Управление Web-сервисами. Исследование и разработка методов построения

07.08.2019

ПРОЕКТИРОВАНИЯ НА ОСНОВЕ ТЕХНОЛОГИИ ВЕБ-СЕРВИСОВ

Специальность: 05. 13. 12 – Системы автоматизации проектирования

Санкт Петербург 2013 2

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), кафедра системы автоматизированного проектирования

Научный руководитель – доктор технических наук, профессор Дмитревич Геннадий Даниилович

Официальные оппоненты :

доктор технических наук, профессор, «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И.

Ульянова (Ленина), кафедра автоматизированные системы обработки информации и управления Кутузов Олег Иванович кандидат технических наук, Открытое Акционерное Общество "Концерн

«НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ «АВРОРА»,

начальник лаборатории Пахоменков Юрий Михайлович

Ведущая организация : Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Защита диссертации состоится «23» мая 2013 г. в 16.30 часов на заседании диссертационного совета Д212.238.02 Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» им. В.И.

Ульянова (Ленина) по адресу: 197376, г.Санкт-Петербург, ул. Профессора Попова, д. 5.

С диссертацией можно ознакомиться в библиотеке СПбГЭТУ Автореферат разослан «_» 2013 г.

Ученый секретарь Диссертационного совета Д212.238.02 Н. М. Сафьянников

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования Широкое внедрение систем автоматизированного проектирования в практику инженерных задач существенно ограничивается высокой стоимостью лицензионного программного обеспечения. Наряду с этим создание собственных САПР связано с огромными затратами ресурсов и не может быть реализовано в сжатые строки, так как на разработку современных САПР требуются сотни человеколет. Проблема усложняется также и потому, что в реальных ситуациях эксплуатации многофункциональные интегрированные САПР используются, как правило, крайне неэффективно, поскольку при решении конкретных задач из основного состава этих систем часто применяется не более 10-20% программного обеспечения, наиболее специфичного для каждого подразделения.

Решением этой актуальной проблемы может быть децентрализация архитектуры САПР путем перехода к распределенным системам проектирования, построенным на основе Интернет-технологий, реализующих задачи коммуникации и информационного обмена между приложениями.

Такие независимо управляемые приложения являются автономными и могут взаимодействовать друг с другом в процессе выполнения общей задачи.

Протоколы Интернет-технологий представляют надежную базу для связывания подсистем и не требуют согласованного использования ресурсов, находящихся в разных узлах сети, что существенно упрощает процесс построения и эксплуатации распределенной САПР. Основным требованием для возможности реализации такой распределенной системы является согласованность интерфейсов, посредством которых связаны отдельные подсистемы. При выполнении этого требования отдельные компоненты распределенной САПР могут создаваться различными разработчиками и поддерживаться на различных сайтах, откуда они будут поставляться (возможно, на коммерческой основе) потребителям.

Самым эффективным методом объединения подсистем в распределенное приложение следует считать организацию удаленного вызова процедур на базе сервис-ориентированной архитектуры с использованием веб-сервисов. Интеграция на базе веб-сервисов при разработке децентрализованных САПР позволяет перейти к описанию интерфейсов и взаимодействий на базе XML, обеспечивая возможность модификации и развития построенного программного обеспечения в условиях сохранения выбранного интерфейса. Это позволяет вследствие слабосвязанности отдельных подсистем обеспечивать взаимодействие между сервисами на произвольной платформе и проводить адаптацию существующих приложений к меняющимся условиям проектирования.

Основная нагрузка по выполнению вычислительных операций при такой архитектуре ложится на веб-сервисы, решающие все задачи моделирования проектируемых систем, на клиентские приложения возлагаются только простейшие функции подготовки данных и отображения результатов моделирования. При разработке САПР с использованием вебсервисов могут быть применены следующие типы клиентских приложений:

приложение консольного типа, приложение оконного типа и вебприложение.

Особенностью консольных приложений является отсутствие графического интерфейса, однако их использование может оказаться полезным при реализации простейших САПР для карманных компьютеров с небольшой площадью экрана.

Приложения оконного типа дают возможность в наилучшей степени реализовать графические средства и наилучшим образом подходят для разработки распределенных систем на базе веб-сервисов. Для любого вебсервиса предоставляется возможность построения нескольких клиентских приложений с различными способами реализации диалогового взаимодействия.

Веб-приложения обеспечивает возможность целиком разместить все используемое программное обеспечение САПР в сети. Достоинством приложения этой структуры является открытый доступ к использованию распределенной САПР через броузер любого типа, недостатком приложения такого типа является увеличение времени, которое требуется для описания компонентов проектируемой системы из-за ожидания реакции на отдельных шагах ввода данных.

Для клиентского приложения любого вида вызов веб-сервисов осуществляется одинаковым способом, и для каждого веб-сервиса возможно использование любых способов реализации клиентских приложений, написанных на различных языках. Если необходимо, такие клиентские приложения можно легко модифицировать согласно с изменяющимися условиями проектирования, возможно также расширение веб-сервиса за счет включения в него дополнительных методов.

Цель работы и основные задачи исследования Настоящая диссертация посвящена исследованию и разработке методов построения платформенно-независимых распределенных САПР с использованием веб-сервисов. Для конкретной реализации выбрана задача разработки распределенной системы автоматизации схемотехнического проектирования.

Для достижения поставленной цели следует решить следующие задачи:

1. Разработать общую методику построения, автономного тестирования и развертывания на выбранном сервере веб-сервисов Java.

программного обеспечения веб-сервисов Java для распределенной системы автоматизации схемотехнического проектирования.

3. Исследовать и разработать методику построения веб-сервисов Java с использованием технологии сжатия данных.

4. Провести исследование и разработку общей методики построения шаблонов клиентских приложений консольного и оконного типов, а также клиентских веб-приложений.

5. Разработать методику реализации функционирования вебсервисов и клиентских приложений в гетерогенных средах.

Методы исследования При выполнении поставленных задач в диссертации использованы основы общей теории САПР, тория систем моделирования, основы теории матриц и графов.

Достоверность научных результатов Подтверждается основными положениями общей теории САПР, теории моделирования, корректностью применяемого математического аппарата, и результатами, полученными при тестировании созданного программного обеспечения веб-сервисов и клиентских приложений.

Новые научные результаты распределенной САПР с использованием веб-сервисов.

2. Разработана общая методика реализации, автономного тестирования, а также развертывания на сервере распределенной САПР вебсервисов Java.

3. Исследованы и разработаны методы построения программного обеспечения веб-сервисов Java для решения типовых задач проектирования электронных схем.

5. Разработана общая методика построения консольных и оконных клиентских приложений, а также клиентских веб-приложений.

6. Разработана методика реализации программного обеспечения распределенной САПР для организации взаимодействия в гетерогенных средах веб-сервисов и клиентских приложений.

Основные положения , выносимые на защиту 1. Архитектура распределенной сервис-ориенировнной САПР на основе веб-сервисов.

2. Общая методика восходящего проектирования веб-сервисов Java 3. Методика реализации программного обеспечения веб-сервисов Java на основе сжатия данных.

Практическая ценность 1. Предложенная структура распределенной САПР обеспечивает возможность организовать взаимодействие между различными вебсервисами на выбранной платформе и адаптировать приложения к изменяющимся условиям проектирования.

2. Построенная библиотека вспомогательных функций на основе сжатия данных повышает эффективность создания программного обеспечения веб-сервисов Java для систем автоматизации схемотехнического проектирования 3. Разработанная методика реализации клиент-серверного взаимодействия обеспечивает работу распределенных САПР в средах гетерогенного типа.

4. Программное обеспечение разработанной распределенной системы автоматизации схемотехнического проектирования содержит инвариантное ядро для организации как символьного, так и численного этапов работы Java-программ, которое можно использовать в качестве базы при построении систем проектирования широкого перечня объектов.

Реализация и внедрение результатов Разработанная в диссертации распределенная САПР с использованием веб-сервисов была реализована на языке Java c использованием платформы WTP (Web Tools Platform). Практическим результатом является платформенно-независимая распределенная схемотехническая САПР, которая осуществляет многовариантное моделирование нелинейных схем в стационарном режиме, в динамическом режиме, для расчета частотных характеристик, а также обеспечивает расчет чувствительности передаточных функций и чувствительности переменных стационарного режима к вариации параметров.

Результаты диссертационной работы использовались в госбюджетных НИР по теме «Разработка моделей и методов анализа и синтеза интеллектуальных систем поддержки принятия решений для управления сложными распределенными объектами» (шифр САПР-47 тем. плана СПбГЭТУ 2011 г.) и по теме «Математико-логические основы построения сред виртуальных инструментов» (шифр САПР-49 тем. плана СПбГЭТУ 2012 г.) Результаты диссертации внедрены в инженерную практику научнопроизводственной фирмы «Модем» и используются в учебном процессе кафедры САПР СПБГЭТУ для изучения методики построения программного обеспечения систем автоматизации схемотехнического проектирования при подготовке бакалавров и магистров по направлению «Информатика и вычислительная техника».

Апробация работы Основные положения диссертации докладывались и обсуждались на следующих конференциях:

1. 9-ая конференция молодых ученых «Навигация и управление движением».– СПб.;

2. 5-ая международная конференция «Приборостроение в экологии и безопасности человека».– СПб., ГУАП;

3. XIII, XIV, XVII -ая международные конференции « Современное образование: содержание, технологии, качество». – СПб., 4. 60, 61, 63-ая научно-технические конференции профессорскопреподавательского состава ГЭТУ.

Публикации Основное теоретическое и практическое содержание диссертации опубликовано в 16 научных работах, в числе которых 4 статьи в ведущих рецензируемых изданиях, рекомендованных в действующем перечне ВАК, 1 свидетельство об официальной регистрации программы для ЭВМ, зарегистрированной в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам.

Структура и объем диссертации Диссертация содержит введение, четыре главы основного содержания, заключение и список литературы, содержащий 69 источников. Работа изложена на 154 страницах текста, и содержит 21 рисунок и одну таблицу.

Во введении дается обоснование актуальности темы диссертации, сформулированы цели исследования и приведен перечень решаемых в работе задач.

В первой главе рассматриваются вопросы построения архитектуры распределенных приложений, определяющей общую структуру, выполняемые функции и взаимосвязь отдельных компонентов системы.

Показывается, что архитектура распределенного приложения охватывает как его структурные и поведенческие аспекты, так и правила интеграции и использования, функциональность, гибкость, надежность, производительность, возможность повторного применения, технологические ограничения, вопросы пользовательского интерфейса. Основной задачей интеграции автономных приложений (подсистем) в распределенное приложение является обеспечение функциональных связей, обеспечивающих требуемые взаимодействия при минимальной зависимости между подсистемами.

В диссертационной работе показано, что такой механизм наиболее эффективно обеспечивается при использовании архитектуры, основанной на взаимодействии между подсистемами с помощью удаленного вызова процедур, используемого для взаимообмена данными и для выполнения определенных действий. В случае, если приложение нуждается в получении или изменении какой-либо информации, поддерживаемой другим приложением, оно обращается к нему через вызов некоторой функции.

Для построения распределенных САПР в диссертации предлагается использовать сервис-ориентированную архитектуру (SOA) на основе модульной структуры программного обеспечения и стандартизированных интерфейсов. SOA использует унификацию основных операционных процессов, принципы неоднократного применения функциональных элементов, организацию на базе платформы интеграции. Хотя архитектура SOA не связана с какой-то определённой технологией удаленного вызова процедур, программные подсистемы, разработанные согласно с SOA, обычно реализуются как совокупность веб-сервисов, связанных при помощи основных протоколов (SOAP, WSDL).

Системы на основе сервис-ориентированной архитектуры относятся к классу мультиагентных систем (МАС), которые образованы несколькими взаимодействующими интеллектуальными агентами, обеспечивающими автономность, ограниченность представления и децентрализацию отдельных подсистем распределенной информационно-вычислительной системы.

Веб-сервисы основаны на XML-стандарте и предоставляют возможность пользователям обеспечить взаимодействие с внешними системными средствами через сеть Интернет, являясь слабосвязанными компонентами системы программного обеспечения, которые доступны для использования через Интернет-протоколы. В диссертационной работе показано, что при практической реализации распределенных САПР с использованием веб-сервисов существенное внимание следует уделять правильному разделению функциональных обязанностей, возлагаемых на основное клиентское приложение и на веб-сервис, взаимодействующий с этим приложением.

Конкретная методика реализации веб-сервисов существенно зависит от выбранного языка программирования. В работе показано, что предпочтение при выборе языка программирования для построения веб-сервисов следует отдать языку Java, который наиболее полно обеспечивает платформенную независимость реализованных решений. Немаловажным обстоятельством в пользу такого выбора является также наличие мощной инструментальной поддержки разработки веб-ориентированных приложений на Java, которая обеспечивается средой WTP (Web Tools Platform).

В диссертационной работе проведен сравнительный анализ двух основных методов построения веб-сервисов Java – восходящего (Bottom-Up), когда сначала создается Java-класс веб-сервиса, а затем на его основе генерируется WSDL-документ, и нисходящего (Top-Down), когда сначала создается требуемый документ WSDL, а затем на его базе формируется код реализации веб-сервиса. На основании сравнительной оценки показано, что проектирование веб-сервисов следует выполнять восходящим методом, поскольку при этом WSDL-документ формируется на основании созданного заранее Java-класса, в котором описаны все передаваемые методу вебсервиса параметры и возвращаемые этим методом значения. При этом вся имеющаяся в Java-классе информация автоматически преобразуется в соответствующий WSDL-документ, содержание которого точно соответствует базовой структуре спецификации WSDL и основным характеристикам вызываемого метода веб-сервиса, что обеспечивает полную достоверность содержащейся в WSDL-документе информации.

Для возможности практической реализации проектирования вебсервисов восходящим методом в диссертации предлагается методика построения динамического веб-проекта и содержащегося в нем Java-класса реализации веб-сервиса с описанием вызываемых методов, среди которых, помимо основных рабочих методов, обязательно должен содержаться вспомогательный метод без аргументов, который возвращает строковую переменную, где содержатся все сведения об основных методах, обеспечивающих функционирование веб-сервиса и описание форматов передаваемых параметров, а также возвращаемых данных, что обеспечивает самодокументируемость веб-сервиса и возможность создания и постоянного совершенствования клиентских приложений независимо от разработчика веб-сервиса.

В диссертации приводится методика организации вызова информационного метода веб-сервиса непосредственно из интегрированной среды разработки Java-приложений, в которой по URL-адресу веб-сервиса можно получить доступ к Soap-ответу информационного метода, и к содержанию его возвращаемого значения.

Во второй главе рассматриваются методы построения веб-сервисов распределенной САПР, при помощи которой осуществляется расчет нелинейных схем в стационарном режиме, расчет схемных функций линейных и линеаризованных схем для частотной области, выполняется расчет нелинейных схем в динамических режимах. Помимо этого, в число включаемых в распределенную систему подсистем входит веб-сервис для расчета чувствительности схемных функций в частотной области, и вебсервис для расчета чувствительности переменных стационарного режима нелинейных схем к вариации параметров. В качестве компонентов проектируемых на базе разработанных веб-сервисов схем можно использовать двухполюсники типа R, C, L, линейные частотно-зависимые управляемые источники, нелинейные управляемые источники, трансформаторы, биполярные и униполярные транзисторы, операционные усилители, а также задающие источники тока и напряжения.

Основой для таких методов является общая структура математического описания систем схемотехнического проектирования. В диссертации дается сравнительная оценка возможных способов выбора координатного базиса для формирования описания линеаризованных схем, при этом предпочтение отдается расширенному базису узловых потенциалов. Отмечается, что наряду с несомненными достоинствами, существенным ограничением этого базиса является невозможность математического описания компонентов схемы уравнениями в неявной форме, что часто затрудняет, а иногда делает невозможным, его практическое применение. Для реализации возможности описания компонентов схемы уравнениями в неявной форме в работе приводится модифицированная версия расширенного базиса узловых напряжений, которая принимается за основу при построении программного обеспечения веб-сервисов.

При рассмотрении вопросов, связанных с построением веб-сервисов для задач расчета частотных свойств электронных схем, отмечается, что задачи этого типа можно разделить на две группы. В первую группу входят задачи расчета линейных схем, параметры компонентов которых имеют фиксированные значения, не зависящие в процессе решения задачи от значений координат рабочих точек компонентов. Вторая группа связана с расчетом частотных характеристик линеаризованных схем, параметры которых зависят от координат рабочих точек компонентов и эти координаты, а также значения соответствующих им линеаризованных параметров, должны быть предварительно рассчитаны.

Для решения первой группы задач расчета частотных свойств электронных схем при выполнении диссертационной работы построен вебсервис ModService_Java. Для возможности работы с комплексными числами при его построении создан пользовательский класс Complex, поскольку на момент выполнения настоящей работы такой класс не входит в состав стандартных средств API Java. Класс Complex содержит конструкторы и вспомогательные функции для обработки комплексных данных и все необходимые функции для выполнения арифметических и логических операций с комплексными числами, поскольку в языке Java отсутствует оператор переопределения этих операций. Веб-сервис получает в качестве аргументов описание компонентов схемы и директивы расчета и возвращает массив с описанием результатов расчета частотных характеристик.

Для расчета стационарного режима нелинейных систем в диссертации предлагается общая методика построения программного обеспечения соответствующих веб-сервисов, реализованная при создании веб-сервиса StaticService_Java. Веб-сервис также получает в качестве аргументов описание компонентов схемы и директивы расчета и возвращает массив с описанием результатов расчета базисных переменных и координат стационарного режима для всех нелинейных компонентов (диоды, биполярные транзисторы, униполярные транзисторы, операционные усилители, нелинейные управляемые источники). Нулевой элемент возвращаемого массива резервируется для передачи на клиентскую сторону информации в случае отсутствия сходимости вычислительного процесса, что требует изменения директив расчета и повторного обращения к методу вебсервиса.

В диссертации рассмотрены возможные подходы к разработке методики построения веб-сервисов для расчета частотных характеристик линеаризованных схем, параметры которых зависят от координат рабочих точек компонентов. В результате проведенной сравнительной оценки выбран путь построения веб-сервиса на основе интегрированной системы, включающей в себя программное обеспечение для линеаризации нелинейных компонентов в вычисленных рабочих точках и для последующего расчета частотных свойств линеаризованной схемы. В работе приводится общая методика решения такой задачи, реализация которой осуществлена в вебсервисе StFrqService_Java. Веб-сервис получает в виде аргументов описание частотно-зависимых и нелинейных компонентов схемы, а также директивы расчета, и в результате его работы возвращается массив с описанием результатов расчета частотных характеристик. Аналогичным образом, как и при расчете стационарного режима, нулевой элемент возвращаемого массива используется для передачи на клиентскую сторону информации в случае отсутствия сходимости процесса.

При разработке методики построения веб-сервиса для расчета динамических режимов нелинейных систем используется математическое описание схемы в модифицированном расширенном базисе узловых потенциалов, что позволяет получить в наиболее общей форме систему уравнений алгебро-дифференциального типа. Исключение производных из компонентных уравнений выполняется на основе формул коррекции, которые вытекают из многошаговых неявных методов высших порядков, при этом принят в качестве основного метод Гира второго порядка с возможностью увеличения его порядка. В качестве компонентов, из уравнений которых исключаются производные, выступают двухполюсники типа С и L, диоды, трансформаторы, биполярные и униполярные транзисторы, операционные усилители, а также частотно-зависимые управляемые источники. Для вычисления значений автономных источников, сохраняющих значения соответствующих переменных на предшествующих шагах, построены вспомогательные функции дискретизации dis_cmp для всех перечисленных компонентов cmp с частотно-зависимыми свойствами.

Разработанная методика реализована при построении веб-сервиса Dyn2Service_Java, который возвращает на клиентскую сторону массив с описанием результатов расчета динамических характеристик.

В третьей главе рассмотрены вопросы построения веб-сервисов с использованием методов сжатия данных. Актуальность этих вопросов определяется тем, что структура реальных систем характеризуется слабой связью компонентов между собой, результатом чего является их математическое описание в виде матриц разреженного типа, в которых только незначительная часть элементов имеет содержательную информацию.

Это обстоятельство ставит задачу изменения общепринятых подходов к формированию и решению уравнений в целях экономии памяти и повышения быстродействия, что имеет решающее значение для функционирования вебориентированных систем.

В диссертационной работе проведен анализ эффективности возможных методов преобразования данных в компактные массивы, на основании которого сделан вывод о целесообразности выбора метода, основанного на использовании сжатия по Шерману и требующего для реализации двухэтапной процедуры выполнения символьной и численной обработки данных. Существенным достоинством принятой двухэтапной процедуры является разделение ее на две независимые части символьного и численного этапа. Поскольку практически все реальные задачи проектирования схем связаны с многовариантным расчетом схемы неизменной структуры, то символьный этап выполняется для каждой структуры единственный раз, тогда как численный этап реализуется десятки, сотни, а иногда и тысячи раз.

Однако, двухэтапная процедура характеризуются довольно сложной логикой построения программного кода и при переходе к описанию на основе сжатия данных требуется существенное изменение созданного ранее полного описания задачи.

В диссертации рассмотрена блок-схема реализации двухэтапной обработки данных при построении Java-приложений, согласно с которой на этапе символьного анализа формируется индексная матрица целого типа, для которой проводится символьный этап LU-факторизации, где выполняется упорядочивание строк (столбцов) с целью минимизации числа вновь появляющихся элементов с ненулевыми значениями. На заключительном шаге символьного этапа осуществляется построение координатных матриц, в которых содержится информация о структуре индексной матрицы, в результате чего эту матрицу можно удалить.

На численном этапе согласно с известным форматом описания осуществляется формирование компактных матриц и выполняется их виртуальная численная LU-факторизация на основе построенного в работе алгоритма. После завершения численного этапа LU-факторизации выполняется расчет всех переменных системы и их перекодировка согласно проведенным на этапе символьной обработки перестановкам строк (столбцов). Такая задача согласно с общей методикой LU-факторизации обычно решается при помощи обратного и прямого хода по строкам исходной матрицы, но, поскольку полная матрица при использовании сжатия данных отсутствует, то, как прямой, так и обратный ход, выполняются при помощи специальных алгоритмов, реализующих эти задачи с использованием сжатия данных.

В диссертации показано, что возможны два различных подхода к разработке программного обеспечения веб-сервисов, основанных на сжатии данных. Первый связан с переработкой существующего программного обеспечения, основанного на полном математическом описании в виде исходных матриц с разреженной структурой, с целью построения модифицированного метода, использующего компактные массивы. Наличие прототипа значительно упрощает процесс создания метода, основанного на сжатии данных, однако для наиболее эффективного использования имеющегося материала необходимо иметь в распоряжении методику разработки модифицированных версий веб-сервисов. Такая методика построена в диссертации и на ее основе модифицированы все рассмотренные выше веб-сервисы. Результатом является структура веб-сервисов, содержащая два основных рабочих метода, один из которых основан на полном описании моделируемой схемы, а второй использует технологию компактной обработки данных.

Второй подход используется в случаях отсутствия прототипа для разработки метода на основе сжатия данных. При этом как символьный, так и численный этап реализуются в условиях отсутствия полного описания моделируемой схемы в форме разреженной матрицы, что существенно усложняет процесс программирования. В диссертации второй подход применен для построения веб-сервисов, реализующих расчет чувствительности схемных передач и переменных стационарного режима схем к вариации параметров их компонентов.

Для расчета чувствительности частотных характеристик схемных функций построен веб-сервис VaryService, который содержит метод, базирующийся на дифференцировании уравнений, и метод, в основе которого лежат присоединенные схемы.

Основанный на дифференцировании уравнений метод веб-сервиса VaryService позволяет рассчитать значения абсолютной и относительной векторной чувствительности схемных функций для частотной области к выбранному вариируемому параметру для всей совокупности базисных переменных. В качестве вариируемых параметров могут выступать значения сопротивления, емкости, или индуктивности произвольного двухполюсника схемы типа R, C или L, и параметры передач управляемых частотнозависимых источников типа ИТУН, ИНУН, ИТУТ или ИНУТ.

Метод веб-сервиса VaryService, использующий присоединенные схемы, позволяет рассчитать значения как абсолютной, так и относительной скалярной чувствительности схемных функций для частотной области по отношению ко всем возможным вариируемым параметрам для выбранного значения анализируемой переменной. Предлагаемая в работе блок-схема программного обеспечения позволяет воспользоваться результатами формирования компактных массивов основной схемы для расчета присоединенной схемы. В качестве вариируемых параметров в методе, основанном на присоединенной схеме, могут выступать те же параметры, что и для метода, основанного на дифференцировании уравнений.

Для расчета чувствительности переменных, задающих стационарный режим нелинейных схем, к вариации их параметров, разработан веб-сервис StVaryService, который так же содержит два метода, один из которых основан на дифференцировании уравнений, а второй – на присоединенной схеме. В качестве вариируемого параметра в обоих методах могут выступать значения сопротивлений резисторов и параметры передачи управляемых источников типа ИТУН, ИНУН, ИТУТ или ИНУТ.

Алгоритм расчета абсолютной чувствительности базисных переменных стационарного режима методом дифференцирования уравнений предусматривает дифференцирование нелинейного уравнения схемы по базисным переменным и вариируемым параметрам, что позволяет получить уравнение чувствительности, решение которого определяет искомую векторную чувствительность переменных стационарного режима.

Практическая реализация метода основана на дифференцировании уравнений вариируемых компонентов с использованием результатов расчета базисных переменных стационарного режима нелинейной схемы.

Алгоритм метода, выполняющего расчет скалярной чувствительности переменных стационарного режима при помощи присоединенной схемы, предусматривает расчет базисных переменных стационарного режима основной схемы и расчет базисных переменных линеаризованной присоединенной схемы, который выполняется на основе сформированных ранее компактных массивов для основной схемы. Результатом работы второго метода является массив значений абсолютной и относительной чувствительности выбранной переменной схемы для всех вариируемых параметров компонентов.

В четвертой главе рассматриваются методы построения пользовательских клиентских приложений, обеспечивающих взаимодействие с веб-сервисами, которые после окончания их построения в инструментальной среде разработки Java-приложений должны быть развернуты на сервере распределенной САПР. Для развертывания вебсервиса необходимо знать его основные характеристики, в числе которых имя сервиса, имя класса, имена методов, тип WSDL-документа.

Соответствующая информация о разработанных и описанных выше вебсервисах для распределенной системы схемотехнического проектирования приводится в диссертации, и в информационных методах с именем getInf, которые входят во все разработанные веб-сервисы. В работе предлагается простая методика непосредственного развертывания на сервере веб-сервисов, и рассматриваются возможные способы импортирования на клиентскую сторону файла WSDL. На основании сравнительного анализа в работе показывается, что корректность выполнения операции доставки WSDLфайла из удаленного веб-сервиса в клиентское приложение наиболее эффективно может быть обеспечена путем использования инструмента Web Services Explorer, и устанавливается наиболее оптимальная последовательность импортирования WSDL-файла в начальный каркас клиентского приложения.

После доставки WSDL-файла в проект клиентского приложения дальнейшие преобразования начального каркаса проекта в законченное клиентское приложение предлагается проводить в два этапа. Первым этапом такого преобразования является создание прокси-объекта в начальном каркасе проекта, а вторым этапом – формирование классов, содержащих методы, поддерживающие функционирование прокси-объекта и взаимодействие удаленного сервиса с клиентским приложением. Реализация первого этапа сводится к дополнению проекта операторами, создающими прокси-объект, второй этап выполняется при помощи инструмента Web Services платформы WTP, наиболее эффективные способы использования которого приводятся в диссертации.

Окончательное оформление начального каркаса проекта в завершенное клиентское приложение может выполняться различным образом для разных типов этого приложения. Простейшим способом выполнения клиентских приложений является оформление их на основе консольных приложений, не имеющих графического интерфейса. В работе предложена обобщенная структурная схема реализации консольного приложения распределенной САПР для расчета электронных схем, которую можно использовать для любого веб-сервиса несмотря на многообразие возможных конкретных решений.

При выполнении диссертации для всех перечисленных выше вебсервисов распределенной САПР были реализованы клиентские консольные приложения. Их исходные файлы могут быть доставлены стандартными средствами через сеть Интернет клиенту и использованы, как для построения простейшего варианта консольного приложения для взаимодействия с сервисами распределенной САПР, так и в качестве методического пособия для разработки более совершенных оконных приложений.

Клиентские приложения оконного типа предоставляют наибольшие возможности для функционирования в распределенной САПР, поскольку дают возможность в наибольшей степени использовать графические элементы. Для данного веб-сервиса можно построить различные варианты клиентских приложений с различными способами организации диалога с пользователем и отображения результатов расчета. В работе установлен минимальный набор диалоговых средств, обеспечивающих полноценное взаимодействие с сервисом. Такой набор содержит оконное меню и совокупность диалоговых окон для ввода данных и отображения результатов расчета, а также управления директивами расчета.

В диссертации предложена методика построения клиентских вебприложений, на базе которой разработаны шаблоны JSP-страниц, выполняющие функции выбора и перехода к другим страницам, ввода некоторой совокупности переменных с переходом к начальной странице, циклического ввода некоторой совокупности переменных с переходом к следующей странице согласно значениям этих переменных, вызова требуемого веб-сервиса и вывода результатов его работы. Использование клиентских веб-приложений позволяет разместить весь программный код распределенной системы в сети, при этом, в зависимости от принятого способа размещения в сети клиентского и серверного приложений, вызов сервиса возможен либо из одной, либо из нескольких веб-страниц.

Положительным свойством этой архитектуры является возможность организации доступа к распределенной САПР через произвольный вебброузер без необходимости построения собственного клиентского приложения, недостатком такого подхода к организации распределенной САПР является неизбежное увеличение интервала времени, которое требуется для описания компонентов системы в процессе диалогового взаимодействия.

В диссертации построена методика организации процесса развертывания клиентских приложений, целью которого является обеспечение возможности запуска клиентского приложения общесистемными средствами без использования инструментальной среды разработки приложения, при этом как для клиентских приложений консольного типа, так и для клиентских приложений оконного типа, запуск должен осуществляться через командную строку, а для веб-приложений – из броузера. Информация о месторасположении веб-сервиса передается через объект прокси-класса, для которого должна быть предварительно осуществлена настройка на соответствующий URL-адрес.

В работе отмечается, что при развертывании консольного приложения должно быть предварительно осуществлено изменение кодовой страницы проекта, для чего необходимо перейти от кодовой страницы, в которой текст с кириллицей отображается во всех интегрированных инструментальных системах, работающих с Java-кодом, к кодовой странице, в которой текст с кириллицей будет нормально отображаться в окне командной строки.

В диссертации показано, что при использовании клиентских вебприложений в зависимости от выбранной структуры связи между клиентским и серверным компьютером, информация о расположении веб-сервиса может передаваться как через объект прокси-класса, так и через URL-адрес, вводимый из броузера. Соответствующие способы взаимодействия клиента с сервисом при реализации их функциональных задач для выбранной структуры связи также рассмотрены в работе.

Стандартизация SOAP предоставляет возможность соединения между собой слабосвязанных приложений независимо от платформы их реализации, что позволяет при использовании веб-сервисов обеспечить эффективное и оптимальное использование широкого ряда гетерогенных, слабосвязанных ресурсов в распределенных приложениях. В диссертации приводится общая методика построения программного обеспечения для осуществления взаимодействия объекта прокси-класса приложения среды.NET с сервисом среды Java/J2EE. На основании этой методики реализована организация взаимодействия разработанных веб-сервисов Java с клиентскими Windowsприложениями, построенными в среде.NET на основе языка C#.

Возможность функционирования распределенной САПР в гетерогенных средах существенно расширяет область ее применения.

В заключении сформулированы основные научные и практические результаты, полученные на основе проведенных в диссертации исследований.

Основные результаты работы 1. Разработана архитектура распределенной сервисориентированной САПР на основе веб-сервисов, отличающаяся децентрализованной структурой, платформенной независимостью и возможностью проведения непрерывной модернизации отдельных подсистем для адаптации их свойств к изменяющимся условиям проектирования.

2. Реализована общая методика построения восходящим методом веб-сервисов Java и соответствующих WSDL-документов, а также доставки их на сервер распределенной САПР после проведения автономного тестирования в среде разработки.

3. Разработана методика построения программного обеспечения веб-сервисов Java для решения типовых задач моделирования непрерывных систем при автоматизированном проектировании электронных схем.

4. Построена библиотека вспомогательных функций для реализации программного обеспечения веб-сервисов Java на основе сжатия данных.

5. Разработана общая методика построения шаблонов консольных и оконных клиентских приложений распределенной системы автоматизации схемотехнического проектирования и реализована организация функционирования распределенной САПР с клиентскими вебприложениями.

6. Разработана методика построения распределенных САПР, обеспечивающая взаимодействие веб-сервисов Java и клиентских приложений произвольного типа в гетерогенных средах.

1. Анисимов Д.А. Построение систем автоматизированного проектирования на основе Web-сервисов [Текст] / Анисимов Д.А. Гридин В.Н., Дмитревич Г.Д. // Автоматизация в промышленности – 2011. – №1 – С. 9-12.

2. Анисимов Д.А. Построение систем автоматизированного проектирования на основе Web-технологий [Текст] / Гридин В.Н., Дмитревич Г.Д., Анисимов Д.А // Информационные технологии – 2011. – №5. – С. 23-27.

3. Анисимов Д.А. Построение веб-сервисов систем автоматизации схемотехнического проектирования [Текст] / Гридин В.Н., Дмитревич Г.Д., Анисимов Д.А // Информационные технологии и вычислительные системы – 2012. – №4. – С. 79-84.

4. Анисимов Д.А. Методы построения систем автоматизации схемотехнического проектирования на основе веб-сервисов [Текст] /Анисимов Д.А // Известия СПбГЭТУ «ЛЭТИ» – 2012. – №10. – СПб.: Изд-во СПбГЭТУ «ЛЭТИ»,– С. 56-61.

5. Анисимов Д.А. Доступ к Web-ресурсам в САПР систем навигации и управления [Текст] / Ларистов Д.А., Анисимов Д.А. // Гироскопия и навигация. 2007. № 2. –С. 106.

Лекция 10. Технологии веб-сервисов

План

8.1. Основы веб-сервисов

8.2. Веб 2.0 и веб-сервисы

8.4. Взаимодействие с веб-сервисами

8.6. Компоновка веб-сервисов

8.7. Веб-сервисы в ASP.Net

8.1. Основы веб-сервисов

Веб-сервисом (Веб-службой) (см. документ W3C “Web-services architecture requirements”) называется программная система, идентифицируемая строкой URI, чьи интерфейсы и привязки определены и описаны на языке XML. Описание этой программной системы может быть найдено другими программными системами, которые могут взаимодействовать с ней согласно этому описанию посредством сообщений , основанных на XML, и передаваемых с помощью Интернет-протоколов .

Концепция веб-сервисов возникла в конце 90-х годов XX века. Однако, к настоящему моменту эта концепция успела устояться и архитектура, которую она предлагает, стала отраслевым стандартом в сфере IT.

Стандартизацией архитектуры веб-сервисов занимаются рабочие группы комитета W3C.

Стандарты веб-сервисов определяют формат сообщений, интерфейс, которому передается сообщение, правила привязки содержания сообщения к реализующему сервис приложению и обратно, а также механизмы публикации и поиска интерфейсов.

Механизм обмена сообщениями определяется в описании сервисов (Web Services Description), которое представляет собой спецификацию интерфейса сервиса и охватывает форматы сообщений, типы данных, транспортные протоколы, используемые при обмене между агентами заказчика и поставщика услуг. Кроме того, описание сервиса содержит указание на одну или несколько точек в сети (endpoint), откуда доступен поставщик.

Благодаря веб-сервисам функции любой программы в сети могут стать доступными через Интернет.

В основе веб-сервисов лежат следующие универсальные технологии:

TCP/IP – универсальный протокол, понимаемый всеми сетевыми устройствами, от мэйнфреймов до мобильных телефонов и PDA;

HTML – универсальный язык разметки, применяемый для отображения информации устройствами пользователей;

XML (Extensible Markup Language)– универсальный язык для работы с любыми типами данных.

Универсальность этих технологий – основа для понимания веб-сервисов. Они основаны только на общепринятых, открытых и формально независимых от поставщиков технологиях. Только посредством этого достигается главное преимущество веб-сервисов как концепции построения распределенных ИС – их универсальность, т. е. возможность применения для любых операционных систем, языков программирования, серверов приложений и т. д.

Таким образом, веб-сервисы решают исходную задачу – задачу интеграции приложений различной природы и построения распределенных ИС.

В этом заключается основное принципиальное отличие веб-сервисов от предшественников - технологий взаимодействия распределенных приложений, позволявших реализовать обмен данными между приложениями (Remote Procedure Calls (RPC), Distributed COM (DCOM), Remote Method Invocation (RMI) и Common Object Request Broker Architecture (CORBA)). Однако каждая из них была довольно сложна в реализации, не обладала необходимой универсальностью (т. е. все же зависела от выбора, например, одной и той же операционной системы для всех участников обмена) и, что особенно плохо, эти технологии с большим трудом стыковались между собой.

Преимущества и недостатки веб-сервисов

Преимущества


  • веб-сервисы обеспечивают взаимодействие программных систем независимо от платформы;

  • веб-сервисы основаны на открытых стандартах и протоколах. Благодаря использованию XML достигается простота разработки и отладки веб-сервисов;

  • Использование интернет-протокола HTTP обеспечивает взаимодействие программных систем через межсетевой экран.
Недостатки

Меньшая производительность и больший размер сетевого трафика по сравнению с технологиями RMI, CORBA, DCOM за счет использования текстовых XML-сообщений.

Платформы

Веб сервисы выполняются на серверах приложений. Сегодня практически все веб-серверы приложений поддерживают эту технологию:


  • Axis и Tomcat (оба являются проектами Apache).

  • Mono development platform от Novell

  • Microsoft .NET серверы от Microsoft

  • Java Web Services Development Pack (JWSDP) от Sun Microsystems (основан на Jakarta Tomcat)

  • Zope является объектно ориентированным web application server написанным на Python

  • Application Server от IBM (основан на Apache и платформе J2EE)

  • Cordys WS-AppServer

  • infoRouter Document Management software Web Services API

  • JOnAS (является частью ObjectWeb Open Source initiative)

  • Web Application Server от SAP (Web AS является ключевой частью стека SAP NetWeaver)

  • Pramati Application Server от Pramati Technologies Limited

  • OpenEdge Platform от Progress Software

  • Oracle Application Server от Oracle Corporation

  • Zend Framework - от Zend Technologies

  • Pythomnic - платформа для написания распределенных сетевых сервисов.

  • Google App Engine - платформа для высокомасштабируемых приложений, использующих инфраструктуру компании Google .
Веб-сервисы подобны DLL-библиотекам, но имеют следующие отличительные особенности:

  • выполняются на стороне сервера;

  • предоставляют набор методов, доступных внешним клиентам;

  • исполняют веб-методы и возвращают результаты клиентам;

  • веб-сервисы и их клиенты могут быть написаны на разных языках и/или разных платформах.

8.2. Веб 2.0 и веб-сервисы

Технологии веб-сервисов являются основополагающими для Веб 2.0.

Термин “Веб 2.0” был предложен в 2005 году известным американским издателем Тимом О’Рейли для обозначения совокупности прогрессивных тенденций в развитии веб-технологий.

Сегодня под этим термином понимается не столько совокупность каких-то конкретных технологий, сколько философия представления информации в веб-ориентированной среде и построение информационных отношений.

Феномен Веб 2.0 можно разделить в пределах нескольких общих тенденций в развитии веб-среды.

Веб как платформа . Эта концепция является базовой в философии веб 2.0.

Тут имеется в виду предоставление пользователям возможностей использовать программные приложения непосредственно с помощью веб-браузера. Другими словами эта концепция предполагает проведение всех необходимых вычислений с помощью лишь тех программных средств, которые интегрированы с веб-браузером.

Поскольку веб-сервисы позволяют одному веб-проекту использовать программные приложения другого, то организациям не нужно создавать множество аналогичных продуктов для выполнения одних и тех же задач. Таким образом, веб-сервисы обеспечивают возможность кооперации и координации различных учреждений в процессе создания веб-контента.

Тут уже речь идёт о другом важном принципе Веб 2.0 - “мэшап” (Mash-up – “смешивание”). Этот принцип означает, что путём интегрирования программных возможностей нескольких независимых друг от друга веб-сервисов возможно создать новый уникальный веб-проект.

8.3. Стек технологий веб-сервисов

Веб-сервисы требуют использования нескольких смежных XML-технологий, образующих стек технологий (рис. 8.1).

  1. Язык XML - фундамент, на котором строятся веб-сервисы. Он предоставляет язык определения данных и порядок их обработки. XML представляет семейство связанных спецификаций, публикуемых и поддерживаемых интернет-консорциумом (W3C) и другими организациями.

  2. SOAP (Simple Object Access Protocol), разработанный консорциумом W3C, определяет формат запросов к веб-сервисам. Сообщения между веб-сервисом и его пользователем пакуются в так называемые SOAP-конверты (SOAP envelopes, иногда их ещё называют XML-конвертами). Само сообщение может содержать либо запрос на осуществление какого-либо действия, либо ответ - результат выполнения этого действия.

  3. WSDL (Web Services Description Language) - технология, основанная на XML, определяющая интерфейсы веб-сервисов, типы данных и сообщений, а также модели взаимодействия и протоколы связывания. Перед развертыванием сервиса разработчик составляет его описание на языке WSDL, указывает адрес веб-сервиса, поддерживаемые протоколы, перечень допустимых операций, форматы запросов и ответов.

  4. Технология UDDI (Universal Description, Discovery and Integration) - реестр веб-сервисов и механизм поиска. Он используется для хранения и упорядочения информации о веб-сервисах, а также для нахождения указателей на интерфейсы веб-сервисов.


Рис. 8.1. Стек технологий веб-сервисов

Эти технологии обеспечивают реализацию базовых свойств веб-сервиса, описанных в его определении.

На их основе разрабатываются новые языки взаимодействия и сервисо-ориентированные архитектуры.

8.4 Взаимодействие с веб-сервисами

Интерфейсы веб-сервисов получают из сетевой среды стандартные XML-сообщения, преобразуют XML-данные в формат, "понимаемый" конкретной прикладной программной системой, и отправляют ответное сообщение (последнее - не обязательно). Программная реализация веб-сервисов (базовое программное обеспечение, нижний уровень) может быть создана на любом языке программирования с использованием любой операционной системы и любого промежуточного программного обеспечения (middleware).

Взаимодействие программных систем с веб-сервисами представлено на рис. 8.2.


Рис. 8.2. Взаимодействие c веб-сервисами

Различают следующие три основных архитектурных компонента сервисно-ориентированной архитектуры:


  • пользователь сервиса : приложение, программный модуль либо сервис, осуществляющий поиск и вызов необходимого сервиса из реестра сервисов по описанию сервиса, а также использующий сервис, предоставляемый провайдером сервиса, в соответствии с интерфейсом сервиса;

  • провайдер сервиса : приложение, программный модуль либо сервис, осуществляющий реализацию сервиса в виде веб-сервиса, прием и исполнение запросов пользователей сервиса, а также публикацию сервиса в реестре сервисов;

  • реестр сервисов : библиотека сервисов, предоставляющая пользователям сервиса средства поиска и вызова необходимого сервиса и принимающая запросы провайдеров сервисов на публикацию сервисов.
Каждый компонент может играть либо лишь одну роль (быть, например, только пользователем сервиса) либо одновременно сразу несколько ролей (например, быть провайдером одних сервисов и пользователем других).

В ходе взаимодействия друг с другом компоненты сервисо-ориентированной архитектуры выполняют следующие основные операции:


  • публикация : для того, чтобы сервис был доступным (вызываемым) пользователям сервиса, необходимо сделать его интерфейс известным им;

  • поиск : пользователь сервиса должен иметь возможность найти в реестре сервисов необходимый сервис, удовлетворяющий заданным критериям;

  • связывание и вызов : после получения описания сервиса, пользователь сервиса должен иметь возможность вызвать и использовать сервис в соответствии с описанием сервиса.
Рассматривая взаимодействие компонентов сервисо-ориентированной архитектуры необходимо отметить наличие (и различие) следующих двух артефактов:

  • описание сервиса : определяет формат запроса и отклика при взаимодействии пользователя сервиса и провайдера сервиса, а также требуемое качество сервиса;

  • сервис : собственно сервис, который может быть вызван и использован пользователем сервиса в соответствии с опубликованным интерфейсом сервиса.

8.5. Сервисно-ориентированная архитектура приложений

8.5.1. Основы сервисо-ориентированной архитектуры

Архитектуру, в рамках которой все функции приложения являются независимыми сервисами с четко определенными интерфейсами, которые можно вызывать в нужном порядке для формирования бизнес-процессов, называют сервисо-ориентированной (SOA).

SOA - это средство, позволяющее представить бизнес в виде набора взаимосвязанных услуг. Одним из ее преимуществ является гибкость и простота разработки новых приложений. SOA создает коммуникационную среду для модулей, реализующих прикладную бизнес-логику. Информация о модулях публикуется в такой форме, что их использование не требует знаний об использованных в них решениях и технологиях.

8.5.2. Технологии реализации сервисо-ориентированной архитектуры

Для создания сложных распределенных приложений одного стека базовых технологий (SOAP, WSDL, UDDI), недостаточно. Необходимо решать и другие вопросы, такие как обеспечение производительности, безопасности, надежная доставка сообщений, координация транзакций и другие. Поэтому этот стек технологий постоянно расширяется. На рис. 8.3 представлен расширенный стек технологий веб-сервисов, включающий как уже стандартизованные технологии, так и новые.

Рис. 8.3. Расширенный стек технологий веб-сервисов

Расширенный стек технологий веб-сервисов принципиально разбивается на следующие две составляющие:


  • технологии, обеспечивающие функциональность веб-сервисов (Functions);

  • технологии, обеспечивающие качество сервиса веб-сервисов (Quality of service).
Эти составляющие в свою очередь образуются несколькими слоями (layers):

  • технологии, обеспечивающие функциональность веб-сервисов:

  • транспортный слой (transport layer);

  • коммуникационный слой (service communication layer);

  • слой описаний сервисов (service description layer);

  • сервисный слой (service layer);

  • слой бизнес-процессов (business process layer);

  • слой реестров сервисов (service registry layer).

  • технологии, обеспечивающие качество веб-сервисов:

  • слой политик (policy layer);

  • слой безопасности (security layer);

  • слой транзакций (transaction layer);

  • слой управления (management layer).

В целях понимания назначения слоев, дадим краткое описание каждого из них.


п/п

Наименование слоя

Назначение слоя

Технологии, реализующие слой

Функциональность (Functions)

1

Транспортный слой (Transport layer)

Описывает средства обмена данными между веб-сервисами

Стандартные: HTTP, JMS (для Java-приложений), SMTP

Новые: WS-ReliableMessaging, BEEP


2

Коммуникационный слой (Service communication layer)

Описывает средства формализации механизмов использования транспортных протоколов веб-сервисами.

Стандартные: SOAP

Новые:REST


3

Слой описаний сервисов (Service description layer)

Описывает средства формализации интерфейсов веб-сервисов с целью обеспечения их функционирования независимо от программно-аппаратной платформы реализации или языка программирования.

Стандартные: XML, WSDL

Нарождающиеся: ebXML


4

Сервисный слой (Service layer)

Описывает программное обеспечение, вызываемое с помощью WSDL-описаний интерфейсов веб-сервисов. В частности, это сами веб-сервисы

5

Слой бизнес-процессов (Business process layer)

Описывает возможности организации веб-сервисов для реализации бизнес-процессов и потоков работ. При этом определяются правила, задающие последовательность взаимодействия веб-сервисов с целью удовлетворения бизнес-требованиям

Новые: BPEL4WS,

WCF, WF


6

Слой реестров сервисов (Service registry layer)

Описывает возможности организации веб-сервисов в иерархические библиотеки, позволяющие публикацию, поиск и вызов веб-сервисов по их WSDL-описаниям интерфейсов

Стандартные: UDDI

Нарождающиеся: WS-Inspection


Качество сервиса (Quality of service)

7

Слой политик (Policy layer)

Описывает правила и условия, согласно которым веб-сервисы могут быть использованы. Поскольку данные правила и условия относятся как к функциональному аспекту веб-сервисов, так и к аспекту обеспечения качества сервиса на рис. 8.3, данный слой является общим для обоих аспектов

Стандартные: в настоящее время нет

Новые: WS-Policy, WS-PolicyAssertions и WS-PolicyAttachment


8

Слой безопасности (Security layer)

Описывает возможности обеспечения безопасности веб-сервисов и безопасности их функционирования (авторизация, аутентификация и разделение доступа)

Стандартные: WS-Security

Новые: WS-SecureConversation, WS-Federation, WS-Authorization, WS-Trust и WS-Privacy


9

Слой транзакций (Transaction layer)

Описывает свойство транзакционности распределенных систем на основе веб-сервисов для обеспечения надежности их функционирования

Стандартные: в настоящее время нет
Новые: WS-Transaction и WS-Coordination

10

Слой управления (Management layer)

Описывает возможности управления веб-сервисами и характеристиками их функционирования

Новые:

Представленный выше стек технологий веб-сервисов вводит иерархию во множество технологий веб-сервисов в соответствии с их функциональным назначением. При этом в таблице указаны лишь наиболее широко применяемые и устоявшиеся технологии. Стандартными названы технологии, получившие официальный статус стандартов международных консорциумов по разработке IT-стандартов (W3C).

8.6. Компоновка веб-сервисов

Возможность компоновки (composability) веб-сервисов часто рассматривают как одно из основных преимуществ технологии, обеспечивающее их многократное повторное использование. Вообще говоря, компоновка веб-сервисов - нахождение набора атомарных сервисов, необходимых для реализации запроса пользователя, и определение порядка их выполнения.

Функциональные возможности каждого веб-сервиса определяются его входами, выходами, предварительными условиями и действиями, которые обозначают как IOPEs (inputs, outputs, preconditions, and effects). IOPE сервиса содержится в его WSDL-описании.

Веб-сервисы с точки зрения их выполнения можно разделить на атомарные, которые не делятся на подпроцессы и могут быть вызваны пользователем через Интернет непосредственно, и составные, которые имеют подпроцессы, связанные конструкциями управления. Как правило, бизнес-задачи пользователя реализуют именно составные сервисы, которые могут быть скомпонованы из уже существующих атомарных.

Концепция веб-сервисов подразумевает, что отдельные сервисы обладают определенной ограниченной функциональностью, в то время как для решения более-менее сложных задач требуется использовать функциональность нескольких сервисов. Поэтому в ходе развития архитектуры веб-сервисов возникли такие понятия, как композиция и поток или, как сейчас говорят, оркестровка и хореография. Они отражают взаимодействие сервисов и последовательность их выполнения; приложения, построенные с использованием веб-сервисов, рассматривают как основанные на потоках работ (Work Flow, WF).

Термины оркестровка и хореография описывают два аспекта разработки бизнес-процессов на основе объединения веб-сервисов. На рис. 8.5 в общем виде показана взаимосвязь этих аспектов, которые в какой-то мере дополняют друг друга.

Под оркестровкой понимают то, как сервисы взаимодействуют друг с другом на уровне сообщений, включая бизнес-логику и кооперацию при выполнении сложных процессов в пределах одного предприятия (одного бизнес-процесса).

Хореография охватывает более широкий круг участников взаимодействия, в том числе поставщиков, потребителей и партнеров предприятия. Она ассоциируется с публичным обменом сообщениями между множеством веб-сервисов, а не с одним бизнес-процессом, осуществляемым на одном предприятии.

Стандарты хореографии и оркестровки опираются на WSDL. На уровне модели бизнес-процесса предложены такие проекты стандартов, как Wf-XML (Workflow Management Coalition), WSFL (IBM Web Services Flow Language), XLANG (Microsoft"s XLANG: Business modeling language for BizTalk), PIPs (RosettaNet"s Partner Interface Process).

К настоящему моменту наибольший вес имеют BPEL4WS (Business Process Execution Language for Web Services), подготовленный IBM, Microsoft и BEA Systems, и WSCI (Web Service Choreography Interface) корпорации Sun Microsystems.

Язык BPEL4WS предназначен для реализации оркестровки сервисов.

Язык WSCI отражает концепцию хореографии сервисов.

WSCI (Web Service Choreography Interface)- это описательный язык интерфейсов на основе XML, который работает в связке с WSDL. Его цель - позволить корпорациям использовать возможности веб-сервисов для создания процессов, отражающих меняющиеся требования бизнеса. Язык позволяет компаниям представлять свои прикладные программы и ресурсы в виде веб-сервисов, чтобы другие фирмы могли оперативно находить их и применять в своих бизнес-процессах.


  • WSCI с 2002 года развивается рабочей группой консорциума W3C (организована рабочая группа Web Services Choreography Working Group);

  • для развития BPEL4WS в 2003 году в консорциуме OASIS был создан технический комитет - OASIS Web Services Business Process Execution Language TC (WS-BPEL TC).
BPEL определяет конструкции, необходимые для составления набора сервисов для бизнес-процессов, связанных с совместной деятельностью и сделками.

BPEL определяет поведение бизнес-процессов, базирующихся на dt,-сервисах.

BPEL реализует функциональность экспорта и импорта, используя исключительно интерфейсы веб-сервисов.

BPEL вписывается в архитектуру основных веб-сервисов, построенную поверх UDDI, WSDL, XML и XML Schema.

Основу BPEL составляют три ключевые свойства: асинхронность, координация потоков и управление исключительными ситуациями. Все они связаны с проблемами, с которыми сталкиваются разработчики, занимающиеся управлением интеграцией.

Asynchrony (Асинхронность) Асинхронность имеет дело с асинхронными взаимодействиями, корреляцией сообщений и надежностью. Поддержка асинхронности необходима для разрешения веб-сервисов в сценариях интеграции и является обязательной для оптимального использования рабочего времени (для лучшего распределения обработки она позволяет пользователям вмешиваться в течение бизнес-потока или задержанной пакетной обработки). За счет разделения запросов на обслуживание и соответствующих им откликов асинхронность повышает масштабируемость и помогает избежать узких мест при выполнении приложения. Кроме того, она допускает непрерываемое выполнение, когда сервисы временно недоступны и когда клиенты работают в автономном режиме или отключены.

Flow coordination. (Координация потоков) Координация потоков включает параллельный поток выполнения, образцы соединений и динамические потоки. В реальных приложениях бизнес-потоки могли бы включать образцы сложных взаимодействий, и с синхронными, и с асинхронными сервисами. Координация потока включает интерфейс с WSDL, действия потока, переменные XML и отвечает за компенсацию. BPEL использует WSDL для обращения к обмениваемым сообщениям, вызванным операциям и типам портов. Действия с потоком используют общие переменные XML, так что компенсационные обработчики (compensation handlers) должны сохранять снимки данных, которые могут быть использованы обработчиком. Компенсационные обработчики могут отменить шаги, которые были уже завершены.

BPEL includes basic and structured activities. (В BPEL включены основные и структурированные действия). Основные действия состоят из индивидуальных шагов для взаимодействия с сервисом, манипулирования обмениваемыми данными или обработки исключительных состояний, с которыми сталкиваются в течение выполнения. Структурированные действия определяют последовательность выполнения и описывают создание процесса, транслируя выполняемые ими действия в структуры; в состав этих структур включены поток данных, шаблоны управления, обработка внешних событий, обработка ошибок и координация сообщений.

Exception management. (Управление исключительными ситуациями). Управление исключительными ситуациями имеет дело с синхронными ошибками, асинхронным управлением исключительными ситуациями и компенсацией бизнес-транзакций. Для того чтобы автоматизировать бизнес-процессы, большие усилия сосредоточены на управлении исключительными ситуациями, и BPEL упрощает управление исключительными ситуациями для Web-сервисов. При возникновении исключительных ситуаций вызываются локальные обработчики ошибки, связанные с Web-сервисами, и асинхронные сервисы уведомляются об этих исключительных ситуациях.

8.7. Веб-сервисы в ASP.Net

Технология веб-сервисов в ASP.Net расширяет возможности создания веб-приложений. В настоящее время в ASP.Net поддерживается два способа разработки и вызова веб-сервисов:

Через протокол HTTP (однонаправленный синхронный вызов) - XML-веб-сервисы;

Через MCF (Microsoft Communication Fundation) – ассинхронный двунаправленный обмен сообщениями – MCF- веб-сервисы.

Создание веб-сервиса (веб-службы) в Visual Studio похоже на создание веб-страницы. Также можно использовать средство веб-разработки Microsoft Visual Web Developer для ссылок и использовать веб-службы, находящиеся в решении Visual Web Developer, на локальном компьютере, а также в локальном или внешнем каталоге UDDI.

Мы рассмотрим выполнение следующих задач:


  • создание простого XML-веб-сервиса в Visual Web Developer;

  • создание отдельного веб-сайта, использующего веб-сервис.
Реализовывать эту задачу будем в виде двух отдельных решений.

8.7.1. Создание веб-сервиса в ASP .Net. Пошаговое руководство

http://msdn.microsoft.com/ru-ru/library/8wbhsy70.aspx


  1. Откройте Visual Web Developer.

  2. В меню Файл выберите пункт Создать веб-сайт .

File – New- WebSite

Откроется диалоговое окно Новый веб-сайт


  1. В разделе выберите Веб-сервис ASP.NET .
ASP.Net Web Service

  1. Нажмите кнопку Обзор и выберите путь и имя сервиса.

  2. В списке Язык выберите С#

  3. Нажмите кнопку ОК .

Будет создан файл Service.asmx со ссылкой на код сервиса

@ WebService Language="C#" CodeBehind="~/App_Code/Service.cs" Class="Service" %>

И файл с кодом сервиса: Service.cs

using System;

using System.Linq;

using System.Web;

using System.Web.Services;

Public Service () {

// InitializeComponent();

Public string HelloWorld() {

Return "Hello World";

Атрибут определяет пространство имен для веб-сервиса

Атрибут касается способа определения WSDL

Добавление метода, доступного через веб-сервис делается написанием соответствующего кода и указания квалификатора доступа к методу как public .

Метод должен иметь атрибут

2. Компиляция и тестирование веб-сервиса

Сохраняем сервис и запускаем браузер

Следующие операции поддерживаются. Формальное определение см. в Описание службы .

По ссылке Описание службы находится описание сервиса на WSDL

По ссылке – HelloWorld описание вызова сервиса. Структура SOAP-запроса и ответа и как они будут выглядеть при использовании HTTP-методов GET и POST.

Для тестирования вызова метода нужно нажать кнопку Запуск.

Http://tempuri.org/">Hello World

Пример

Сервис, который содержит два метода.

Метод Example1() возвращает строку "Привет от ASP.Net!";

Метод Summa возвращает сумму двух целых чисел, которые передаются через параметры.

using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

public class Service: System.Web.Services.WebService

Public Service () {

//Uncomment the following line if using designed components

//InitializeComponent();

Public string Example1() {

Return "Привет от ASP.Net!";

Public int Summa(int a, int b)

В VS есть встроенный Web DeveloperServer , который должен быть запущен при вызове сервиса. Созданный веб-сервис размещается на этом сервере.

Создадим еще один веб-сервис для перевода температуры (пример из MSDN)

Предстоит создать веб-сервис, который преобразует температуру по шкале Фаренгейта в температуру по шкале Цельсия и наоборот.

Создание веб-сервиса

В обозревателе решений (Solution Explorer ) щелкните правой кнопкой мыши имя созданного веб-сервиса

(http://localhost/TemperatureWebService), а затем выберите команду Добавить новый элемент .


  1. В разделе Установленные шаблоны Visual Studio выберите (Web Service) и в поле Имя введите Convert.

  2. Убедитесь, что установлен флажок Размещать код в отдельном файле и нажмите кнопку Добавить .
Visual Web Developer создаст новый веб-сервис, состоящий из двух файлов. Файл Convert.asmx является файлом, который может быть вызван для вызова методов веб-сервиса, и он указывает на код для веб-сервиса. Сам код находится в файле класса (CONVERT.cs) в папке App_Code. Файл кода содержит шаблон для веб-сервиса. Файл кода включает некоторый код для метода веб-службы.

В данном примере будет создано два метода в одной веб-службе. Первый метод преобразует температуру по шкале Фаренгейта в температуру по шкале Цельсия, а второй метод преобразует температуру по шкале Цельсия в температуру по шкале Фаренгейта.

Чтобы создать методы преобразования, выполните следующие действия:

Добавьте следующий код в класс сразу после метода HelloWorld:

Обратите внимание, что имена функций предваряются атрибутом ( >) как часть объявления функции.

После ввода функций сохраните файл.

Полный код приведен ниже.

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

/// Summary description for Convert

// To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line.

public class Convert: System.Web.Services.WebService {

public Convert () {

//Uncomment the following line if using designed components

//InitializeComponent();

Public string HelloWorld() {

Return "Hello World";

Public double FahrenheitToCelsius(double Fahrenheit)

Return ((Fahrenheit - 32) * 5) / 9;

Public double CelsiusToFahrenheit(double Celsius)

Return ((Celsius * 9) / 5) + 32;

Теперь можно протестировать веб-службу в Visual Web Developer.

Чтобы протестировать веб-службу, выполните следующие действия:


  1. В обозревателе решений выберите Convert.asmx и нажмите сочетание клавиш CTRL+F5.
Будет вызвана веб-служба и в обозревателе появится страница, отображающая методы, предоставляемые веб-службой.

  1. Нажмите кнопку CelsiusToFahrenheit , которая вызывает этот метод.
Появится страница, которая запросит значения параметров для метода CelsiusToFahrenheit.

  1. В поле Celsius введите 100 и нажмите кнопку Вызвать .
Новое окно отображает XML-данные, возвращаемые веб-службой при вызове метода CelsiusToFahrenheit. Значение 212 отображается в XML.

  1. Закройте браузер, содержащий результаты метода.

  2. В исходном обозревателе нажмите кнопку Назад , чтобы вернуться к списку методов.

  3. Нажмите FahrenheitToCelsius и убедитесь, что метод возвращает ожидаемый результат.
Если ввести 212, метод FahrenheitToCelsius возвратит 100 .

  1. Закройте браузер.

После окончания создания веб-службы, следующим шагом является ее использование.

8.7.2. Использование веб-сервиса в приложении

Теперь, когда веб-служба создана, предстоит создать веб-узел, в котором будет использоваться созданная веб-служба. Необходимо создать отдельный веб-сайт со страницей, из которой будут запускаться только что созданные методы веб-сервиса.

Для этого нужно создать приложение-клиент (потребитель сервиса). Создадим в качестве такого клиента ASP.Net страницу.

Например, создадим страницу с двумя кнопками, при нажатии на которые будут вызываться сервисы.

Вызов веб-сервиса из приложения-клиента выполняется через класс-посредник (proxy-класс).

1. Создайте веб-сайт:


  1. В меню Файл выберите пункт Создать веб-сайт .

  2. В разделе Установленные шаблоны Visual Studio выберите Веб-узел ASP.NET .

  3. Введите имя TemperatureWeb.

  4. В списке Язык выберите C#

  5. Нажмите кнопку ОК .
Visual Web Developer создаст новый локальный веб-узел IIS и новую страницу с именем Default.aspx.

Веб-сервис является компонентом, на который можно ссылаться в приложении. Следовательно, необходимо создать ссылку на него.

Для создания ссылки на веб-сервис, выполните следующие действия:


  1. В меню Веб-сайт выберите команду Добавить веб-ссылку .
Откроется диалоговое окно Добавление веб-ссылки , как показано на следующем снимке экрана.



  1. В списке URL-адреса введите следующий URL-адрес для веб-службы и нажмите кнопку Переход :
http://localhost/TemperatureWebService/Convert.asmx

Когда Visual Web Developer находит веб-службу, сведения о веб-службе отображаются в диалоговом окне Добавление веб-ссылки .


Примечание

Если не удается добавить ссылку на веб-службу, возможно, что прокси-сервер настроен неправильно. В Microsoft Internet Explorer, в меню Сервис выберите пункт Свойства обозревателя , выберите вкладку Подключения и затем нажмите кнопку Параметры LAN . Установите флажок Не использовать прокси-сервер для локальных адресов . Кроме того, задайте в поле для адреса прокси-сервера точное имя прокси-сервера, вместо разрешения Internet Explorer самостоятельно обнаруживать прокси-сервер. Для получения дополнительных сведений обратитесь к администратору сети.

  1. Выберите одну из ссылок метода.
Откроется страница тестирования для метода.

  1. Нажмите кнопку Добавить ссылку .
Visual Web Developer создает папку App_WebReferences и добавляет в нее папку для новой веб-ссылки. По умолчанию для веб-ссылок назначаются пространства имен, соответствующее имени их сервера (в данном случае localhost). Запишите имя для пространства имен веб-ссылки. Visual Web Developer добавляет в папку WSDL-файл, который ссылается на веб-службу. Он также добавляет вспомогательные файлы, такие как файлы обнаружения (файлы с расширениями DISCO и DISCOMAP), содержащие сведения о расположении веб-службы.

Примечание.

Должен быть запущен сервер Web Developer Server/


3. Вызовите сервис из из ASP страницы

Пример 1. Вычисление суммы чисел

1. Создайте форму с двумя текстовыми полями и кнопкой Сумма.

В обработчике кнопки добавьте вызов метода.

Подключите пространство имен localhost

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using localhost;

public partial class _Default: System.Web.UI.Page

Protected void Page_Load(object sender, EventArgs e)

Protected void Button1_Click(object sender, EventArgs e)

Service myService= new Service();

Label1.Text = myService.Example1();

Protected void Button2_Click(object sender, EventArgs e)

Int a, b,summa;

A = int.Parse(txt_a.Text);

B = int.Parse(txt_b.Text);

// summa = a + b;

Service myService1 = new Service ();

Summa = myService1.Summa(a,b);

Txt_summa.Text = summa.ToString();

Пример 2. Вызов методов перевода температуры

Создайте на странице форму со следующими полями:

Чтобы вызвать методы веб-службы, выполните следующие действия:


  1. Откройте страницу Default.aspx и переключитесь в представление "Конструктор".

  2. Из группы Стандартные в панели элементов перетащите следующие элементы управления на страницу и задайте их свойства, как показано в следующей таблице:

protected void ConvertButton_Click(object sender, EventArgs e)

Localhost.Convert wsConvert = new localhost.Convert();

Double temperature =

System.Convert.ToDouble(TemperatureTextbox.Text);

FahrenheitLabel.Text = "Fahrenheit To Celsius = " +

WsConvert.FahrenheitToCelsius(temperature).ToString();

CelsiusLabel.Text = "Celsius To Fahrenheit = " +

WsConvert.CelsiusToFahrenheit(temperature).ToString();


  1. Нажмите клавиши CTRL+F5 для запуска страницы.

  2. В текстовом поле введите значение, например 100, и нажмите кнопку Преобразовать .
На странице отображается результат преобразования значения температуры по шкале Фаренгейта и Цельсия.

Отладку веб-службы можно выполнить так же, как отладку веб-страниц.

Сначала необходимо настроить веб-узел, содержащий веб-службу, для включения отладки.

Чтобы включить отладку на веб-узле веб-службы, выполните следующие действия:


Средство администрирования веб-узла создаст файл Web.config для веб-узла и установит параметры конфигурации для включения отладки.

  1. Закройте Средство администрирования веб-узла.
Теперь необходимо включить отладку для веб-узла, использующего веб-службу.

Чтобы включить отладку на веб-узле, выполните следующие действия:


Visual Web Developer откроет файл кода для страницы.

  1. Поместите указатель в следующей строке:

Обнаружение web-сервисов

Каким образом другие разработчики узнают о существовании веб-сервиса?

Во-первых, с помощью DISCO (сокращение от слова discovery) - файлового механизма поиска локальных web-сервисов, то есть механизма получения списка доступных web-сервисов из DISCO-файлов, размещенных на web-серверах. Кроме того, DISCO-файлы содержат записи о расположении WSDL-контрактов имеющихся сервисов. DISCO-файл представляет собой XML-файл с записями.

Также возможно использовать VSDISCO-файлы, которые аналогичны DISCO-файлам, но их содержимое есть результат динамического поиска web-сервисов в указанных каталогах и всех вложенных подкаталогах. ASP .NET отображает расширение имени файла.vsdisco на HTTP-обработчик, который отыскивает в данном каталоге и его подкаталогах asmx и disco и возвращает динамически генерируемый DISCO-документ. По соображениям безопасности динамический поиск в ряде версий.NET Framework отключен, но его можно включить, изменив записи файла Machine.config.

А как же осуществляется поиск web-сервисов в глобальной сети? Для поиска web-сервисов в глобальной сети Microsoft, IBM и Ariba совместно разработали UDDI (Universal Description Discovery and Integration) - спецификацию построения распределенных баз данных, которая позволяет отыскивать web-сервисы. UDDI поддерживается сотнями компаний. UDDI-сайты сами являются web-сервисами. Каждый может опубликовать свой реестр на основе UDDI. Большинство разработчиков никогда не используют UDDI API напрямую. Вместо этого к реестрам UDDI обращаются инструментальные средства разработки. Они также генерируют классы-оболочки обнаруженных и выбранных web-сервисов.

8.8. Итоги

Технология Web-сервисов - это современная технология, которая обеспечивает новый уровень распределенности. Вместо разработки или приобретения компонентов и их встраивания в ИС предлагается покупать время их работы и формировать программную систему, которая осуществляет вызовы методов из компонентов, которые принадлежат и поддерживаются независимыми провайдерами.

Веб-сервисы решают задачу интеграции приложений различной природы и построения распределенных ИС. В этом заключается основное принципиальное отличие веб-сервисов от предшественников - технологий взаимодействия распределенных приложений, так или иначе позволявших реализовать обмен данными между приложениями (среди получивших наибольшее развитие - Remote Procedure Calls (RPC), Distributed COM (DCOM), Remote Method Invocation (RMI) и Common Object Request Broker Architecture (CORBA)). Однако каждая из них была довольно сложна в реализации, не обладала необходимой универсальностью (т. е. все же зависела от выбора, например, одной и той же операционной системы для всех участников обмена) и, что особенно плохо, эти технологии с большим трудом стыковались между собой.

«ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ РАСПРЕДЕЛЕННЫХ СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ НА ОСНОВЕ ТЕХНОЛОГ...»

На правах рукописи

Анисимов Денис Андреевич

ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ

РАСПРЕДЕЛЕННЫХ СИСТЕМ АВТОМАТИЗИРОВАННОГО

ПРОЕКТИРОВАНИЯ НА ОСНОВЕ ТЕХНОЛОГИИ ВЕБ-СЕРВИСОВ

Специальность: 05. 13. 12 – Системы автоматизации проектирования

диссертации на соискание ученой степени

кандидата технических наук

Санкт Петербург 2013

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), кафедра системы автоматизированного проектирования

Научный руководитель – доктор технических наук, профессор Дмитревич Геннадий Даниилович

Официальные оппоненты :

доктор технических наук, профессор, «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И.

Ульянова (Ленина), кафедра автоматизированные системы обработки информации и управления Кутузов Олег Иванович кандидат технических наук, Открытое Акционерное Общество "Концерн

«НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ «АВРОРА»,


начальник лаборатории Пахоменков Юрий Михайлович

Ведущая организация : Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Защита диссертации состоится «23» мая 2013 г. в 16.30 часов на заседании диссертационного совета Д212.238.02 Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» им. В.И.

Ульянова (Ленина) по адресу: 197376, г.Санкт-Петербург, ул. Профессора Попова, д. 5.

С диссертацией можно ознакомиться в библиотеке СПбГЭТУ Автореферат разослан «___»__________ 2013 г.

Ученый секретарь Диссертационного совета Д212.238.02 Н. М. Сафьянников

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования Широкое внедрение систем автоматизированного проектирования в практику инженерных задач существенно ограничивается высокой стоимостью лицензионного программного обеспечения. Наряду с этим создание собственных САПР связано с огромными затратами ресурсов и не может быть реализовано в сжатые строки, так как на разработку современных САПР требуются сотни человеколет. Проблема усложняется также и потому, что в реальных ситуациях эксплуатации многофункциональные интегрированные САПР используются, как правило, крайне неэффективно, поскольку при решении конкретных задач из основного состава этих систем часто применяется не более 10-20% программного обеспечения, наиболее специфичного для каждого подразделения.

Решением этой актуальной проблемы может быть децентрализация архитектуры САПР путем перехода к распределенным системам проектирования, построенным на основе Интернет-технологий, реализующих задачи коммуникации и информационного обмена между приложениями.

Такие независимо управляемые приложения являются автономными и могут взаимодействовать друг с другом в процессе выполнения общей задачи.

Протоколы Интернет-технологий представляют надежную базу для связывания подсистем и не требуют согласованного использования ресурсов, находящихся в разных узлах сети, что существенно упрощает процесс построения и эксплуатации распределенной САПР. Основным требованием для возможности реализации такой распределенной системы является согласованность интерфейсов, посредством которых связаны отдельные подсистемы. При выполнении этого требования отдельные компоненты распределенной САПР могут создаваться различными разработчиками и поддерживаться на различных сайтах, откуда они будут поставляться (возможно, на коммерческой основе) потребителям.

Самым эффективным методом объединения подсистем в распределенное приложение следует считать организацию удаленного вызова процедур на базе сервис-ориентированной архитектуры с использованием веб-сервисов. Интеграция на базе веб-сервисов при разработке децентрализованных САПР позволяет перейти к описанию интерфейсов и взаимодействий на базе XML, обеспечивая возможность модификации и развития построенного программного обеспечения в условиях сохранения выбранного интерфейса. Это позволяет вследствие слабосвязанности отдельных подсистем обеспечивать взаимодействие между сервисами на произвольной платформе и проводить адаптацию существующих приложений к меняющимся условиям проектирования.

Основная нагрузка по выполнению вычислительных операций при такой архитектуре ложится на веб-сервисы, решающие все задачи моделирования проектируемых систем, на клиентские приложения возлагаются только простейшие функции подготовки данных и отображения результатов моделирования.

При разработке САПР с использованием вебсервисов могут быть применены следующие типы клиентских приложений:

приложение консольного типа, приложение оконного типа и вебприложение.

Особенностью консольных приложений является отсутствие графического интерфейса, однако их использование может оказаться полезным при реализации простейших САПР для карманных компьютеров с небольшой площадью экрана.

Приложения оконного типа дают возможность в наилучшей степени реализовать графические средства и наилучшим образом подходят для разработки распределенных систем на базе веб-сервисов. Для любого вебсервиса предоставляется возможность построения нескольких клиентских приложений с различными способами реализации диалогового взаимодействия.

Веб-приложения обеспечивает возможность целиком разместить все используемое программное обеспечение САПР в сети. Достоинством приложения этой структуры является открытый доступ к использованию распределенной САПР через броузер любого типа, недостатком приложения такого типа является увеличение времени, которое требуется для описания компонентов проектируемой системы из-за ожидания реакции на отдельных шагах ввода данных.

Для клиентского приложения любого вида вызов веб-сервисов осуществляется одинаковым способом, и для каждого веб-сервиса возможно использование любых способов реализации клиентских приложений, написанных на различных языках. Если необходимо, такие клиентские приложения можно легко модифицировать согласно с изменяющимися условиями проектирования, возможно также расширение веб-сервиса за счет включения в него дополнительных методов.

Цель работы и основные задачи исследования Настоящая диссертация посвящена исследованию и разработке методов построения платформенно-независимых распределенных САПР с использованием веб-сервисов. Для конкретной реализации выбрана задача разработки распределенной системы автоматизации схемотехнического проектирования.

Для достижения поставленной цели следует решить следующие задачи:

1. Разработать общую методику построения, автономного тестирования и развертывания на выбранном сервере веб-сервисов Java.

2. Выполнить исследование общих методов построения программного обеспечения веб-сервисов Java для распределенной системы автоматизации схемотехнического проектирования.

3. Исследовать и разработать методику построения веб-сервисов Java с использованием технологии сжатия данных.

4. Провести исследование и разработку общей методики построения шаблонов клиентских приложений консольного и оконного типов, а также клиентских веб-приложений.

5. Разработать методику реализации функционирования вебсервисов и клиентских приложений в гетерогенных средах.

Методы исследования При выполнении поставленных задач в диссертации использованы основы общей теории САПР, тория систем моделирования, основы теории матриц и графов.

Достоверность научных результатов Подтверждается основными положениями общей теории САПР, теории моделирования, корректностью применяемого математического аппарата, и результатами, полученными при тестировании созданного программного обеспечения веб-сервисов и клиентских приложений.

Новые научные результаты

1. Предложена сервис-ориентированная архитектура распределенной САПР с использованием веб-сервисов.

2. Разработана общая методика реализации, автономного тестирования, а также развертывания на сервере распределенной САПР вебсервисов Java.

3. Исследованы и разработаны методы построения программного обеспечения веб-сервисов Java для решения типовых задач проектирования электронных схем.

5. Разработана общая методика построения консольных и оконных клиентских приложений, а также клиентских веб-приложений.

6. Разработана методика реализации программного обеспечения распределенной САПР для организации взаимодействия в гетерогенных средах веб-сервисов и клиентских приложений.

Основные положения , выносимые на защиту

1. Архитектура распределенной сервис-ориенировнной САПР на основе веб-сервисов.

2. Общая методика восходящего проектирования веб-сервисов Java

3. Методика реализации программного обеспечения веб-сервисов Java на основе сжатия данных.

Практическая ценность

1. Предложенная структура распределенной САПР обеспечивает возможность организовать взаимодействие между различными вебсервисами на выбранной платформе и адаптировать приложения к изменяющимся условиям проектирования.

2. Построенная библиотека вспомогательных функций на основе сжатия данных повышает эффективность создания программного обеспечения веб-сервисов Java для систем автоматизации схемотехнического проектирования

3. Разработанная методика реализации клиент-серверного взаимодействия обеспечивает работу распределенных САПР в средах гетерогенного типа.

4. Программное обеспечение разработанной распределенной системы автоматизации схемотехнического проектирования содержит инвариантное ядро для организации как символьного, так и численного этапов работы Java-программ, которое можно использовать в качестве базы при построении систем проектирования широкого перечня объектов.

Реализация и внедрение результатов Разработанная в диссертации распределенная САПР с использованием веб-сервисов была реализована на языке Java c использованием платформы WTP (Web Tools Platform). Практическим результатом является платформенно-независимая распределенная схемотехническая САПР, которая осуществляет многовариантное моделирование нелинейных схем в стационарном режиме, в динамическом режиме, для расчета частотных характеристик, а также обеспечивает расчет чувствительности передаточных функций и чувствительности переменных стационарного режима к вариации параметров.

Результаты диссертационной работы использовались в госбюджетных НИР по теме «Разработка моделей и методов анализа и синтеза интеллектуальных систем поддержки принятия решений для управления сложными распределенными объектами» (шифр САПР-47 тем. плана СПбГЭТУ 2011 г.) и по теме «Математико-логические основы построения сред виртуальных инструментов» (шифр САПР-49 тем. плана СПбГЭТУ 2012 г.) Результаты диссертации внедрены в инженерную практику научнопроизводственной фирмы «Модем» и используются в учебном процессе кафедры САПР СПБГЭТУ для изучения методики построения программного обеспечения систем автоматизации схемотехнического проектирования при подготовке бакалавров и магистров по направлению «Информатика и вычислительная техника».

Апробация работы Основные положения диссертации докладывались и обсуждались на следующих конференциях:

1. 9-ая конференция молодых ученых «Навигация и управление движением».– СПб.;

2. 5-ая международная конференция «Приборостроение в экологии и безопасности человека».– СПб., ГУАП;

3. XIII, XIV, XVII -ая международные конференции « Современное образование: содержание, технологии, качество». – СПб., СПбГЭТУ;

4. 60, 61, 63-ая научно-технические конференции профессорскопреподавательского состава ГЭТУ.

Публикации Основное теоретическое и практическое содержание диссертации опубликовано в 16 научных работах, в числе которых 4 статьи в ведущих рецензируемых изданиях, рекомендованных в действующем перечне ВАК, 1 свидетельство об официальной регистрации программы для ЭВМ, зарегистрированной в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам.

Структура и объем диссертации Диссертация содержит введение, четыре главы основного содержания, заключение и список литературы, содержащий 69 источников. Работа изложена на 154 страницах текста, и содержит 21 рисунок и одну таблицу.

Во введении дается обоснование актуальности темы диссертации, сформулированы цели исследования и приведен перечень решаемых в работе задач.

В первой главе рассматриваются вопросы построения архитектуры распределенных приложений, определяющей общую структуру, выполняемые функции и взаимосвязь отдельных компонентов системы.

Показывается, что архитектура распределенного приложения охватывает как его структурные и поведенческие аспекты, так и правила интеграции и использования, функциональность, гибкость, надежность, производительность, возможность повторного применения, технологические ограничения, вопросы пользовательского интерфейса. Основной задачей интеграции автономных приложений (подсистем) в распределенное приложение является обеспечение функциональных связей, обеспечивающих требуемые взаимодействия при минимальной зависимости между подсистемами.

В диссертационной работе показано, что такой механизм наиболее эффективно обеспечивается при использовании архитектуры, основанной на взаимодействии между подсистемами с помощью удаленного вызова процедур, используемого для взаимообмена данными и для выполнения определенных действий. В случае, если приложение нуждается в получении или изменении какой-либо информации, поддерживаемой другим приложением, оно обращается к нему через вызов некоторой функции.

Для построения распределенных САПР в диссертации предлагается использовать сервис-ориентированную архитектуру (SOA) на основе модульной структуры программного обеспечения и стандартизированных интерфейсов. SOA использует унификацию основных операционных процессов, принципы неоднократного применения функциональных элементов, организацию на базе платформы интеграции. Хотя архитектура SOA не связана с какой-то определённой технологией удаленного вызова процедур, программные подсистемы, разработанные согласно с SOA, обычно реализуются как совокупность веб-сервисов, связанных при помощи основных протоколов (SOAP, WSDL).

Системы на основе сервис-ориентированной архитектуры относятся к классу мультиагентных систем (МАС), которые образованы несколькими взаимодействующими интеллектуальными агентами, обеспечивающими автономность, ограниченность представления и децентрализацию отдельных подсистем распределенной информационно-вычислительной системы.

Веб-сервисы основаны на XML-стандарте и предоставляют возможность пользователям обеспечить взаимодействие с внешними системными средствами через сеть Интернет, являясь слабосвязанными компонентами системы программного обеспечения, которые доступны для использования через Интернет-протоколы. В диссертационной работе показано, что при практической реализации распределенных САПР с использованием веб-сервисов существенное внимание следует уделять правильному разделению функциональных обязанностей, возлагаемых на основное клиентское приложение и на веб-сервис, взаимодействующий с этим приложением.

Конкретная методика реализации веб-сервисов существенно зависит от выбранного языка программирования. В работе показано, что предпочтение при выборе языка программирования для построения веб-сервисов следует отдать языку Java, который наиболее полно обеспечивает платформенную независимость реализованных решений. Немаловажным обстоятельством в пользу такого выбора является также наличие мощной инструментальной поддержки разработки веб-ориентированных приложений на Java, которая обеспечивается средой WTP (Web Tools Platform).

В диссертационной работе проведен сравнительный анализ двух основных методов построения веб-сервисов Java – восходящего (Bottom-Up), когда сначала создается Java-класс веб-сервиса, а затем на его основе генерируется WSDL-документ, и нисходящего (Top-Down), когда сначала создается требуемый документ WSDL, а затем на его базе формируется код реализации веб-сервиса. На основании сравнительной оценки показано, что проектирование веб-сервисов следует выполнять восходящим методом, поскольку при этом WSDL-документ формируется на основании созданного заранее Java-класса, в котором описаны все передаваемые методу вебсервиса параметры и возвращаемые этим методом значения. При этом вся имеющаяся в Java-классе информация автоматически преобразуется в соответствующий WSDL-документ, содержание которого точно соответствует базовой структуре спецификации WSDL и основным характеристикам вызываемого метода веб-сервиса, что обеспечивает полную достоверность содержащейся в WSDL-документе информации.

Для возможности практической реализации проектирования вебсервисов восходящим методом в диссертации предлагается методика построения динамического веб-проекта и содержащегося в нем Java-класса реализации веб-сервиса с описанием вызываемых методов, среди которых, помимо основных рабочих методов, обязательно должен содержаться вспомогательный метод без аргументов, который возвращает строковую переменную, где содержатся все сведения об основных методах, обеспечивающих функционирование веб-сервиса и описание форматов передаваемых параметров, а также возвращаемых данных, что обеспечивает самодокументируемость веб-сервиса и возможность создания и постоянного совершенствования клиентских приложений независимо от разработчика веб-сервиса.

В диссертации приводится методика организации вызова информационного метода веб-сервиса непосредственно из интегрированной среды разработки Java-приложений, в которой по URL-адресу веб-сервиса можно получить доступ к Soap-ответу информационного метода, и к содержанию его возвращаемого значения.

Во второй главе рассматриваются методы построения веб-сервисов распределенной САПР, при помощи которой осуществляется расчет нелинейных схем в стационарном режиме, расчет схемных функций линейных и линеаризованных схем для частотной области, выполняется расчет нелинейных схем в динамических режимах. Помимо этого, в число включаемых в распределенную систему подсистем входит веб-сервис для расчета чувствительности схемных функций в частотной области, и вебсервис для расчета чувствительности переменных стационарного режима нелинейных схем к вариации параметров. В качестве компонентов проектируемых на базе разработанных веб-сервисов схем можно использовать двухполюсники типа R, C, L, линейные частотно-зависимые управляемые источники, нелинейные управляемые источники, трансформаторы, биполярные и униполярные транзисторы, операционные усилители, а также задающие источники тока и напряжения.

Основой для таких методов является общая структура математического описания систем схемотехнического проектирования. В диссертации дается сравнительная оценка возможных способов выбора координатного базиса для формирования описания линеаризованных схем, при этом предпочтение отдается расширенному базису узловых потенциалов. Отмечается, что наряду с несомненными достоинствами, существенным ограничением этого базиса является невозможность математического описания компонентов схемы уравнениями в неявной форме, что часто затрудняет, а иногда делает невозможным, его практическое применение. Для реализации возможности описания компонентов схемы уравнениями в неявной форме в работе приводится модифицированная версия расширенного базиса узловых напряжений, которая принимается за основу при построении программного обеспечения веб-сервисов.

При рассмотрении вопросов, связанных с построением веб-сервисов для задач расчета частотных свойств электронных схем, отмечается, что задачи этого типа можно разделить на две группы. В первую группу входят задачи расчета линейных схем, параметры компонентов которых имеют фиксированные значения, не зависящие в процессе решения задачи от значений координат рабочих точек компонентов. Вторая группа связана с расчетом частотных характеристик линеаризованных схем, параметры которых зависят от координат рабочих точек компонентов и эти координаты, а также значения соответствующих им линеаризованных параметров, должны быть предварительно рассчитаны.

Для решения первой группы задач расчета частотных свойств электронных схем при выполнении диссертационной работы построен вебсервис ModService_Java. Для возможности работы с комплексными числами при его построении создан пользовательский класс Complex, поскольку на момент выполнения настоящей работы такой класс не входит в состав стандартных средств API Java. Класс Complex содержит конструкторы и вспомогательные функции для обработки комплексных данных и все необходимые функции для выполнения арифметических и логических операций с комплексными числами, поскольку в языке Java отсутствует оператор переопределения этих операций. Веб-сервис получает в качестве аргументов описание компонентов схемы и директивы расчета и возвращает массив с описанием результатов расчета частотных характеристик.



Для расчета стационарного режима нелинейных систем в диссертации предлагается общая методика построения программного обеспечения соответствующих веб-сервисов, реализованная при создании веб-сервиса StaticService_Java. Веб-сервис также получает в качестве аргументов описание компонентов схемы и директивы расчета и возвращает массив с описанием результатов расчета базисных переменных и координат стационарного режима для всех нелинейных компонентов (диоды, биполярные транзисторы, униполярные транзисторы, операционные усилители, нелинейные управляемые источники). Нулевой элемент возвращаемого массива резервируется для передачи на клиентскую сторону информации в случае отсутствия сходимости вычислительного процесса, что требует изменения директив расчета и повторного обращения к методу вебсервиса.

В диссертации рассмотрены возможные подходы к разработке методики построения веб-сервисов для расчета частотных характеристик линеаризованных схем, параметры которых зависят от координат рабочих точек компонентов. В результате проведенной сравнительной оценки выбран путь построения веб-сервиса на основе интегрированной системы, включающей в себя программное обеспечение для линеаризации нелинейных компонентов в вычисленных рабочих точках и для последующего расчета частотных свойств линеаризованной схемы. В работе приводится общая методика решения такой задачи, реализация которой осуществлена в вебсервисе StFrqService_Java. Веб-сервис получает в виде аргументов описание частотно-зависимых и нелинейных компонентов схемы, а также директивы расчета, и в результате его работы возвращается массив с описанием результатов расчета частотных характеристик. Аналогичным образом, как и при расчете стационарного режима, нулевой элемент возвращаемого массива используется для передачи на клиентскую сторону информации в случае отсутствия сходимости процесса.

При разработке методики построения веб-сервиса для расчета динамических режимов нелинейных систем используется математическое описание схемы в модифицированном расширенном базисе узловых потенциалов, что позволяет получить в наиболее общей форме систему уравнений алгебро-дифференциального типа. Исключение производных из компонентных уравнений выполняется на основе формул коррекции, которые вытекают из многошаговых неявных методов высших порядков, при этом принят в качестве основного метод Гира второго порядка с возможностью увеличения его порядка. В качестве компонентов, из уравнений которых исключаются производные, выступают двухполюсники типа С и L, диоды, трансформаторы, биполярные и униполярные транзисторы, операционные усилители, а также частотно-зависимые управляемые источники. Для вычисления значений автономных источников, сохраняющих значения соответствующих переменных на предшествующих шагах, построены вспомогательные функции дискретизации dis_cmp для всех перечисленных компонентов cmp с частотно-зависимыми свойствами.

Разработанная методика реализована при построении веб-сервиса Dyn2Service_Java, который возвращает на клиентскую сторону массив с описанием результатов расчета динамических характеристик.

В третьей главе рассмотрены вопросы построения веб-сервисов с использованием методов сжатия данных. Актуальность этих вопросов определяется тем, что структура реальных систем характеризуется слабой связью компонентов между собой, результатом чего является их математическое описание в виде матриц разреженного типа, в которых только незначительная часть элементов имеет содержательную информацию.

Это обстоятельство ставит задачу изменения общепринятых подходов к формированию и решению уравнений в целях экономии памяти и повышения быстродействия, что имеет решающее значение для функционирования вебориентированных систем.

В диссертационной работе проведен анализ эффективности возможных методов преобразования данных в компактные массивы, на основании которого сделан вывод о целесообразности выбора метода, основанного на использовании сжатия по Шерману и требующего для реализации двухэтапной процедуры выполнения символьной и численной обработки данных. Существенным достоинством принятой двухэтапной процедуры является разделение ее на две независимые части символьного и численного этапа. Поскольку практически все реальные задачи проектирования схем связаны с многовариантным расчетом схемы неизменной структуры, то символьный этап выполняется для каждой структуры единственный раз, тогда как численный этап реализуется десятки, сотни, а иногда и тысячи раз.

Однако, двухэтапная процедура характеризуются довольно сложной логикой построения программного кода и при переходе к описанию на основе сжатия данных требуется существенное изменение созданного ранее полного описания задачи.

В диссертации рассмотрена блок-схема реализации двухэтапной обработки данных при построении Java-приложений, согласно с которой на этапе символьного анализа формируется индексная матрица целого типа, для которой проводится символьный этап LU-факторизации, где выполняется упорядочивание строк (столбцов) с целью минимизации числа вновь появляющихся элементов с ненулевыми значениями. На заключительном шаге символьного этапа осуществляется построение координатных матриц, в которых содержится информация о структуре индексной матрицы, в результате чего эту матрицу можно удалить.

На численном этапе согласно с известным форматом описания осуществляется формирование компактных матриц и выполняется их виртуальная численная LU-факторизация на основе построенного в работе алгоритма. После завершения численного этапа LU-факторизации выполняется расчет всех переменных системы и их перекодировка согласно проведенным на этапе символьной обработки перестановкам строк (столбцов). Такая задача согласно с общей методикой LU-факторизации обычно решается при помощи обратного и прямого хода по строкам исходной матрицы, но, поскольку полная матрица при использовании сжатия данных отсутствует, то, как прямой, так и обратный ход, выполняются при помощи специальных алгоритмов, реализующих эти задачи с использованием сжатия данных.

В диссертации показано, что возможны два различных подхода к разработке программного обеспечения веб-сервисов, основанных на сжатии данных. Первый связан с переработкой существующего программного обеспечения, основанного на полном математическом описании в виде исходных матриц с разреженной структурой, с целью построения модифицированного метода, использующего компактные массивы. Наличие прототипа значительно упрощает процесс создания метода, основанного на сжатии данных, однако для наиболее эффективного использования имеющегося материала необходимо иметь в распоряжении методику разработки модифицированных версий веб-сервисов. Такая методика построена в диссертации и на ее основе модифицированы все рассмотренные выше веб-сервисы. Результатом является структура веб-сервисов, содержащая два основных рабочих метода, один из которых основан на полном описании моделируемой схемы, а второй использует технологию компактной обработки данных.

Второй подход используется в случаях отсутствия прототипа для разработки метода на основе сжатия данных. При этом как символьный, так и численный этап реализуются в условиях отсутствия полного описания моделируемой схемы в форме разреженной матрицы, что существенно усложняет процесс программирования. В диссертации второй подход применен для построения веб-сервисов, реализующих расчет чувствительности схемных передач и переменных стационарного режима схем к вариации параметров их компонентов.

Для расчета чувствительности частотных характеристик схемных функций построен веб-сервис VaryService, который содержит метод, базирующийся на дифференцировании уравнений, и метод, в основе которого лежат присоединенные схемы.

Основанный на дифференцировании уравнений метод веб-сервиса VaryService позволяет рассчитать значения абсолютной и относительной векторной чувствительности схемных функций для частотной области к выбранному вариируемому параметру для всей совокупности базисных переменных. В качестве вариируемых параметров могут выступать значения сопротивления, емкости, или индуктивности произвольного двухполюсника схемы типа R, C или L, и параметры передач управляемых частотнозависимых источников типа ИТУН, ИНУН, ИТУТ или ИНУТ.

Метод веб-сервиса VaryService, использующий присоединенные схемы, позволяет рассчитать значения как абсолютной, так и относительной скалярной чувствительности схемных функций для частотной области по отношению ко всем возможным вариируемым параметрам для выбранного значения анализируемой переменной. Предлагаемая в работе блок-схема программного обеспечения позволяет воспользоваться результатами формирования компактных массивов основной схемы для расчета присоединенной схемы. В качестве вариируемых параметров в методе, основанном на присоединенной схеме, могут выступать те же параметры, что и для метода, основанного на дифференцировании уравнений.

Для расчета чувствительности переменных, задающих стационарный режим нелинейных схем, к вариации их параметров, разработан веб-сервис StVaryService, который так же содержит два метода, один из которых основан на дифференцировании уравнений, а второй – на присоединенной схеме. В качестве вариируемого параметра в обоих методах могут выступать значения сопротивлений резисторов и параметры передачи управляемых источников типа ИТУН, ИНУН, ИТУТ или ИНУТ.

Алгоритм расчета абсолютной чувствительности базисных переменных стационарного режима методом дифференцирования уравнений предусматривает дифференцирование нелинейного уравнения схемы по базисным переменным и вариируемым параметрам, что позволяет получить уравнение чувствительности, решение которого определяет искомую векторную чувствительность переменных стационарного режима.

Практическая реализация метода основана на дифференцировании уравнений вариируемых компонентов с использованием результатов расчета базисных переменных стационарного режима нелинейной схемы.

Алгоритм метода, выполняющего расчет скалярной чувствительности переменных стационарного режима при помощи присоединенной схемы, предусматривает расчет базисных переменных стационарного режима основной схемы и расчет базисных переменных линеаризованной присоединенной схемы, который выполняется на основе сформированных ранее компактных массивов для основной схемы. Результатом работы второго метода является массив значений абсолютной и относительной чувствительности выбранной переменной схемы для всех вариируемых параметров компонентов.

В четвертой главе рассматриваются методы построения пользовательских клиентских приложений, обеспечивающих взаимодействие с веб-сервисами, которые после окончания их построения в инструментальной среде разработки Java-приложений должны быть развернуты на сервере распределенной САПР. Для развертывания вебсервиса необходимо знать его основные характеристики, в числе которых имя сервиса, имя класса, имена методов, тип WSDL-документа.

Соответствующая информация о разработанных и описанных выше вебсервисах для распределенной системы схемотехнического проектирования приводится в диссертации, и в информационных методах с именем getInf, которые входят во все разработанные веб-сервисы. В работе предлагается простая методика непосредственного развертывания на сервере веб-сервисов, и рассматриваются возможные способы импортирования на клиентскую сторону файла WSDL. На основании сравнительного анализа в работе показывается, что корректность выполнения операции доставки WSDLфайла из удаленного веб-сервиса в клиентское приложение наиболее эффективно может быть обеспечена путем использования инструмента Web Services Explorer, и устанавливается наиболее оптимальная последовательность импортирования WSDL-файла в начальный каркас клиентского приложения.

После доставки WSDL-файла в проект клиентского приложения дальнейшие преобразования начального каркаса проекта в законченное клиентское приложение предлагается проводить в два этапа. Первым этапом такого преобразования является создание прокси-объекта в начальном каркасе проекта, а вторым этапом – формирование классов, содержащих методы, поддерживающие функционирование прокси-объекта и взаимодействие удаленного сервиса с клиентским приложением. Реализация первого этапа сводится к дополнению проекта операторами, создающими прокси-объект, второй этап выполняется при помощи инструмента Web Services платформы WTP, наиболее эффективные способы использования которого приводятся в диссертации.

Окончательное оформление начального каркаса проекта в завершенное клиентское приложение может выполняться различным образом для разных типов этого приложения. Простейшим способом выполнения клиентских приложений является оформление их на основе консольных приложений, не имеющих графического интерфейса. В работе предложена обобщенная структурная схема реализации консольного приложения распределенной САПР для расчета электронных схем, которую можно использовать для любого веб-сервиса несмотря на многообразие возможных конкретных решений.

При выполнении диссертации для всех перечисленных выше вебсервисов распределенной САПР были реализованы клиентские консольные приложения. Их исходные файлы могут быть доставлены стандартными средствами через сеть Интернет клиенту и использованы, как для построения простейшего варианта консольного приложения для взаимодействия с сервисами распределенной САПР, так и в качестве методического пособия для разработки более совершенных оконных приложений.

Клиентские приложения оконного типа предоставляют наибольшие возможности для функционирования в распределенной САПР, поскольку дают возможность в наибольшей степени использовать графические элементы. Для данного веб-сервиса можно построить различные варианты клиентских приложений с различными способами организации диалога с пользователем и отображения результатов расчета. В работе установлен минимальный набор диалоговых средств, обеспечивающих полноценное взаимодействие с сервисом. Такой набор содержит оконное меню и совокупность диалоговых окон для ввода данных и отображения результатов расчета, а также управления директивами расчета.

В диссертации предложена методика построения клиентских вебприложений, на базе которой разработаны шаблоны JSP-страниц, выполняющие функции выбора и перехода к другим страницам, ввода некоторой совокупности переменных с переходом к начальной странице, циклического ввода некоторой совокупности переменных с переходом к следующей странице согласно значениям этих переменных, вызова требуемого веб-сервиса и вывода результатов его работы. Использование клиентских веб-приложений позволяет разместить весь программный код распределенной системы в сети, при этом, в зависимости от принятого способа размещения в сети клиентского и серверного приложений, вызов сервиса возможен либо из одной, либо из нескольких веб-страниц.

Положительным свойством этой архитектуры является возможность организации доступа к распределенной САПР через произвольный вебброузер без необходимости построения собственного клиентского приложения, недостатком такого подхода к организации распределенной САПР является неизбежное увеличение интервала времени, которое требуется для описания компонентов системы в процессе диалогового взаимодействия.

В диссертации построена методика организации процесса развертывания клиентских приложений, целью которого является обеспечение возможности запуска клиентского приложения общесистемными средствами без использования инструментальной среды разработки приложения, при этом как для клиентских приложений консольного типа, так и для клиентских приложений оконного типа, запуск должен осуществляться через командную строку, а для веб-приложений – из броузера. Информация о месторасположении веб-сервиса передается через объект прокси-класса, для которого должна быть предварительно осуществлена настройка на соответствующий URL-адрес.

В работе отмечается, что при развертывании консольного приложения должно быть предварительно осуществлено изменение кодовой страницы проекта, для чего необходимо перейти от кодовой страницы, в которой текст с кириллицей отображается во всех интегрированных инструментальных системах, работающих с Java-кодом, к кодовой странице, в которой текст с кириллицей будет нормально отображаться в окне командной строки.

В диссертации показано, что при использовании клиентских вебприложений в зависимости от выбранной структуры связи между клиентским и серверным компьютером, информация о расположении веб-сервиса может передаваться как через объект прокси-класса, так и через URL-адрес, вводимый из броузера. Соответствующие способы взаимодействия клиента с сервисом при реализации их функциональных задач для выбранной структуры связи также рассмотрены в работе.

Стандартизация SOAP предоставляет возможность соединения между собой слабосвязанных приложений независимо от платформы их реализации, что позволяет при использовании веб-сервисов обеспечить эффективное и оптимальное использование широкого ряда гетерогенных, слабосвязанных ресурсов в распределенных приложениях. В диссертации приводится общая методика построения программного обеспечения для осуществления взаимодействия объекта прокси-класса приложения среды.NET с сервисом среды Java/J2EE. На основании этой методики реализована организация взаимодействия разработанных веб-сервисов Java с клиентскими Windowsприложениями, построенными в среде.NET на основе языка C#.

Возможность функционирования распределенной САПР в гетерогенных средах существенно расширяет область ее применения.

В заключении сформулированы основные научные и практические результаты, полученные на основе проведенных в диссертации исследований.

Основные результаты работы

1. Разработана архитектура распределенной сервисориентированной САПР на основе веб-сервисов, отличающаяся децентрализованной структурой, платформенной независимостью и возможностью проведения непрерывной модернизации отдельных подсистем для адаптации их свойств к изменяющимся условиям проектирования.

2. Реализована общая методика построения восходящим методом веб-сервисов Java и соответствующих WSDL-документов, а также доставки их на сервер распределенной САПР после проведения автономного тестирования в среде разработки.

3. Разработана методика построения программного обеспечения веб-сервисов Java для решения типовых задач моделирования непрерывных систем при автоматизированном проектировании электронных схем.

4. Построена библиотека вспомогательных функций для реализации программного обеспечения веб-сервисов Java на основе сжатия данных.

5. Разработана общая методика построения шаблонов консольных и оконных клиентских приложений распределенной системы автоматизации схемотехнического проектирования и реализована организация функционирования распределенной САПР с клиентскими вебприложениями.

6. Разработана методика построения распределенных САПР, обеспечивающая взаимодействие веб-сервисов Java и клиентских приложений произвольного типа в гетерогенных средах.

1. Анисимов Д.А. Построение систем автоматизированного проектирования на основе Web-сервисов [Текст] / Анисимов Д.А. Гридин В.Н., Дмитревич Г.Д. // Автоматизация в промышленности – 2011. – №1 – С. 9-12.

2. Анисимов Д.А. Построение систем автоматизированного проектирования на основе Web-технологий [Текст] / Гридин В.Н., Дмитревич Г.Д., Анисимов Д.А // Информационные технологии – 2011. – №5. – С. 23-27.

3. Анисимов Д.А. Построение веб-сервисов систем автоматизации схемотехнического проектирования [Текст] / Гридин В.Н., Дмитревич Г.Д., Анисимов Д.А // Информационные технологии и вычислительные системы – 2012. – №4. – С. 79-84.

4. Анисимов Д.А. Методы построения систем автоматизации схемотехнического проектирования на основе веб-сервисов [Текст] /Анисимов Д.А // Известия СПбГЭТУ «ЛЭТИ» – 2012. – №10. – СПб.: Изд-во СПбГЭТУ «ЛЭТИ»,– С. 56-61.

5. Анисимов Д.А. Доступ к Web-ресурсам в САПР систем навигации и управления [Текст] / Ларистов Д.А., Анисимов Д.А. // Гироскопия и навигация. 2007. № 2. –С. 106.

Web-сервисы - новое слово в технологии распределенных систем. Спецификация Open Net Environment (ONE) корпорации Sun Microsystems и инициатива. Net корпорации Microsoft обеспечивают инфраструктуры для написания и развертывания Web -сервисов. В настоящий момент имеется несколько определений Web -сервиса. Web -сервисом может быть любое приложение, имеющее доступ к Web , например, Web -страница с динамическим содержимым. В более узком смысле Web -сервис - это приложение, которое предоставляет открытый интерфейс, пригодный для использования другими приложениями в Web . Спецификация ONE Sun требует, чтобы Web -сервисы были доступны через HTTP и другие Web -протоколы, чтобы дать возможность обмениваться информацией посредством XML -сообщений и чтобы их можно было найти через специальные сервисы - сервисы поиска. Для доступа к Web -сервисам разработан специальный протокол - Simple Object Access Protocol (SOAP) ,который представляет средства взаимодействия на базе XML для многих Web -сервисов. Web -сервисы особенно привлекательны тем, что могут обеспечить высокую степень совместимости между различными системами.

Гипотетический Web -сервис, разработанный в соответствии с архитектурой ONE Sun , может принимать форму, в которой реестр сервисов публикует описание Web -сервиса в виде документа .

Огромный потенциал Web -сервисов определяется не технологией, примененной для их создания. HTTP , XML и другие протоколы, используемые Web -сервисами, не новы. Функциональная совместимость и масштабируемость Web -сервисов подразумевает, что разработчики могут быстро создавать большие приложения и более крупные Web -сервисы из меньших Web -сервисов. Спецификация Sun Open Net Environment описывает архитектуру для создания интеллектуальных Web-сервисов .Интеллектуальные Web -сервисы задействуют общее операционное окружение. Совместно используя контекст, интеллектуальные Web -сервисы могут выполнять стандартную аутентификацию для финансовых транзакций, предоставлять рекомендации и указания в зависимости от географического местоположения компаний, участвующих в электронном бизнесе .

Для того чтобы создать приложение, являющееся Web -сервисом, необходимо применить целый ряд технологий.

Взаимосвязь этих технологий условно представлена на рис. 10.1 .


Рис. 10.1.

По сути, Web -сервисы являются одним из вариантов реализации компонентной архитектуры , при которой приложение рассматривается как совокупность компонентов, взаимодействующих друг с другом. Как уже неоднократно говорилось, взаимодействие компонент, выполняющихся на разных платформах, представляет собой достаточно сложную задачу, в частности, требует разработки коммуникационного протокола , учитывающего особенности передачи данных между различными платформами. Одной из основных идей, положенных в основу рассматриваемой технологии Web -сервисов, является отказ от бинарного коммуникационного протокола . Обмен сообщениями между компонентами системы осуществляется посредством передачи XML -сообщений. Поскольку XML -сообщения представляют собой текстовые файлы, транспортный протокол передачи может быть самый различный - XML -сообщения можно передавать по HTTP -, SMTP -, FTP -протоколам, причем использование различных транспортных протоколов прозрачно для приложений. Как уже говорилось, протокол, обеспечивающий возможность взаимодействия Web -сервисов, называется SOAP (Simple Object Access Protocol ). Он определен на основе XML . SOAP обеспечивает взаимодействие распределенных систем, независимо от объектной модели или используемой платформы. Данные в рамках SOAP передаются в виде XML -документов особого формата. SOAP не навязывает какого-либо определенного транспортного протокола. Однако в реальных приложениях наиболее часто реализуется передача SOAP -сообщений по протоколу HTTP . Также широко распространено использование в качестве транспортного протокола SMTP , FTP и даже "чистого" TCP . Итак, SOAP определяет механизм, с помощью которого Web -сервисы могут вызывать функции друг друга. В каком-то смысле работа этого протокола напоминает вызов удаленной процедуры - вызывающая сторона знает имя Web -сервиса, имя его метода, параметры, которые метод принимает, оформляет вызов этого метода в виде SOAP -сообщения и отсылает его Web -сервису.

Однако описанный подход годится лишь в том случае, если заранее известны "сигнатуры" методов, которые реализует Web -сервис. Но как быть, если это не так? Для решения этой проблемы в модель Web -сервиса введен дополнительный слой - слой описания интерфейсов сервисов. Этот слой представлен в виде описания WSDL .

Согласно определению W3C , " WSDL - формат XML для описания сетевых сервисов как набора конечных операций, работающих при помощи сообщений, содержащих документно-ориентированную или процедурно-ориентированную информацию". Документ WSDL полностью описывает интерфейс Web -сервиса с внешним миром. Он предоставляет информацию об услугах, которые можно получить, воспользовавшись методами сервиса, и способах обращения к этим методам. Таким образом, в случае если сигнатура метода Web -сервиса точно не известна (например, она изменилась со временем), у целевого Web -сервиса может быть запрошено WSDL -описание - файл, в котором эта информация будет содержаться.

Следующим слоем технологии является сервис Universal Description, Discovery and Integration (UDDI) .Эта технология предполагает ведение реестра Web -сервисов. Подключившись к этому реестру, потребитель сможет найти Web -сервисы, которые наилучшим образом подходят для решения его задач. Технология UDDI дает возможность поиска и публикации нужного сервиса, причем эти операции могут быть выполнены как человеком, так и другим Web -сервисом или специальной программой-клиентом. UDDI , в свою очередь, также представляет собой Web -сервис.

Таким образом, Web -сервисы являются еще одной реализацией системного программного обеспечения промежуточного слоя . Отличительной чертой этой технологии является ее независимость от используемого программного и аппаратного обеспечения, а также использование широко применяемых открытых стандартов (таких как XML ) и стандартных коммуникационных протоколов.

В настоящее время Web -сервисы являются очень активно продвигаемой технологией и позиционируются как средство решения целого ряда задач.

Следует отметить, что с их применением могут строиться и так называемые "стандартные" приложения, где в качестве Web -сервиса оформляется серверная часть.

Простой протокол доступа к объектам (SOAP)

Базовым протоколом, обеспечивающим взаимодействие в среде Web -сервисов, является протокол

Архитектура распределенных информационных систем и Web-приложений

Распределенная система - это набор независимых вычислительных машин, представляющийся их пользователям единой объединенной системой. Не смотря на то, что все компьютеры автономны, для пользователей они представляются единой системой.

К основным характеристикам распределенных систем:

1. От пользователей скрыты различия между компьютерами и способы связи между ними. То же самое относится и к внешней организации распределенных систем.

2. Пользователи и приложения единообразно работают в распределенных системах, независимо от того, где и когда происходит их взаимодействие.

Распределенные системы должны также относительно легко поддаваться расширению, или масштабированию. Эта характеристика является прямым следствием наличия независимых компьютеров, но в то же время не указывает, каким образом эти компьютеры на самом деле объединяются в единую систему.

Для того чтобы поддержать представление системы в едином виде, организация распределенных систем часто включает в себя дополнительный уровень программного обеспечения, находящийся между верхним уровнем, на котором находятся пользователи и приложения, и нижним уровнем, состоящим из операционных систем (рисунок 1.11).

Соответственно, такая распределенная система обычно называется системой промежуточного уровня (middleware). Отметим, что промежуточный уровень распределен среди множества компьютеров.

К особенностям функционирования распределенных систем относятся:

· наличие большого количества объектов;

· задержки выполнения запросов (так если локальные вызовы требуют порядка пары сотен наносекунд, то запросы к объекту в распределенных системах требует от 0.1 до 10 мс);

· некоторые объекты могут не использоваться на протяжении длительного времени;

· распределенные компоненты выполняются параллельно, что приводит к необходимости согласования выполнения;

· запросы в распределенных системах имеют большую вероятность отказов;

· повышенные требования к безопасности.

В связи наличием повышенных задержек интерфейсы в распределенной системе должны быть спроектированы так, чтобы снизить время выполнения запросов. Это можно достичь путем снижения частоты обращения, а также укрупнением выполняемых функций.

Для борьбы с отказами клиенты обязаны проверять факт выполнения запросов сервером. Безопасность в распределенных приложениях может быть повышена путем контроля сеансов связи (аутентификация, авторизация, шифрование данных).

Архитектура Web-приложений (Web -сервиса) широко применяется в настоящее время. Web-сервис – приложение, доступное через Интернет. Оно предоставляет услуги, форма которых не зависит от поставщика услуг, так как используется универсальная платформа функционирования и универсальный формат данных (XML). В основе Web –сервисов лежат стандарты, определяющие форматы и язык запросов, а также протоколы поиска этих сервисов в Интернете. Схема доступа к базе данных через Интернет показана на рис.1.12.


Рисунок 1.12 – Схема доступа к серверу СУБД через Интернет

В настоящее время существуют три различных технологии, поддерживающие концепцию распределенных объектных систем: EJB, DCOM CORBA.

Основная идея, лежащая в разработке технологии EJB (Enterprise Java Beans ) – создать такую инфраструктуру для компонентов, чтобы они могли бы легко вставляться и удаляться из серверов, тем самым повышая или снижая функциональность сервера. EJB-компоненты являются Java-классами и могут работать на любом EJB-совместимом сервере даже без перекомпиляции. Основными целями EJB-технологии является:

1. Облегчить разработчикам создание приложений, избавив их от необходимости реализовать с нуля такие сервисы, как транзакции, нити, загрузки и др. Разработчики могут сконцентрировать свое внимание на описании логики своих приложений, перекладывая задачи по хранению, передаче и безопасности данных на EJB-систему.

2. Описать основные структуры EJB-системы и интерфейсы взаимодействия между ее компонентами.

3. Освободить разработчика от реализации EJB-объектов за счет наличия специального кодогенератора.

Благодаря используемойJava-модели, EJB является относительно простым и быстрым способом создания распределенных систем.

Технология DCOM (Distributed Component Object Model ) - программная архитектура, разработанная компанией Microcoft для распределения приложений между несколькими компьютерами в сети. Программный компонент на одном из компьютеров может использовать DCOM для передачи сообщений к компоненту на другом компьютере. DCOM автоматически устанавливает соединение, передает сообщение и возвращает ответ удаленного компонента. Способность DCOM связывать компоненты позволила Microcoft наделить Windows рядом дополнительных возможностей, в частности, реализовать сервер Microsoft Transaction Server, отвечающий за выполнение транзакций баз данных через Интернет.