

5. R.A. Kemmerer. Shared Resource Matrix Methodology: An Approach to Identifying Storage and Timing Channels. ACM Transactions on Computer Systems, 1983

6. National Computer Security Center, Department of Defence. Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, 1985

7. A Comment on the Basic Security Teorem of Bell and La Padula, Information Processing Letters, 1985

8. J.K. Millen. Finite-State Noisless Covert Channels. Proceedings of the Computer Security Foundations Workshop. Franconia, New Hampshire, 1989

9. C.R. Tsai, V.D. Gligor, C.S. Chandersekaran. A Formal Method for the Identification of Covert Channels in Source Code. IEEE Transactions on Software Engineering, 1990

10. V.D. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted Systems, 1993

11. Canadian Trusted Computer Product Evaluation Criteria. Canadian System Security Centre Communication Security Establishment, Government of Canada. Version 3.0e. January 1993

12. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee. RFC 2068 Hypertext Transfer Protocol HTTP/1.1, IETF, 1997

13. E. Rescorla. RFC 2631 Diffie-Hellman Key Agreement Method, IETF, 199914.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

В настоящее время все источники, освещающие вопросы информационной безопасности, содержат сведения раскрытые г-ном Сноуденом о скрытых каналах получения информации и умышленно внедряемых в различные технические средства АНБ устройствах негласного доступа к информации (получения, съема).
А что же у нас в стране с решением данной проблемы? Анализируя современную отечественную нормативную базу, можно выделить следующие документы, регламентирующие вопросы выявления и борьбы со скрытыми каналами:
ГОСТ Р 53113.1-2008 «Информационная технология. Защита информационных технологий и автоматизированных систем от угроз информационной безопасности, реализуемых с использованием скрытых каналов. Часть 1. Общие положения»;
ГОСТ Р 53113.2-2009 «Информационная технология. Защита информационных технологий и автоматизированных систем от угроз информационной безопасности, реализуемых с использованием скрытых каналов. Часть 2. Рекомендации по организации защиты информации, информационных технологий и автоматизированных систем от атак с использованием скрытых каналов».

В соответствии с ГОСТами определен термин «скрытый канал» – это непредусмотренный разработчиком системы информационных технологий и автоматизированных систем коммуникационный канал, который может быть применен для нарушения политики безопасности.
С помощью скрытых каналов могут быть реализованы следующие нарушения политики безопасности:

  • Угроза внедрения вредоносных программ и данных .
  • Угроза подачи нарушителем команд агентом для выполнения его функций .
  • Угроза утечки криптографических ключей, паролей (несанкционированный доступ к ним) или отдельных информационных объектов .

Интерпретированная модель функционирования скрытого канала представлена на рисунке (из ГОСТР 53113.2-2009):

Создание скрытого канала и осуществление воздействия нарушителя на защищаемые информационные ресурсы в соответствии с приведенной моделью осуществляется следующим порядком:

  • 1. В режиме штатного функционирования работа с защищаемыми информационными ресурсами проводится в установленном порядке, субъекты, имеющие санкционированный доступ к ним, осуществляют обработку в соответствии с установленными правилами разграничения доступа. Инспектор отображает отсутствие нарушений политики безопасности.
  • 2. В составе средства обработки защищаемых информационных ресурсов присутствуют заранее злонамеренно внедренный агент нарушителя безопасности, который не проявляет своей активности и ни каким образом не обнаруживает своего присутствия в данной ИТ (АС).
  • 3. В необходимый для нарушителя момент времени агенту от нарушителя безопасности подается команда на активацию и выполнение своей функциональной нагрузки. Команда может быть подана как по штатным каналам связи ИТ (АС), в случаи наличия возможности такого подключения (например через Интернет), так и дистанционно (например с использованием радиоканалов), при наличии такой возможности у агента нарушителя.
  • 4. Внедренный агент нарушителя безопасности реализует свою функциональную нагрузку, при этом канал информационного взаимодействия между нарушителем и внедренным агентом может быть скрыт от инспектора.
  • 5. После достижения поставленной задачи работа агента завершается самостоятельно или по команде нарушителя.

В качестве практической реализации подобного подхода, на базе материалов, опубликованных Сноуденом (http://freesnowden.is/2013/12/31/ant-product-data/), в пример можно привести программное средство IRONCHEF, функционирующее на базе аппаратных закладок типов COTTONMOUTH-I (II, III), реализованные устройствами HOWLERMONKEY и TRINITY (можно сказать, «классическое» построение скрытого канала).
Как же проводить работу по выявлению скрытых каналов?
С точки зрения «теории» процесс выявления скрытого канала включает в себя следующие действия:

1. Оценка архитектуры исследуемой системы и имеющихся в ней коммуникационных каналов (рассмотрению подлежат как существующие, так и потенциальные каналы). Оценка архитектуры системы подразумевает выявление всех имеющихся в ней каналов связи (информационного взаимодействия) и анализ взаимодействия ее компонентов на предмет потенциального использования их для организации скрытого канала. В результате проведения такого анализа должны быть выявлены компоненты системы, в которых потенциально могут быть использованы скрытые каналы.
2. Выявление возможных путей обмена скрытой информацией между нарушителем и его предполагаемым агентом в системе.Данная работа выполняется на основании общей схемы модели функционирования скрытого канала. Следует для каждого из защищаемых активов выявить, какие субъекты имеют к ним доступ и при этом изолированы от внешней среды, но имеют возможность взаимодействовать с отдельными субъектами из внешней среды (при этом необходимо учитывать, что подобного рода взаимодействие контролируется владельцем активов и может наблюдаться потенциальным нарушителем).
3. Оценка опасности выявленных скрытых каналов для защищаемых активов организации. После выявления скрытых каналов следует оценить, насколько они реализуемы и опасны для защищаемых активов организации. Для проведения оценки наиболее критичными показателями являются: объем активов, предполагаемая пропускная способность скрытого канала и временной интервал, в течение которого активы сохраняют ценность. Все параметры поддаются числовому исчислению и могут быть использованы в соответствующих аналитических отчетах. На основании этой оценки каналы, не предоставляющие реальной опасности для активов, признаются неопасными.
4. Принятие решения о целесообразности противодействия каждому из выявленных скрытых каналов (минимизации уровня риска).

В качестве защитных мероприятий предлагается использовать:

  • снижение/ограничение пропускной способности канала передачи информации (касательно скрытых каналов);
  • архитектурные решения построения системы;
  • мониторинг эффективности защиты системы.

При этом необходимо заметить, что выбор методов противодействия угрозам, реализуемым с использованием скрытых каналов определяется, исходя из индивидуальных особенностей той или иной защищаемой системы (топология построения системы, используемых протоколов информационного взаимодействия, особенностей расположения элементов системы и их взаимодействия между собой, выбираемых телекоммуникационных средств и средств защиты информации).
В завершении хотелось бы обратиться к методам выявления скрытых каналов. Согласно ГОСТ предлагается два метода:

  • статистический метод;
  • сигнатурный метод.

Статистический метод выявления скрытых каналов подразумевает сбор статистических данных о пакетах, проходящих через защищаемый участок сети, без внесения в них каких-либо изменений. При этом выявление скрытых каналов может проводиться как в режиме реального времени, так и автономно, используя данные, накопленные за предыдущие отрезки времени.
Метод выявления скрытых каналов на основе сигнатурного анализа аналогичен способу, используемому антивирусным ПО для поиска вредоносных программ. При наличии набора известных реализаций скрытых каналов, для каждой из них формируется сигнатура. В потоке данных проводится поиск таких сигнатур. По результатам этой работы делается вывод об отсутствии или наличии скрытых каналов в системе и варианте его реализации.
Таким образом, подводя итоги, можно заявить, что мы получаем новый виток информационного противостояния «нарушитель - администратор безопасности», который вносит в нашу жизнь как новые технологии и методы нападения, так и новые средства и методы защиты.
Завершить статью хотелось бы такими размышлениями:

Что если мы взглянем на материалы, раскрытые Сноуденом, вот под каким углом. В последнее время появился целый ряд автоматизированных систем, для которых обеспечение конфиденциальности вообще не является приоритетом, например автоматизированные системы управления производственным и технологическим процессом. Нарушение доступности и работоспособности такой системы может привести даже к более тяжелым последствиям для государства или, чем утечка конфиденциальной или секретной информации. Отягчающим является ещё и то, что подавляющее большинство элементной базы для таких систем производится и поставляется из-за границы, а провести полный комплекс мероприятий по поиску возможных скрытых каналов и закладных устройств, для всего перечня ввозимых элементов, невозможно технически. А как стало известно, технические средства иностранного производства могут быть полны неприятных «сюрпризов».
Нельзя обойти стороной и повсеместное развитие сети Интернет, и использование её как транспорта для связи различных корпоративных и промышленных сетей, что автоматически позволяет внешнему злоумышленнику получить управляющий доступ к внедренному закладному устройство или модулю.
Есть над чем думать и работать. Вопрос выявления скрытых каналов в автоматизированных системах организаций становится злободневным, вне зависимости от уровня организации и ее формы собственности. Тайна и является тайной, потому что ее знает ограниченный круг лиц. Плюс к этому можно добавить наличие (получение) негативных эмоций, когда кто-то злоумышленно наносит ущерб Вашей информационной инфраструктуре, в защищенности которой Вы были уверены. И испорченное настроение не самое страшное, если при этом может пострадать бизнес-процесс в организации.

До сих пор рассматриваемые нами способы маскировки трафика сводились к сокрытию сетевых соединений, но на физическом уровне весь левый трафик элементарно обнаруживался сниферами и прочими защитными средствами. Вот хакеры и напряглись, решив эту проблему путем создания секретных пассивных каналов, передающих информацию без генерации какого-либо трафика вообще. Исходные тексты движков выложены в Сеть, и все, что нам нужно, — это разобраться, как их прикрутить к нашему кейлоггеру или удаленному шеллу, чем мы сейчас и займемся.

Забросить shell-код на удаленную машину и застолбить там back-door — это только половина дела. А что делать дальше, мы подумали? Необходимо скрыть свой IP-адрес и обойти все брандмауэры, не оставляя никаких следов в логах, анализируемых как вручную, так и автоматизированными системами определения вторжения. Существует множество утилит, прячущих левые сетевые соединения от глаз администраторов, однако на физическом уровне весь «хакерский» трафик элементарно обнаруживается и пресекается практически любым брандмауэром, чего атакующему допускать ни в коем случае нельзя. В идеале необходимо пробить тоннель, открыв секретный канал связи, не создающий никаких дополнительных соединений и не
генерирующий никакого избыточного трафика, чтобы даже самый строгий разбор дампов, награбленных сетевым анализатором, не выявил ничего подозрительного.

Над решением этой проблемы бились лучшие хакерские умы. Сначала идея получила чисто теоретическое обоснование (Andrew Hintz, Craig Rowland) с чисто лабораторной реализацией, непригодной для практического использования. Затем к делу подключилась Жанна Рутковская, разработавшая специальный протокол с кодовым названием NUSHU и вполне жизнеспособные модули, ориентированные на работу в Linux Kernel 2.4. Жанна вручила нам мощное средство для управления удаленными shell’ами, от которого практически невозможно разработать адекватную защиту. Осталось только разобраться, как этим средством воспользоваться.

Скрытые пассивные каналы: основные концепции

С недавних пор в хакерском лексиконе появилось понятие «скрытых пассивных каналов » (Passive Covert Channels , или сокращенно PCC ). Они представляют собой разновидность обычных скрытых каналов (Covert Channels ), однако, в отличие от последних, не только не устанавливают своих соединений, но и вообще не генерируют никакого собственного трафика! Передача информации осуществляется исключительно путем модификации пакетов, пролетающих мимо атакованного узла.

Соль в том, что эти пакеты направляются не к хакеру, а шуруют своими путями на различные узлы интернета, например, www.google.com, за счет чего достигается высочайшая степень анонимности. Естественно, возникает резонный вопрос: как хакер сможет добраться до содержимого пакетов, идущих мимо него? Для этого необходимо подломать один из промежуточных маршрутизаторов (как правило, принадлежащих провайдеру, обслуживающему атакуемую организацию) и установить на него специальный модуль, анализирующий заголовки TCP/IP-пакетов на предмет наличия скрытой информации или ее внедрения.

Таким образом, хакер организует двухсторонний секретный пассивный канал связи с узлом-жертвой, не только засекретив факт передачи левой информации, но еще и надежно замаскировав свой IP, который может определить только администратор взломанного маршрутизатора, но никак не владелец узла-жертвы!

Рассмотрим схему взаимодействия с целевым узлом (жертвой) по скрытому пассивному каналу. Хакер (обозначенный буквой Х) каким-то совершенно не относящимся к обсуждаемой теме образом забрасывает на целевой узел (обозначенный буквой A) shell-код, захватывающий управление и устанавливающий back-door вместе со специальным модулем, обеспечивающим функционирование PCC-канала. Теперь все TCP/IP-пакеты, отправляемые жертвой во внешний мир, содержат незначительные изменения, кодирующие, например, пароли или другую конфиденциальную информацию.

Часть этих пакетов проходит через внешний маршрутизатор B, заблаговременно взломанный хакером, внедрившим в него PCC-модуль. PCC-модуль анализирует заголовки всех TCP/IP-пакетов на предмет скрытого содержимого, после чего декодирует его и отправляет хакеру по открытому каналу. Передача данных от хакера к жертве осуществляется по аналогичной схеме. PCC-модуль, установленный на маршрутизаторе, выявляет пакеты, направленные на целевой IP-адрес, и модифицирует их заголовки в соответствии с выбранным принципом кодирования информации.

Таким образом, мы получаем защищенный канал A-B и открытый B-X, однако хакеру ничего не стоит общаться с узлом B через анонимный proxy-сервер или даже выстроить цепочку из нескольких защищенных хостов. К тому же, выбор маршрутизатора B необязателен. Главное, чтобы маршрутизатор располагался между целевым узлом А и одним из узлов, с которыми общается жертва.

Во власти протокола IP

Возьмем протокол IP и попробуем создать на его основе скрытый пассивный канал. Среди множества полезных и бесполезных полей заголовка наше внимание привлекает 16-битовое поле Identification , генерируемое операционной системой случайным образом и используемое для идентификации дейтаграммы в случае ее фрагментации. Узел-получатель группирует фрагменты с одинаковыми IP-адресами источника/назначения, типом протокола и, разумеется, идентификатором.

Строгих правил, определяющих политику генерации идентификатора, в RFC нет. Одни операционные системы используют для этого таймер, другие вычисляют идентификатор на основе TCP-пакетов, чтобы при повторной передаче TCP-сегмента IP-пакет использовал тот же самый идентификатор, однако даже если идентификатор окажется иным, ничего ужасного не произойдет. Ну подумаешь, чуть-чуть упадет скорость.

Фишка в том, что PCC-модуль может беспрепятственно модифицировать поле идентификатора по своему вкусу, передавая с каждым IP-пакетом 16 бит полезных данных. Это в теории. На практике же нам потребуется выделить несколько бит для маркировки своих пакетов, иначе PCC-приемник ни за что не сможет отличить их от остальных. Пусть в 12 младших битах передаются полезные данные, а в четырех старших — их контрольная сумма. Тогда PCC-приемнику останется всего лишь взять 12 бит, рассчитать их CRC и сравнить с оставшимися четырьмя битами. Если они совпадут, значит, это наш пакет, если же нет — пускай идет себе лесом.

Также следует позаботиться о нумерации пакетов, поскольку порядок следования IP-пакетов в общем случае не совпадает с порядком их отправки. А для этого также требуются биты, в результате чего реальная информационная емкость IP-заголовка стремится к одному байту, что, в общем-то, не так уж и плохо. Для передачи небольших объемов данных (типа паролей) вполне сойдет. Главное — не забывать о том, что идентификатор должен: а) быть уникальным; б) выглядеть случайным. Поэтому необходимо прибегнуть к скремблированию, то есть к наложению на передаваемый текст некоторой псевдослучайной последовательности данных (известной как PCC-отправителю, так и PCC-получателю) через оператор XOR.

Кроме идентификатора, можно (с некоторой осторожностью) менять поля TTL (Time To Live – максимальное время жизни пакета), тип сервиса (TOS) и протокола (protocol). Однако это слишком заметно и легко обнаруживается просмотром дампов, полученных любым снифером.

Наш извозчик — протокол TCP

При установке TCP-соединения передающая сторона (узел A) устанавливает флаг SYN и выбирает произвольный 32-битный номер последовательности (Sequence Number, или сокращенно SEQ). Если принимающая сторона (узел B) согласна принять узел А в свои объятия, она отправляет ему пакет с установленным флагом ACK и номером подтверждения (Acknowledgment Number), равным SEQ+1, а также генерирует свой собственный номер последовательности, выбираемый случайными образом. Узел A, получив подтверждение, поступает аналогичным образом, что наглядно демонстрирует следующая схема:

узел A —— SYN(ISN) ————> узел B
узел A <—— SYN(ISN+1)/ACK —— узел B
узел A —— ACK —————-> узел B

ISN – это начальный номер последовательности (Initial Sequence Number ), уникальный для каждого TCP/IP-соединения. С момента установки соединения номера последовательности планомерно увеличиваются на количество принятых/отправленных байт. Впрочем, не будем углубляться в теорию. Остановимся на том факте, что 32-битное поле ISN можно изменять псевдослучайным образом, «промодулированным» секретными данными и… никто ничего не заметит! Конечно, пропускная способность упадет до четырех байт на каждое TCP-соединение, устанавливаемое узлом-жертвой, а TCP-соединений устанавливается не так уж и много (особенно если мы имеем дело не с нагруженным сервером, а с рабочей станцией). Тем не менее, для
перекачки паролей и удаленного управления через командную строку даже такой скромной пропускной способности вполне достаточно.

Жанна Рутковская , решив не ограничивать себя лабораторными опытами, разработала протокол NUSHU , создающий скрытые пассивные каналы посредством модификации ISN с последующим шифрованием последнего алгоритмом DES на основе идентификатора IP-пакета (IP.id), порта-источника (TCP.sport) и IP-адреса назначения (IP.daddr).

Сеанс практической магии

Идем на сайт Жанны Рутковской — invisiblethings.org , видим раздел с инструментами tools, находим в нем «NUSHU — passive covert channel engine for Linux 2.4 kernels » и качаем архив исходных текстов — invisiblethings.org/tools/nushu/nushu.tar.gz (всего 18 Кб). Распаковываем, компилируем. Компиляция осуществляется стандартно. Просто запускаем утилиту make и получаем три модуля ядра: nushu_receiver.o (приемник), nushu_sender.o (передатчик) и nushu_hider.o.

Механизм шифрования ISN в протоколе NUSHU

Приемник устанавливается на поломанный маршрутизатор, передатчик — на целевой узел жертвы. Для организации двухсторонней связи приемник и передатчик устанавливаются на оба узла. Модуль nushu_hider.o в организации скрытого канала не участвует и предназначен для обмана штатных анализаторов (типа tcpdump), не позволяя им обнаруживать факт изменения ISN.

Из readme следует, что модуль-передатчик обрабатывает следующие параметры командной строки:

  • dev=, где device – сетевое устройство, с которым предполагается работать (например, eth0);
  • cipher=, где 0 означает передачу без шифрования, а 1 предписывает использование DES;
  • key="string", где string — произвольная строка-маркер, идентичная строке-маркеру, установленной на модуле-приемнике (используется только в том случае, если шифрование выключено, иначе игнорируется);
  • src_ip= — IP-адрес узла, на котором установлен передатчик.

Модуль-приемник, помимо описанных выше ключей dev, cipher и key, обрабатывает аргумент exclude_ip=<172.16.*.*>, задающий список неприкосновенных IP-адресов, при отправке пакетов на которые протокол NUSHU задействован не будет, поскольку ISN останется неизменным (этот параметр является опциональным).

Модуль nushu_hider.o загружается без каких-либо параметров и только в том случае, если в этом возникает необходимость.

Хорошо, все модули успешно загружены, ядро функционирует нормально и в панику, судя по всему, впадать не собирается. Что делать дальше? А ничего! Ведь это только движок, обеспечивающий функционирование PCC-каналов . К нему можно прикрутить кейлоггер или удаленный shell, но это уже придется делать самостоятельно. А как?! Ни readme, ни сопроводительные презентации не дают ответа на этот вопрос, поэтому приходится зарываться в исходные тексты и разбирать их на отдельные байты.

Начнем с передатчика, реализованного в файле sender.c. В процедуре init_module(), отвечающей за инициализацию модуля, сразу же бросаются в глаза следующие строки:


create_proc_read_entry ("info", 0, proc_de, cc_read_proc_info, NULL);
struct proc_dir_entry * wpde = create_proc_entry ("message_to_send", 0, proc_de);

Все ясно! Модуль использует псевдофайловую систему /proc, создавая директорию nushu, а в ней — два файла: info и message_to_send, с которыми можно работать с прикладного уровня, как с обычными устройствами (если быть точнее, псевдоустройствами).Аналогичным образом обстоят дела и с приемником, реализованным в файле receiver.c, ключевой фрагмент которого приведен ниже:

Struct proc_dir_entry *proc_de = proc_mkdir ("nushu", NULL);
create_proc_read_entry ("message_received", 0, proc_de, cc_read_proc_message, NULL);
create_proc_read_entry ("info", 0, proc_de, cc_read_proc_info, NULL);

Как видно, вместо устройства message_to_send на этот раз создается message_received, из которого можно читать получаемые сообщения через стандартные функции ввода/вывода. В общем, имея на руках исходные тексты, со всеми этими причиндалами совсем несложно разобраться, тем более что их суммарный объем составляет всего 69 Кб.

Заключение

Помимо описанных, существуют и другие транспортные средства, пригодные для передачи скрытого трафика, например, опция штампа времени в TCP-заголовке. HTTP-протокол дает еще большие возможности, поскольку включает в себя множество факультативных полей, которые можно безболезненно модифицировать в весьма широких пределах. Однако все это слишком заметно, и наиболее стойким к обнаружению на сегодняшний день остается протокол NUSHU , работающий с ISN.

Может ли атакованный администратор обнаружить скрытые пассивные каналы хотя бы теоретически? Скрупулезный анализ сетевого трафика позволяет выявить некоторую ненормальность распределения ISN, но для этого требуется обработать сотни тысяч «хакнутых» пакетов, сравнивая их с оригиналами. Потому намного проще выявить посторонний ядерный модуль, отвечающий за создание и поддержку PCC-каналов, используя общие методики верификации целостности системы. Однако это уже совсем другой разговор, к которому мы еще вернемся.

Попытки скрыть сам факт передачи информации имеют длинную историю. Способы сокрытия самого факта передачи информации получили название стеганография. Исторически для стеганографии применялись «невидимые» чернила, точечные фотовставки и т.д. Данное направление получило вторую жизнь в наше время в связи с широким использованием сетей передачи данных .

Появился термин «скрытый канал» (covert channel). Впервые понятие скрытого канала было введено в работе Лэмпсона в 1973 году. Канал называется скрытым, если он не проектировался, не предполагался для передачи информации в электронной системе обработки данных. Таким образом, термин скрытые каналы больше относится к внутрикомпьютерным телекоммуникациям.

В настоящее время существует множество утилит и средств для реализации стеганографического сокрытия информации. В связи с этим остро возникает проблема обнаружения передачи скрытой информации в каналах связи и, в частности, обнаружение утечек конфиденциальных данных.

В любом наборе информации, будь то исполняемая программа, графическое изображение или сетевой протокол есть пути переноса дополнительных «скрытых» данных. Такая возможность есть и практически на всех уровнях модели OSI. Широко известны инструменты туннелирования, использующие служебные заголовки протоколов сетевого уровняTCP/UDP.

Основное поле для использования скрытых каналов это локальные сети, имеющие доступ в Интернет.

Скрытый канал носит свое название в силу того факта, что он спрятан от систем разграничения доступа даже безопасных операционных систем, так как он не использует законные механизмы передачи, такие как чтение и запись, и потому не может быть обнаружен или проконтролирован аппаратными механизмами обеспечения безопасности, которые лежат в основе защищённых операционных систем.

Традиционно скрытые каналы характеризуются как каналы по памяти или каналы по времени/

Скрытый канал по памяти - процессы взаимодействуют благодаря тому, что один может прямо или косвенно записывать информацию в некоторую область памяти, а второй считывать. Обычно имеется в виду, что у процессов с разными уровнями безопасности имеется доступ к некоторому ресурсу (например, некоторые секторы диска).

Скрытый канал по времени - один процесс посылает информацию другому, модулируя свое собственное использование системных ресурсов (например, процессорное время) таким образом, что эта операция воздействует на реальное время отклика, наблюдаемое вторым процессом.

Простейшим скрытым каналом по памяти является возможность показа на уровне Low названий директорий и файлов, созданных на уровне High. В данном случае информация может передаваться в именах файлов, которые выбираются в соответствии с заранее условленным кодом, в атрибутах файлов, в которых информация может кодироваться, размерами файлов, датами изменения файлов и т.д. И, наконец, существование файла с данным названием несет бит информации с верхнего уровня на нижний.

Другим примером канала по памяти является кодирование информации в сохраняемых настройках каких-либо ресурсов общего пользования субъектов уровней High и Low. Настройки, проведенные на уровне High, доступны наблюдению на уровне Low и, следовательно, могут нести информацию, выраженную заранее условленным кодом .

Скрытые каналы по времени впервые стали серьезно рассматриваться с 1976 г., когда один из создателей защищенной операционной системы Multics Миллен продемонстрировал своим коллегам скрытый канал по времени, реализованный на изолированных машинах High и Low. Обе машины были подсоединены к некоторым общим ресурсам ROM, других каналов или связей между ними не было. В подсистемах High и Low находились «Троянские кони». На уровне High «Троянский конь» при нажатии букв на клавиатуре модулировал специальным кодом интервалы времен занятости библиотеки ROM. Время занятости библиотеки верхним уровнем сканировалось запросами в библиотеку «Троянским конем» нижнего уровня. Получившийся скрытый канал по времени позволял в реальном времени печатать информацию, получаемую через скрытый канал с клавиатуры подсистемы уровня High.

Скрытый канал передачи информации через Интернет строится с помощью вписывания сообщения вместо последнего бита оцифрованного изображения, которое передается в качестве легального сообщения. Поскольку последний бит мало влияет на качество изображения, передача информации оказывается скрытой от субъекта, ведущего перехват и допускающего передачу только легальных изображений. Хорошо известен метод борьбы с данным методом стеганографии, заключающийся в изменении формата изображения, например, с помощью компрессии. Данный метод уничтожает скрытый канал указанного вида.

Примером скрытого канала в аналогичной задаче является скрытый канал в TCP/IP протоколе. Поле ISN в TCP-протоколе служит для организации связи клиента с удаленным сервером. Размер этого поля 32 бита. Используя это поле, например в n пакетах, можно осуществить скрытую передачу.

Один из способов организации скрытого канала - перестановка сетевых пакетов определенным образом. При этом на основе заранее оговоренных признаков передается последовательность бит.

Еще один способ организации скрытого канала - использование алгоритмов электронной цифровой подписи. С.В. Белим и А.М. Федосеев в 2007 г. провели исследование и доказали возможность создания скрытых каналов в рамках алгоритма электронной цифровой подписи ГОСТ Р 34.10-2001.

Особо следует выделить два примера каналов по времени, использующих возможности изменять длительности занятости в работе центрального процессора. В первом примере отправитель информации меняет время занятости CPU в течение каждого фрагмента времени, выделенного для его работы. Например, для передачи 0 и 1 одна длина промежутка времени кодирует 1, а другая - 0. В другом случае отправитель использует промежутки времени между обращениями к процессору.

Перехват информации, передаваемой по скрытым каналам, представляет большую сложность. Кажется, что здесь возникают только технологические сложности, связанные с регистрацией и анализом быстро протекающих процессов в компьютерных системах. Вместе с тем доказано, что возможно создание производителем закладок в аппаратных системах, которые могут общаться между собой «невидимо» для большинства средств защиты.

В случае использования методов стеганографии решение задачи выделения скрытых сообщений представляется более оптимистичным. Примером успешного выявления стеганографических вставок является использование скрытого канала в поле ISN протокола TCP, упоминавшегося выше.

Наиболее эффективным способом борьбы со скрытыми каналами является их уничтожение. Например, в приведенных выше примерах скрытых каналов спуска информации при использовании интерфейса RS-232 встраивание между уровнями High и Low устройства, транслирующего байты и рандомизирующего задержку выставления сигнала на верхнем уровне, видимую на нижнем уровне, позволяет полностью уничтожить любой детерминированный скрытый канал по времени и существенно испортить скрытый статистический канал. Аналогичные методы успешно используются для защиты от скрытых каналов при скрытой передаче информации через открытые системы.

Современные специализированные методы обнаружения стеганографического сокрытия информации основаны на обнаружении отклонения статистических характеристик наблюдаемой информации (типов файлов, сообщений) от ее ожидаемой модели. Общий недостаток статистических методов стегоанализа состоит в том, что построение точной математической модели контейнера - возможного носителя скрытой информации - является исключительно сложной и в настоящее время нерешенной задачей. Кроме того, основным ограничением существующих методов является то, что все они позволяют обнаруживать скрытую информацию постфактум.

В России о разработке научной методологии организации борьбы со скрытыми каналами в информационных сетях было заявлено в конце 2006 г. Российские ученые разработали математическую модель построения скрытых каналов, оценки их пропускной способности и методов борьбы с ними.

В 2008м году в Российской Федерации был принят ГОСТ Р 53113.1 «Информационная технология. Защита информационных технологий и автоматизированных систем от угроз информационной безопасности, реализуемых с использованием скрытых каналов. Часть 1. Общие положения.»

В 2009 году принимается ГОСТ Р 53113.2 «Защита информационных технологий и автоматизированных систем от угроз информационной безопасности, реализуемых с использованием скрытых каналов. Часть 2. Рекомендации по организации защиты информации, информационных технологий и автоматизированных систем от атак с использованием скрытых каналов.»

О каналах скрытых, потайных, побочных. И не только. (Часть 1-я)

В.А. Галатенко

О скрытых каналах

Издание Jet Info не первый раз обращается к теме скрытых каналов. В 2002 году ей был посвящен отдельный номер (см. , ), так что в данной работе предполагается, что читатель знаком с основами этой области знания; в противном случается рекомендуется перечесть статью (например, здесь - прим. ред. CITForum.ru). Тем не менее, автор с самого начала хотел бы заметить, что тематика скрытых каналов в ее традиционной трактовке представляется ему несколько надуманной, формальной. Пик исследований в области скрытых каналов приходится на середину 1980-х годов, когда была опубликована "Оранжевая книга" Министерства обороны США, в которой, начиная с класса безопасности B2, было введено требование анализа скрытых каналов. В результате бороться со скрытыми каналами стали, в основном, не ради реальной безопасности, а ради успешной сертификации. Кроме того, скрытые каналы из-за, в общем-то, случайной ассоциации с классами B2 и выше исследовались почти исключительно в контексте многоуровневой политики безопасности, с обязательным упоминанием субъектов HIGH и LOW, моделями невлияния и прочими премудростями. Все это бесконечно далеко от реальных проблем типичных современных информационных систем, да и публикуемые результаты по большей части носят очевидный характер и не представляют ни теоретического, ни, тем более, практического интереса. В статье объяснены концептуальные причины подобного положения дел.

Как было сказано ранее - первопричина существования скрытых каналов и невозможность их устранения при традиционном подходе к построению информационных систем видится нам в следующем. Поскольку такие формальные модели безопасности, как известная модель Белла-Лападула, разграничивают доступ "в принципе", но не содержат понятия времени и не регламентируют конкуренцию за ресурсы, то есть ситуации, когда "в принципе ресурс использовать можно, только в данный момент нельзя - он занят", при любом распределении прав доступа разного рода сигнальные события и, в частности, коллизии вследствие конкуренции могут быть использованы для организации скрытых каналов.

В середине 1980-х годов была предложена систематическая методология выявления скрытых каналов по памяти (см. ), ключевым элементом которой является матрица разделяемых ресурсов. В сетевой среде, в Интернет, легальных разделяемых ресурсов сколько угодно - например, выделяемое пользователям пространство на общедоступных сайтах. Можно воспользоваться и полями заголовков IP-пакетов (скажем, контрольная сумма - превосходный кандидат на эту роль), и начальными порядковыми номерами при установке TCP-взаимодействия (см. ). Можно организовать и практичные скрытые каналы по времени, например, кодируя единицу отправкой пакета в определенный интервал времени, составляющий миллисекунды (см. ).

С появлением мощных многопроцессорных систем с общей памятью полоса пропускания скрытых каналов подскочила до мегабит в секунду и продолжает увеличиваться с ростом быстродействия аппаратуры (см. ). Это, конечно, серьезная проблема, однако для ее решения достаточно отказаться от разделения подобных систем между субъектами с различным уровнем допуска.

Проблема скрытых каналов - это проявление более общей проблемы сложности современных информационных систем. В сложных системах скрытые каналы были, есть и будут, так что бороться нужно с причиной, а не со следствием. В самом общем виде метод борьбы со сложностью систем можно сформулировать как "проведение объектного подхода с физическими границами между объектами". Процессоры не должны разделяться не только между субъектами, но и между потоками управления. Пользовательская сеть должна быть физически отделена от административной. Вообще говоря, компоненты системы не должны доверять друг другу: процессор может не доверять памяти, сетевая карта - процессору и т.п. При выявлении подозрительной активности компоненты должны поднимать тревогу и применять другие защитные меры (например, дисковый контроллер может зашифровать файлы, сетевой контроллер - блокировать коммуникации и т.п.). В общем, на войне как на войне. Если организовать физические границы невозможно, следует воспользоваться виртуальными, формируемыми в первую очередь криптографическими средствами. Более подробное изложение этих вопросов можно найти в работе .

Скрытые каналы можно не только выявлять, но и ликвидировать или зашумлять "не глядя". Как пояснено в , для этого служат разного рода нормализаторы, сглаживающие нагрузку на процессор, энергопотребление, время вычисления определенных функций, сетевой трафик и т.п. Например, ядро операционной системы Asbestos в ответ на запрос о создании порта возвращает новый порт с непредсказуемым именем, поскольку возможность создания портов с заданными именами может служить скрытым каналом.

Накладные расходы на нормализацию могут быть велики, отчего функционирование легальных субъектов может существенно замедляться, так что следует искать и находить разумный компромисс между информационной безопасностью и функциональной полезностью систем. С точки зрения борьбы со сложностью скрытые каналы имеют следующее неприятное свойство. Разделяемые ресурсы, присутствующие на любом уровне информационной системы, начиная с самого нижнего, аппаратного, могут быть использованы на всех вышележащих уровнях, вплоть до прикладного, для организации утечки информации. Централизованный арбитр доступа к памяти в многопроцессорной системе, разделяемый несколькими процессорами кэш второго уровня, устройство управления памятью - все это может служить каналом утечки. Таким образом, при анализе скрытых каналов необходимо рассматривать систему в целом. Попытка проведения так называемой составной сертификации, когда система оценивается на основе ранее проведенных испытаний отдельных модулей или уровней, ведет к пропуску скрытых каналов. Проблема усугубляется тем, что в описании отдельных модулей или уровней необходимые детали могут быть опущены как несущественные. Казалось бы, какая разница, как устроена очередь инструкций, выбранных микропроцессором для исполнения? Однако и это может быть важно для безопасной работы приложения (см. ). Операционная система, успешно прошедшая сертификацию при испытаниях на "голой" аппаратуре, содержит скрытые каналы заметной пропускной способности, если выполняется под управлением монитора виртуальных машин. В общем, разделяемый ресурс - это та самая горошина, которую настоящая принцесса почувствует через любое количество перин. И об этом необходимо помнить.

Подход на основе скрытых каналов активно используется для оценки степени несовершенства реализации таких защитных сервисов, как анонимизаторы и их сети, а также пополнение трафика. Это представляется естественным, так как анонимизация и пополнение трафика - разновидности нормализации, предназначенной для ликвидации скрытых каналов. Если нормализация оказалась несовершенной, значит, скрытые каналы остались. Насколько несовершенной? Настолько, насколько велика утечка информации. Несовершенство анонимизаторов можно оценивать как пропускную способность скрытых каналов утечки информации об отправителе и/или получателе (см. ). Для отдельных анонимизаторов удается получить точное значение, для сетей анонимизаторов - оценку сверху.

Согласно текущим тенденциям, все большая часть Интернет-трафика шифруется (см. ). Шифрование защищает содержимое и заголовки пакетов, дополнение пакетов препятствует получению информации путем анализа их размеров. Однако криптография сама по себе не защищает от анализа поведения пакетов, то есть их распределения во времени, в результате чего может пострадать приватность пользователей. Кроме того, временной анализ SSH-трафика существенно упрощает несанкционированный доступ к пользовательским паролям. Пополнение трафика на канальном уровне - эффективная защитная мера против подобного анализа. Поток данных в канале приобретает заранее заданный характер. Некоторые пакеты задерживаются, а в канал, когда нужно, отправляются фиктивные данные. Это в принципе. На практике же весьма непросто реализовать пополнение так, чтобы наблюдаемый трафик в точности следовал заранее заданному распределению, так что у злоумышленника остается возможность скоррелировать пополненный полезный трафик. Несовершенство реализации пополнения можно оценить как пропускную способность скрытого канала, основанного на варьировании межпакетных интервалов. Оказывается, что в идеальных условиях этот скрытый канал допускает практическое использование. К счастью, в реальной загруженной сети с множеством потоков данных высокий уровень шума в канале затрудняет действия злоумышленника.

Применение аппарата скрытых каналов для оценки степени несовершенства архитектуры и/или реализации сервисов безопасности представляется весьма перспективным направлением исследований.

Красивое применение методов передачи данных, характерных для скрытых каналов по времени, в беспроводных сенсорных сетях удалось найти авторам работы . Одна из главных проблем сенсорных сетей - снижение энергопотребления. Если двоичные значения передаются по беспроводной сети обычным образом, то можно считать, что на это тратится энергия, пропорциональная их логарифму. Однако значения можно передавать и молчанием: послать стартовый бит, заставляющий получателя включить счетчик, выждать время, соответствующее значению, и послать стоп-бит. В результате экономится энергия, но тратится время (пропорциональное значению), однако передачу можно оптимизировать - молчание отлично мультиплексируется, каскадируется и быстро переадресуется.

Конечно, описанный метод передачи данных относится к разряду забавных диковинок. В целом, в настоящее время скрытые каналы являются почти исключительно академически-сертификационной областью. В этом контексте интересна работа , в которой исследуется проблема полноты анализа скрытых каналов. Вводится понятие полного набора скрытых каналов, элементы которого в совокупности порождают максимально возможную скрытую утечку информации (аналогом полного набора может служить базис в векторном пространстве). По мере выявления скрытых каналов их совокупность можно проверять на полноту (с помощью сформулированных в критериев) и получать в результате оценку потенциально возможной утечки информации. Еще один очень важный аспект работы - описание архитектурного подхода к построению систем, облегчающего анализ скрытых каналов. Выявлять по одному скрытые каналы в произвольной информационной системе - задача бесперспективная; целесообразно строить системы неким регулярным образом и затем подвергать их систематическому анализу с учетом их специфики.

На практике ни злоумышленники, ни производители средств информационной безопасности не уделяют скрытым каналам сколько-нибудь заметного внимания. Причина в том, что в современных информационных системах более чем достаточно "грубых" уязвимостей, допускающих несложное использование, поэтому и атакующие, и защищающиеся предпочитают пути наименьшего сопротивления, что вполне естественно. Первые эксплуатируют очевидные "дыры", вторые пытаются их прикрыть.

Потребителям тоже не до скрытых каналов - им бы от червей и вирусов врукопашную отбиться, да найти деньги на прошлогодний снег в упаковке с надписью "системы предотвращения вторжений с известными сигнатурами". И еще терпеливо выслушать поучения производителей дырявого ПО за отсутствие дисциплины управления многочисленными корректирующими заплатами для этого самого ПО.

По поводу уязвимостей есть две новости, и обе хорошие. Первая - проблем с безопасностью базового ПО становится меньше, поэтому злоумышленники более активно эксплуатируют уязвимости приложений. Новость вторая - приложений много. А ведь есть еще фишинг и другие методы морально-психологического воздействия... Поэтому время скрытых каналов, если и придет, то не очень скоро.

Чтобы осознать, сколь скромное место занимают скрытые каналы среди других проблем информационной безопасности, даже если ограничиться только дефектами программного обеспечения, целесообразно рассмотреть классификацию подобных дефектов, предложенную в статье в контексте разработки средств статического анализа исходных текстов с целью выявления ошибок, чреватых возникновением уязвимостей.

Дефекты в ПО могут быть внесены намеренно или по небрежности. Первые подразделяются на злоумышленные и незлоумышленные. Злоумышленные дефекты - это лазейки, логические и временные бомбы; незлоумышленные - скрытые каналы (по памяти или по времени) и несогласованные пути доступа.

Дефекты, внесенные непреднамеренно, делятся на:

    ошибки проверки правильности данных (ошибки адресации, в том числе переполнение буферов, некачественные проверки значений параметров, неверное размещение проверок, неадекватная идентификация/аутентификация);

    ошибки абстракции (повторное использование объектов, раскрытие внутреннего представления);

    асинхронные дефекты (проблемы параллельного выполнения, включая ситуации опережения, активные и пассивные тупики, разрывы между временами проверки и использования, а также наличие нескольких ссылок на один объект);

    ненадлежащее использование подкомпонентов (утечка ресурсов, непонимание распределения ответственности);

    ошибки функциональности (дефекты обработки исключительных ситуаций, прочие дефекты безопасности).

Чтобы понять, как дефекты безопасности могут быть внесены в программное обеспечение намеренно, но не злоумышленно, рассмотрим скрытый канал, образующийся в дисковом контроллере при оптимизации обслуживания запросов по алгоритму лифта (обращения к диску обрабатываются не в порядке поступления, а по мере того, как штанга с головками достигает запрошенных блоков, см. статью , в которой представлен систематический подход к выявлению скрытых каналов по времени). Злоумышленный отправитель информации может влиять на порядок и, следовательно, время обработки обращений, контролируя направление перемещения штанги с головками путем выдачи собственных запросов к диску в определенном порядке. Здесь в роли разделяемого ресурса, допускающего (злоумышленное) целенаправленное воздействие, выступает общая очередь запросов к дисковым блокам, а также текущая позиция и направление движения штанги. Данный дефект естественно считать внесенным преднамеренно, но не злоумышленно, поскольку скрытый канал образовался не из-за ошибки реализации, а вследствие принятого проектного решения, направленного на оптимизацию функционирования системы.

Самую большую и практически важную группу дефектов, внесенных по небрежности, составляют ошибки проверки правильности данных, точнее, недостаточный контроль входных данных перед их использованием. Разработка методов недопущения или выявления подобных ошибок - задача первостепенной практической важности. А скрытые каналы могут подождать...

О потайных каналах

Как отмечено в работе , в настоящее время происходит становление так называемой многоаспектной информационной безопасности, когда делаются попытки учесть весь спектр интересов (порой конфликтующих между собой) всех субъектов информационных отношений, а также все виды конфигураций информационных систем, в том числе децентрализованные, не имеющие единого центра управления.

Безопасность зависит от субъекта. У пользователя своя безопасность, у поставщика информационного наполнения - своя (и пользователь здесь может считаться врагом). Появляются новые аспекты безопасности, такие как управление цифровыми правами. Эта тенденция особенно наглядно проявляется в применении потайных каналов.

Напомним (см. ), что скрытыми считаются нестандартные каналы передачи информации. Нестандартные способы передачи информации по легальным каналам (именуемыми в данном контексте обертывающими) получили название потайных (subliminal channels) или стеганографических (stego channels) каналов. Общие сведения о них приведены в статье . Потайные каналы используют тогда, когда имеется легальный коммуникационный канал, но что-либо (например, политика безопасности) запрещает передавать по нему определенную информацию.

Отметим, что между скрытыми и потайными каналами имеется два важных отличия. Во-первых, вопреки названию, никто не пытается скрыть существование скрытых каналов, просто для передачи информации используют сущности, для этого изначально не предназначенные, созданные для других целей. Напротив, потайной канал существует только до тех пор, пока о нем не узнал противник. Во-вторых, считается, что время передачи информации по скрытому каналу не ограничено. В противоположность этому, время передачи по потайному каналу определяется характеристиками обертывающего канала. Например, если для тайной передачи информации применяется графический образ, то передать можно только то, что удается поместить в этот образ, не нарушая скрытности.

В целом, потайные каналы гораздо практичнее скрытых, поскольку у них есть легальная основа - обертывающий канал. Потайные (а не скрытые) каналы - наиболее подходящее средство для управления враждебной многоагентной системой. Но в них нуждаются не только злоумышленники. Потайные каналы могут эффективно применяться поставщиками информационного наполнения, встраивающими в него скрытые "цифровые водяные знаки" и желающими контролировать его распространение, соблюдение потребителями цифровых прав. Еще один пример, ставший классическим, - применение потайного канала премьер-министром Великобритании Маргарет Тэтчер, которая, чтобы выяснить кто из ее министров виновен в утечках информации, раздала им варианты одного документа с разными межсловными промежутками.

Разумеется, при весьма общих предположениях потайные каналы нельзя не только устранить, но даже обнаружить (например, в сжатом JPEG-образе всегда найдется место для скрытой информации). По отношению и к скрытым, и к потайным каналам справедливо приведенное в статье положение "Вы всегда можете послать бит".

Содержательным является вопрос о емкости и устойчивости подобных каналов, которые определяются не только полосой пропускания обертывающего канала и характеристиками шума в нем, но и максимальным размером полезной (скрываемой) нагрузки, а также функцией-детектором допустимости передаваемой информации (см., например, статью и цитированные в ней источники, среди которых мы выделим работу ).

Проблематика потайных каналов давно и плодотворно исследуется с позиций теории информации, получено много интересных теоретически и важных практически результатов. Обратим внимание на возможность и эффективность совместного использования скрытых и потайных каналов в сетевой среде. Так, в работе описана реализация сети анонимизаторов (см. ) с помощью HTTP-серверов и клиентов. Web-серфинг служит обертывающим каналом. В роли узлов сети анонимизаторов выступают HTTP-серверы, а взаимодействие между ними осуществляется по скрытым каналам в HTTP/HTML при посредничестве ничего не подозревающих клиентов (в первую очередь - с помощью средств перенаправления запросов и активного содержимого, встроенных, например, в рекламные баннеры, присутствующие на посещаемой Web-странице). В результате можно достичь не только невозможности ассоциации между отправителем и получателем сообщений, но и реализовать более сильное свойство - скрытность (даже в присутствии глобального наблюдателя). Оказывающиеся невольными посредниками Web-серферы пополняют подлежащее анализу множество анонимности, затрудняя тем самым получение наблюдателем полезной информации.

(Разумеется, и злоумышленники, и разработчики защитных средств осознают возможности и проблемы, связанные с использованием HTTP в качестве обертывающего канала. Например, в статье описана обучаемая система Web Tap, выявляющая аномалии в исходящих HTTP-транзакциях.)

Отметим также очевидную связь между интеллектом встроенных агентов (или элементов многоагентной системы) и требуемой пропускной способностью потайных или скрытых каналов для взаимодействия с ними. В заметке приведен пример высокоинтеллектуальной троянской программы, являющейся экспертной системой, встроенной в доверенную (с многоуровневой политикой безопасности) стратегическую систему управления военными поставками и перемещением войск и способной определять по поставкам и перемещениям, возможно ли на следующей неделе начало наступательных военных действий. Если подобная программа будет каждый день передавать всего один бит информации (возможно/невозможно), это окажется весьма ценным для стратегического планирования. В то же время, согласно формальным требованиям "Оранжевой книги", скрытые каналы с полосой пропускания менее одного бита в десять секунд при аудите доверенных систем могут вообще не рассматриваться. (Редкий случай, когда "Оранжевая книга" делает послабление и, как оказывается, напрасно.)

Мораль состоит в том, что при анализе потайных и скрытых каналов вообще и их пропускной способности в частности нужно учитывать специфику информационных систем, ценность информации и семантику взаимодействия. В противном случае результаты анализа рискуют оказаться бессодержательными.

О побочных каналах

Побочные каналы можно считать частным случаем скрытых. В роли (невольных) передатчиков в подобных каналах выступают штатные компоненты информационных систем, а в роли приемников - внешние наблюдатели, применяющие соответствующее оборудование. Чаще всего с помощью побочных каналов измеряется время видимых операций (временные атаки на RSA стали общим местом), их энергопотребление и/или побочные электромагнитные излучения и наводки (ПЭМИН), но для атак могут применяться и акустические каналы, идет ли речь о цифровом замке сейфа или процессоре персонального компьютера, обрабатывающего секретный ключ (см. ).

Побочные каналы представляют собой, вероятно, наиболее наглядное проявление многоаспектности современной информационной безопасности. В роли атакующих на информационные системы (информационное наполнение, банковские карты, SIM-карты сотовых телефонов и т.п.), как правило, выступают их владельцы, располагающие значительным временем и соответствующим инструментарием. В сочетании с принципиальной невозможностью управления физическим доступом, перечисленные факторы делают атаки с использованием побочных каналов особенно опасными.

Объектами атак с использованием побочных каналов чаще всего становятся криптографические компоненты информационных систем, точнее, их секретные ключи. Например, в статье описана атака разбиением на SIM-карты сотовых телефонов (точнее, на алгоритм COMP128, применяемый для аутентификации пользователей и выработки сеансовых ключей), проводимая путем измерения энергопотребления с целью клонирования этих карт. Атаку удалось отточить до такой степени, что для определения секретного 128-битного ключа оказывается достаточно всего восьми измерений с адаптивно выбираемыми входными данными! То есть злоумышленнику достаточно получить SIM-карту буквально на минуту.

Весьма наглядно опасность атак, основанных на дифференциальном анализе энергопотребления, проиллюстрирована в статье . В 1998 году Брюс Шнейер писал, что в галактике не хватит кремния, а у Солнца - времени жизни для реализации атаки методом грубой силы на секретный ключ (112 бит) алгоритма 3DES. Минимальная длина ключа в алгоритме AES - 128 бит, но успешная атака методом дифференциального анализа энергопотребления на незащищенную микросхему, реализующую AES, может быть проведена менее чем за три минуты - от начала измерений до завершения анализа.

Кардинальное решение проблемы побочных каналов возможно при соблюдении следующего основополагающего принципа: данные об операциях, которые можно получить из побочных каналов, должны быть статистически независимы от входных и выходных данных и информации ограниченного доступа. Поскольку защищать от атак с использованием побочных каналов чаще всего приходится системы с весьма ограниченными ресурсами, корректная, полная реализация кардинального принципа - задача весьма непростая. Время операций нормализовать относительно просто, энергопотребление - сложнее, но также возможно (см., например, ), ПЭМИН - еще сложнее. На практике системы укрепляются "по мере сил" (что характерно для современной информационной безопасности вообще), а у мотивированных злоумышленников остается масса возможностей для результативных атак.

Литература

Е.Е. Тимонина -- Скрытые каналы (обзор). -- Jet Info, 2002, 11

А. Галатенко -- О скрытых каналах и не только. -- Jet Info, 2002, 11

R.A. Kemmerer -- A Practical Approach to Identifying Storage and Timing Channels: Twenty Years Later. - Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC"02). -- IEEE, 2002

E. Tumoian , M. Anikeev -- Network Based Detection of Passive Covert Channels in TCP/IP. - Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN"05). -- IEEE, 2005

S. Cabuk , C.E. Brodley , C. Shields -- IP Covert Timing Channels: Design and Detection. - Proceedings of the CCS"04. -- ACM, 2004

P.A. Karger , H. Karth -- Increased Information Flow Needs for High-Assurance Composite Evaluations. - Proceedings of the Second IEEE International Information Assurance Workshop (IWIA"04). -- IEEE, 2004

В.Б. Бетелин, С.Г. Бобков, В.А. Галатенко, А.Н. Годунов, А.И. Грюнталь, А.Г. Кушниренко, П.Н. Осипенко -- Анализ тенденций развития аппаратно-программного обеспечения и их влияния на информационную безопасность. - Сб. статей под ред. академика РАН В.Б. Бетелина. -- М.: НИИСИ РАН, 2004

P. Efstathopoulos , M. Krohn , S. VanDeBogart , C. Frey , D. Ziegler , E. Kohler , D. Mazieres , F. Kaashoek , R. Morris -- Labels and Event Processes in the Asbestos Operating System. - Proceedings of the SOOP"05. -- ACM, 2005

Y. Zhu , R. Bettati -- Anonymity v.s. Information Leakage in Anonymity Systems. - Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS"05). -- IEEE, 2005

B. Graham , Y. Zhu , X. Fu , R. Bettati -- Using Covert Channels to Evaluate the Effectiveness of Flow Confidentiality Measures. - Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS"05). -- IEEE, 2005

Y. Zhu , R. Sivakumar -- Challenges: Communication through Silence in Wireless Sensor Networks. - Proceedings of the MobiCom"05. -- ACM, 2005

R. Browne -- An Entropy Conservation Law for Testing the Completeness of Covert Channel Analysis. - Proceedings of the CCS"94. -- ACM, 1994

S. Weber , P.A. Karger , A. Paradkar -- A Software Flaw Taxonomy: Aiming Tools At Security. - Proceedings of the Conference on Software Engineering for Secure Systems - Building Trustworthy Applications (SESS"05). -- ACM, 2005

J.C. Wray -- An Analysis of Covert Timing Channels. -- IEEE, 1991

В.Б. Бетелин, В.А. Галатенко, М.Т. Кобзарь, А.А. Сидак, И.А. Трифаленков -- Обзор профилей защиты, построенных на основе "Общих критериев". Специфические требования к сервисам безопасности. -- "Безопасность информационных технологий", 2003, 3

K. Loepere -- Resolving Covert Channels withing a B2 Class Secure System. -- Honeywell Information Systems.

J.J. Harmsen , W.A. Pearlman -- Capacity of Steganographic Channels. - Proceedings of the MM-SEC"05. -- ACM, 2005

I.S. Moskowitz , L. Chang , R. Newman -- Capacity is the Wrong Paradigm. - Proceedings of the 2002 Workshop on New Security Paradigms. -- ACM, 2002

M. Bauer -- New Covert Channels in HTTP. Adding Unwitting Web Browsers to Anonymity Sets. - Proceedings of the WPES"03. -- ACM, 2003

K. Borders , A. Prakash -- Web Tap: Detecting Covert Web Traffic. - Proceedings of the CCS"04. -- ACM, 2004

D. Slater -- A note on the Relationship Between Covert Channels and Application Verification. -- Computer Sciences Corporation, 2005

K. Tiri , I. Verbauwhede -- Simulation Models for Side-Channel Information Leaks. - Proceedings of the DAC 2005. -- ACM, 2005

J.R. Rao , P. Rohatgi , H Scerzer , S. Tinguely -- Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards. - Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P"02). -- IEEE, 2002

R. Muresan , C. Gebotys -- Current Flattening in Software nad Hardware for Security Applications. - Proceedings of the CODES+ISSS"04. -- ACM, 2004

V. Roth , U. Pinsdorf , J. Peters -- A Distributed Content-Based Search Engine Based on Mobile Code. - Proceedings of the 2005 ACM Symposium on Applied Computing (SAC"05). -- ACM, 2005

M. Carvalho , T. Cowin , N. Suri , M. Breedy , K. Ford -- Using Mobile Agents as Roaming Security Guards to Test and Improve Security of Hosts and Networks. - Proceedings of the 2004 ACM Symposium on Applied Computing (SAC"04). -- ACM, 2004

T. Pedireddy , J.M. Vidal -- A Prototype MultiAgent Network Security System. - Proceedings of the AAMAS"03. -- ACM, 2003

R. Menezes -- Self-Organization and Computer Security. - Proceedings of the 2005 ACM Symposium on Applied Computing (SAC"05). -- ACM, 2005

J. Page , A. Zaslavsky , M. Indrawan -- Countering Agent Security Vulnerabilities using an Extended SENSE Schema. - Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT"04). -- IEEE, 2004

J. Page , A. Zaslavsky , M. Indrawan -- Countering Security Vulnerabilities in Agent Execution using a Self Sxecuting Security Examination. - Proceedings of the AAMAS"04. -- ACM, 2004

J. Ameiller , S. Robles , J.A. Ortega-Ruiz -- Self-Protected Mobile Agents. - Proceedings of the AAMAS"04. -- ACM, 2004

M. Christodorescu , S. Jha -- Testing Malware Detectors. - Proceedings of the ISSTA"04. -- ACM, 2004

M. Christodorescu , S. Jha , S.A. Seshia , D. Song , R.E. Bryant -- Semantics-Aware Malware Detection. - Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P"05). -- IEEE, 2005

J.A.M. McHugh , F.P. Deek -- An Incentive System for Reducing Malware Attacks. -- Communications of the ACM, 2005, 6

J.V. Harrison -- Enhancing Network Security By Preventing User-Initiated Malware Execution. - Proceedings of the International Conference on Information Technology Coding and Computing (ITCC"05). -- IEEE, 2005

A. Bohra , I. Neamtiu , P. Gallard , F. Sultan , L. Iftode -- Remote Repair of Operating System State Using Backdoors. - Proceedings of the International Conference on Autonomic Computing (ICAC"04). -- IEEE, 2004

F. Sultan , A. Bohra , S. Smaldone , Y. Pan , P. Gallard , I. Neamtiu , L. Iftode -- Recovering Internet Service Sessions from Operating System Failures. -- IEEE Internet Computing, 2005, March/April

J.B. Grizzard , S. Krasser , H.L. Owen , G.J. Conti , E.R. Dodson -- Towards an Approach for Automatically Repairing Compromised Network Systems. - Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA"04). -- IEEE, 2004

A. Goel , K. Po , K. Farhadi , Z. Li , E. de Lara -- The Taser Intrusion Recovery System. - Proceedings of the SOSP"05. -- ACM, 2005

J. Levine , J. Grizzard , H. Owen -- A Methodology to Detect and Characterize Kernel Level Rootkit Exploits Involving Redirection of the System Call Table. - Proceedings of the Second IEEE International Information Assurance Workshop (IWIA"04). -- IEEE, 2004

C. Kruegel , W. Robesrtson , G. Vigna -- Detecting Kernel-Level Rootkits Through Binary Analysis. - Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC"04). -- IEEE, 2004

H. Xu , W. Du , S.J. Chapin -- Detecting Exploit Code Execution in Loadable Kernel Modules. - Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC"04). -- IEEE, 2004

Y.-M. Wang , D. Beck , B. Vo , R. Roussev , C. Verbowski -- Detecting Stealth Software with Strider GhostBuster. - Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN"05). -- IEEE, 2005

S. Ring , D. Esler , E. Cole -- Self-Healing Mechanisms for Kernel System Compromises. - Proceedings of the WOSS"04. -- ACM, 2004

M. Laureano , C. Maziero , E. Jamhour -- Intrusion Detection in Virtual Machine Environments. - Proceedings of the 30th EUROMICRO Conference (EUROMICRO"04). -- IEEE, 2004

M. Vrable , J. Ma , J. Chen , D. Moore , E. Vandekieft , A.C. Snoeren , G.M. Voelker , S. Savage -- Scalability, Fidelity, and Containment in the Potemkin Virtual Honeyfarm. - Proceedings of the SOSP"05. -- ACM, 2005

S. Ring , E. Cole -- Taking a Lesson from Stealthy Rootkits. -- IEEE Security & Privacy, 2004, July/August

W. Shi , H.-H.S. Lee , G. Gu , L. Falk -- An Intrusion-Tolerant and Self-Recoverable Network Service System Using A Security Enhanced Chip Multiprocessor. - Proceedings of the Second International Conference on Autonomic Computing (ICAC"05) -- IEEE, 2005