Топология компьютерных сетей. Типы топологии сетей

20.08.2019

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

Обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

Выбор оптимального маршрута передачи блоков данных;

Предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1. При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС, передавая его по сетевому кабелю в виде электрических сигналов.

2. Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3. Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети. Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

· характеристики аппаратного обеспечения PC сети;

· частота, с которой передают сообщения PC;

· тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4. Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6. При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Примерами использования топологии общая шина является сеть 10Base-5 (соединение ПК толстым коаксиальным кабелем) и 10Base-2 (соединение ПК тонким коаксиальным кабелем).

Кольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

Таблица 3.1. Сравнительные характеристики базовых сетевых топологий

Топология

Преимущества

Недостатки

Экономный расход кабеля;

Недорогая и несложная в использовании среда передачи;

Простота и надежность;

Легкая расширяемость

При значительных объемах трафика уменьшается пропускная способность;

Трудная локализация проблем;

Выход из строя любого сегмента кабеля остановит работу всей сети

«Кольцо»

Все PC имеют равный доступ;

Количество пользователей не сказывается на производительности

Выход из строя одной PC выводит из строя всю сеть;

Трудно локализовать проблемы;

Изменение конфигурации сети требует остановки всей сети

«Звезда»

Легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

Централизованный контроль и управление;

Выход из строя одного PC или одного сегмента кабеля не влияет на работу всей сети

Выход из строя или отключение питания концентратора (коммутатора) выводит из строя всю сеть; большой расход кабеля

Топология компьютерных сетей

Одним из важнейших различий между разными типами сетей является их топология.

Под топологией обычно понимают взаимное расположение друг относительно друга узлов сети. К узлам сети в данном случае относятся компьютеры, концентраторы, свитчи, маршрутизаторы, точки доступа и т.п.

Топология – это конфигурация физических связей между узлами сети. Характеристики сети зависят от типа устанавливаемой топологии. В частности, выбор той или иной топологии влияет:

  • на состав необходимого сетевого оборудования;
  • на возможности сетевого оборудования;
  • на возможности расширения сети;
  • на способ управления сетью.

Различают следующие основные виды топологий: щит, кольцо, звезда, ячеистая топология и решетка. Остальные являются комбинациями основных топологий и называются смешанными или гибридными.

Шина . Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются специальные заглушки – терминаторы (terminator). Они необходимы для того,

Рис. 6.1.

чтобы погасить сигнал после прохождения по шине. К недостаткам шинной топологии следует отнести следующее:

  • данные, передаваемые по кабелю, доступны всем подключенным компьютерам;
  • в случае повреждения шины вся сеть перестает функционировать.

Кольцо – это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передаст и подразумевает следующий механизм передачи данных: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, что и у топологии "шина":

  • общедоступность данных;
  • неустойчивость к повреждениям кабельной системы.

Звезда – это единственная топология сети с явно выделенным центром, называемым сетевым концентратором или "хабом" (hub), к которому подключаются все остальные абоненты. Функциональность сети зависит от состояния этого концентратора. В топологии "звезда" прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы.

Рис. 6.2.

Рис. 6.3. Топология типа "звезда"

– это топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведет к потере соединения между двумя компьютерами.

Рис. 6.4.

Решетка – это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная решетка – это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа – слева и справа). При соединении обоих внешних узлов получается топология "кольцо". Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Сети, основанные па FDDI, используют топологию "двойное кольцо", достигая тем самым высокой надежности и производительности. Многомерная решетка, соединенная циклически в более чем одном измерении, называется "тор".

(рис. 6.5) – топология, преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети ), имеющие типовою топологию, поэтому их называют сетями со смешанной топологией.

Для подключения большого числа узлов сети применяют сетевые усилители и (или) коммутаторы. Также применяются активные концентраторы – коммутаторы, одновременно обладающие и функциями усилителя. На практике используют два вида активных концентраторов, обеспечивающих подключение 8 или 16 линий.

Рис. 6.5.

Другой тип коммутационного устройства – пассивный концентратор, который позволяет организовать разветвление сети для трех рабочих станций. Малое число присоединяемых узлов означает, что пассивный концентратор не нуждается в усилителе. Такие концентраторы применяются в тех случаях, когда расстояние до рабочей станции не превышает нескольких десятков метров.

По сравнению с шинной или кольцевой смешанная топология обладает большей надежностью. Выход из строя одного из компонентов сети в большинстве случаев не оказывает влияния на общую работоспособность сети.

Рассмотренные выше топологии локальных сетей являются основными, т. е. базовыми. Реальные вычислительные сети строят, основываясь на задачах, которые призвана решить данная локальная сеть, и па структуре ее информационных потоков. Таким образом, на практике топология вычислительных сетей представляет собой синтез традиционных типов топологий.

Основные характеристики современных компьютерных сетей

Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

К основным характеристикам производительности сети относятся:

  • время реакции – характеристика, которая определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него;
  • пропускная способность – характеристика, которая отражает объем данных, переданных сетью в единицу времени;
  • задержка передачи – интервал между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

Для оценки надежности сетей используются различные характеристики, в том числе:

  • коэффициент готовности, означающий долю времени, в течение которого система может быть использована;
  • безопасность, т.е. способность системы защитить данные от несанкционированного доступа;
  • отказоустойчивость – способность системы работать в условиях отказа некоторых ее элементов.

Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность – свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

Топология - довольно красивое, звучное слово, очень популярное в некоторых нематематических кругах, заинтересовало меня еще в 9 классе. Точного представления конечно же я не имел, тем не менее, подозревал, что все завязано на геометрии.

Слова и текст подбирались таким образом, чтобы все было «интуитивно ясно». Как следствие - полное отсутствие математической грамоты.

Что такое топология? Сразу скажу, что есть, по крайней мере, два термина «Топология» - один из них просто обозначает некоторую математическую структуру, второй - несет за собой целую науку. Наука эта заключается в изучение свойств предмета, которые не изменятся при его деформации.

Наглядный пример 1. Чашка бублик.

Мы видим, что кружка непрерывными деформациями переходит в бублик (в простонародье «двухмерный тор»). Было замечено, что топология изучает, то что остается неизменным при таких деформациях. В данном случае неизменным остается количество «дырок» в предмете - она одна. Пока оставим как есть, чуть позже разберемся наверняка)

Наглядный пример 2. Топологический человек.

Непрерывными деформациями человек (см. рисунок) может распутать пальцы - факт. Не сразу очевидно, но можно догадаться. А если же наш топологический человек предусмотрительно надел часы на одну руку, то наша задача станет невыполнимой.

Давайте внесем ясности

Итак, надеюсь парочка примеров привнесла некоторой наглядности к происходящему.
Попробуем формализовать это все по-детски.
Будем считать что мы работаем с пластилиновыми фигурками, и пластилин можем растягивать, сжимать, при этом запрещены склеивания разных точек и разрывы . Гомеоморфными называются фигуры, которые переводятся друг в друга непрерывными деформациями описанными чуть ранее.

Очень полезный случай - сфера с ручками. У сферы может быть 0 ручек - тогда это просто сфера, может быть одна - тогда это бублик (в простонародье «двухмерный тор») и т.д.
Так почему же сфера с ручками - обособляется среди других фигур? Все очень просто - любая фигура гомеоморфна сфере с некоторым количеством ручек. То есть по сути у нас больше ничего нет О_о Любой объемный предмет устроен как сфера с некоторым количеством ручек. Будь то чашка, ложка, вилка (ложка=вилка!), компьютерная мышь, человек.

Вот такая вот достаточно содержательная теорема доказана. Не нами и не сейчас. Точнее она доказана для гораздо более общей ситуации. Поясню: мы ограничивались рассмотрением фигур слепленных из пластилина и без полостей. Это влечет следующие неприятности:
1) мы никак не можем получить неориентируемую поверхность (Бутылка Клейна, Лента Мёбиуса, проективная плоскость),
2)ограничиваемся двухмерными поверхностями (н/п: сфера - двухмерная поверхность),
3)не можем получить поверхности, фигуры простирающиеся на бесконечность (можно конечно такое представить, но никакого пластилина не хватит).

Лента Мёбиуса

Бутылка Клейна

Лента Мебиуса, интересна тем, что имеет только одну поверхность; такие формы являются объектом изучения топологии. Топология (греч. – место, logos – наука) – раздел математики, который приближен к геометрии. В то время как алгебра начинается с рассматривания операций, геометрия – фигур, а математический анализ – функций; фундаментальное понятие топологии – непрерывность. Непрерывное отображение деформирует пространство, не разрывая его, при этом отдельные точки или части пространства могут склеиться (соединиться), но близкие точки остаются близкими. В отличие от геометрии, где рассматриваются преимущественно метрические характеристики, такие как длина, угол и площадь, в топологии эти характеристики считаются несущественными на фоне изучаются такие фундаментальные свойства фигуры, как связность (количество кусков, дыр и т.д.) или возможность непрерывно здеформуваты ее к сферы и обратно (это возможно для поверхности куба, но невозможно для поверхности тора).
Аксиоматика топологии построена на принципах теории множеств, но ведущую роль в исследованиях по современной топологии играют прежде алгебраические и геометрические методы. Объектами исследования топологии является топологические пространства, совместное обобщение таких структур как граф, поверхность в трехмерном пространстве и множество Кантора и отображения между ними. При этом исследуются свойства топологических пространств как в малом (локальные), так и в целом (глобальные). Среди разнообразных направлений топологии отметим приближенную к теории множеств общую топологию, которая изучает такие общие свойства абстрактных топологических пространств как компактность или связность, и алгебраическую топологию, которая пытается описать топологические пространства с помощью их алгебраических инвариантов, например чисел Бетти и фундаментальной группы. Геометрическая топология изучает топологические пространства геометрического происхождения, узлы в трехмерном евклидовом пространстве и трехмерные многообразия. К геометрической топологии принадлежит одна из крупнейших и известнейших математических проблем, гипотеза Пуанкаре, которую наконец (2003 г.) доказал российский математик Григорий Перельман.
Наряду с алгеброй и геометрией, топологические методы широко используются в функциональном анализе, теории динамических систем и современной математической физике.
Срок топология используется для обозначения как математической дисциплины, так и для определенной математической структуры, смотри топологическое пространство.
Семь мостов Кенигсберга – первая задача топологии, которая была рассмотрена Л. Эйлером. Начальные исследования по топологии принадлежат Леонарду Эйлеру. Считается, что статья Эйлера «Solutio problematis ad geometriam situs pertinentis» («Решение вопроса, связанного с геометрией положения»), напечатанная в 1736 г., содержала первые результаты по топологии. Новая точка зрения, предложенная Эйлером, заключалась в том, чтобы во время изучения определенных вопросов по геометрии отказаться от рассмотрения метрических свойств геометрических фигур, таких как длина и площадь. Так, в 1750 г. в письме Гольдбаха Эйлер сообщил о своей славной формулу

В – Р + Г = 2,

Которая связывает число вершин В, ребер Р и граней Г выпуклого многогранника.
В 1895 г. Анри Пуанкаре опубликовал цикл статей Analysis Situs, в которых заложил основы алгебраической топологии. Совершенствуя предварительные исследования связности топологических пространств, Пуанкаре ввел понятие гомотопии и гомологии и предоставил определение фундаментальной группы.
В определенном смысле, работы Пуанкаре подвели итог исследованиям Эйлера, Люилье, Гаусса, Римана, листингу, Мебиуса, Жордана, Клейна, Бетти и др. с комбинаторной и геометрической топологии. Важной особенностью почти всех этих работ, включая Пуанкаре, был их интуитивный характер. Вместе с существенным количеством примеров топологических объектов и результатов для их свойств, новой области математики хватало ли не самого главного: строгого определения объектов ее исследования, то есть, современным языком, топологических пространств.
Осознание важности топологической парадигмы в математическом анализе, связанной со строгим обоснованием границ, непрерывности и компактности в работах Больцано, Коши, Вейерштрасса, Кантора и др. привело к аксиоматического определения основных понятий топологии и развития общей топологии, а вместе с ней и топологии векторных пространств, функционального анализа. Таким образом, проблемы анализа образуют вторых, во многом, независимое от вопросов геометрии, источник для развития топологии. Следует отметить что до сих пор пути развития общего и алгебраической топологии почти не пересекаются.
Общепризнанная ныне аксиоматика топологии основывается на теории множеств, которая была образована Георгом Кантором во второй половине 19-го века. В 1872 г. Кантор предоставил определение открытых и замкнутых множеств действительных чисел. Интересно отметить, что Кантор поступил в некоторых идей теории множеств, например, множества Кантора, в пределах своих исследований по рядов Фурье. Систематизируя работы Георга Кантора, Вито Вольтерры, Чезаре Арцела, Жака Адамара и др., в 1906 году Морис Фреше обозначил понятие метрического пространства. Чуть позже было осознано, что метрическое пространство – это частный случай более общего понятия, топологического пространства. В 1914 г. Феликс Хаусдорф использовал термин «топологическое пространство» в близком к современному смысле (рассмотренные им топологические пространства сейчас называют хаусдорфовой).
Происхождение названия
Собственно термин «топология» («topologie» на немецком языке) впервые появился лишь в 1847 г. в статье Листинг Vorstudien zur Topologie. Однако к тому времени Листинг уже более 10 лет использовал этот термин в своих переписки. «Topology», английская форма срока, была предложена в 1883 в журнале Nature для того чтобы различить качественную геометрию от геометрии обычной, в которой превалируют количественные соотношения. Слово topologist – т.е. тополог, в смысле «специалист по топологии" было впервые использовано в 1905 в журнале Spectator. Благодаря влиянию упомянутых выше статей Пуанкаре, топология долгое время была известна еще под названием Analysis Situs (лат. анализ места).
Топологические пространства естественно появляются во многих разделах математики. Это делает топологию чрезвычайно универсальным инструментом для математиков Общая топология определяет и изучает такие свойства пространств и отображений между ними как связность, компактность и непрерывность. Алгебраическая топология использует объекты абстрактной алгебры, а особенно теории категорий для изучение топологических пространств и отображений между ними.
Чтобы понять, для чего нужна топология, можно привести такой пример: в некоторых геометрических задачах не так важно знать точную форму объектов, как знать как они расположены. Если рассмотреть квадрат и круг (контуры), казалось бы такие разные фигуры, можно заметить несколько общего: оба объекта являются одномерными и оба разделяют пространство на две части – внутренность и внешность.
Темой одной из самых статей (автор – Леонард Эйлер) по топологии была демонстрация того, что невозможно найти путь в Кенигсберге (ныне Калининград), который бы пролег через каждый из семи городских мостов ровно по одному разу. Этот результат не зависел ни от длины мостов, ни от расстояния между ними. Влияли только свойства связности: какие мосты связывают которые острова или берега. Эта задача Семи мостов Кенигсберга показательна при изучении математики, также она стала основополагающей в разделе математики, называется теория графов.
Похожей является теорема мохнатой шара с алгебраической топологии, в которой говорится следующее: «невозможно причесать волосы на шаре в одну сторону». Этот факт является достаточно наглядным и многие сразу находят понимание, однако ее формальную запись для многих не является очевидным: не существует ненулевого непрерывного поля касательных векторов на сфере. Как и с кенигсбергских мостами, результат не зависит от точной формы сферы; утверждение выполняется и для грушевидных форм, даже для более общих – каплевидных форм (с некоторыми условиями на гладкость поверхности), при общей условии отсутствия дыр.
Так что для того, чтобы решать подобные задачи, которые в действительности не нуждаются сведений о точной форму объектов, нужно четко знать, от каких же свойств зависит решение таких задач. Сразу возникает потребность в определении топологической эквивалентности. Невозможность пройти каждым из мостов по одному разу относится также к любому расположения мостов, эквивалентного Кенигсбергского; теорема мохнатой шара может быть применена к любому объекту топологически эквивалентного шара.
Непрерывная деформация кофейной чашки в баранку (тор). Такое преобразование называют гомотопии. Фазы преобразования чашки в баранку Интуитивно, два топологических пространства эквивалентны (гомеоморфными), если один может быть преобразован в другой без отрезков или склеек. Традиционным есть такая шутка: тополог не может отличить чашку кофе, из которой она пьет, от бублика, которую он ест, так как достаточно гибкий баранку можно легко превратить в форму чашки, создав углубления и увеличивая его, одновременно уменьшая отверстие до размеров ручки.
В качестве простого исходной задачи можно классифицировать буквы латинского алфавита в терминах топологической эквивалентности. (Будем считать, что толщина линий, из которых составлен буквы ненулевая) В большинстве шрифтов что сейчас применяются существует класс букв ровно с одной дыркой {a, b, d, e, o, p, q}, класс букв без дырок: {c, f, h, k, l, m, n, r, s, t, u, v, w, x, y, z}, и класс букв, состоящих из двух кусков: {i, j}. Буква «g» может принадлежать либо классу букв с одной дыркой, или (в некоторых шрифтах) это может быть буква с двумя дырками (если ее хвостик был заперт). Для более сложного примера можно рассмотреть случай нулевой толщины линий; можно рассмотреть различные топологии в зависимости от того, какой шрифт выбрать. Топология букв имеет свое практическое применение в трафаретной типографии: например, шрифт Braggadocio может быть вырезан из плоскости, не распавшись после этого.
Топология – одна из наиболее центрально-расположенных математических дисциплин, в смысле численности связей и степени взаимного влияния с другими разделами математики. Приведем следующие примеры.
Математическая сообщество высоко отметила вклад топологий к развитию математики. За период с 1936 по 2006 г., одна из высших наград в математике, Медаль Филдса, была присуждена 48 математикам, 9 из них за исследования именно в топологии. В работах еще нескольких из лауреатов топологические методы играли важную роль.
Трем из них премия была присуждена за решение гипотезы Пуанкаре: Григорию Перельману за доведение оригинальной гипотезы относительно трехмерной сферы и Майклу Фридману и Стивену Смейла – за решение аналогичного вопроса в четырех (Фридман) и пяти и более измерениях (Смейл). Интересно, что еще две с Филдсовской премий была присуждена за результаты о сферах: Джону Милнору за открытие 28 дифференцируемых структур на семивимирний сфере, и Жану-Пьеру Серра за разработку методов вычисления гомотопических групп сфер. Таким образом, пять из сорока восьми Филдсовской премий получили исследователи сфер!

— это способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Топология сети позволяет увидеть всю ее структуру, сетевые устройства, входящие в сеть, и их связь между собой.

Выделяют несколько видов топологий: физическую, логическую, информационную и топологию управления обменом. В этой статье мы поговорим о физической топологии сети, которая описывает реальное расположение и связи между узлами локальной сети.

Выделяют несколько основных видов физических топологий сетей:

  1. Шинная топология сети — топология, при которой все компьютеры сети подключаются к одному кабелю, который используется совместно всеми рабочими станциями. При такой топологии выход из строя одной машины не влияет на работу всей сети в целом. Недостаток же заключается в том, что при выходе из строя или обрыве шины нарушается работа всей сети.
  2. Топология сети «Звезда» — топология, при которой все рабочие станции имеют непосредственное подключение к серверу, являющемуся центром "звезды". При такой схеме подключения, запрос от любого сетевого устройства направляется прямиком к серверу, где он обрабатывается с различной скоростью, зависящей от аппаратных возможностей центральной машины. Выход из строя центральной машины приводит к остановке всей сети. Выход же из строя любой другой машины на работу сети не влияет.
  3. Кольцевая топология сети — схема, при которой все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется с входом другого. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении. Такая топология сети не требует установки дополнительного оборудования (сервера или хаба), но при выходе из строя одного компьютера останавливается и работа всей сети.
  4. Ячеистая топология сети — топология, при которой каждая рабочая станция соединяется со всеми другими рабочими станциями этой же сети. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Поэтому обрыв кабеля не приведет к потере соединения между двумя компьютерами. Эта топология сети допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.
  5. При смешанной топологии применяются сразу несколько видов соединения компьютеров между собой. Встречается она достаточно редко в особо крупных компаниях и организациях.

Для чего нужно знать виды топологий и все их минусы и плюсы? От схемы сети зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Кроме того, знание топологии сети позволяет оценивать ее слабые места, а также зависимость стабильности ее работы от отдельных составляющих, тщательнее планировать последующие подключения нового сетевого оборудования и ПК. В случае какого-то сбоя, отсутствия связи с каким-либо компьютером сети, на карте всегда можно посмотреть, где данное устройство располагается, на каком этаже, в каком офисе или помещении, на что, прежде всего, нужно обратить внимание и куда идти в первую очередь для устранения неисправности.

И тут мы подошли к одному из ключевых вопросов, интересующих всех системных администраторов, а именно: как нарисовать схему сети с минимальными затратами времени, сил и средств? Если сеть велика и состоит из десятков серверов, сотен компьютеров и еще множества других сетевых устройств (принтеров, свитчей и т.д.), даже опытному системному администратору (не говоря уже о новичке) очень сложно быстро разобраться во всех связях между сетевым оборудованием. О создании топологии сети вручную тут и речи быть не может. К счастью, современный рынок ПО предлагает специальные программы для автоматического исследования и построения схемы сети. Это позволяет системному администратору узнать, где и какое оборудование находится, не прибегая к ручному исследованию проводов.

Таким образом, даже если вы в компании новичок, и предыдущий сисадмин не горел большим желанием «сдавать» вам сеть по всем правилам, программы рисования топологии сети позволят вам быстро включиться в работу и начать ее с построения схемы вашей сети.