В цветовой схеме rgb используется цветовых каналов. Черный - #00000

16.05.2019

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Очень часто у людей, напрямую не связанных с полиграфическим дизайном, возникают вопросы "Что такое CMYK?", "Что такое Pantone?" и "почему нельзя использовать ничего, кроме CMYK?".

В этой статье постараемся немного разобраться, что такое цветовые пространства CMYK, RGB, LAB, HSB и как использовать краски Pantone в макетах.

Цветовая модель

CMY(K), RGB, Lab, HSB - это цветовая модель. Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных множество цветов цветовой модели определяет цветовое пространство.

RGB - аббревиатура английских слов Red, Green, Blue - красный, зелёный, синий. Аддитивная (Add, англ. - добавлять) цветовая модель, как правило, служащая для вывода изображения на экраны мониторов и другие электронные устройства. Как видно из названия – состоит из синего, красного и зеленого цветов, которые образуют все промежуточные. Обладает большим цветовым охватом.

Главное, что нужно понимать, это то, что аддитивная цветовая модель предполагает, что вся палитра цветов складывается из светящихся точек. То есть на бумаге, например, невозможно отобразить цвет в цветовой модели RGB, поскольку бумага цвет поглощает, а не светится сама по себе. Итоговый цвет можно получить, прибавляя к исходномой черной (несветящейся) поверхности проценты от каждого из ключевых цветов.


CMYK - Cyan, Magenta, Yellow, Key color - субтрактивная (subtract, англ. - вычитать) схема формирования цвета, используемая в полиграфии для стандартной триадной печати. Обладает меньшим, в сравнении с RGB, цветовым охватом.

CMYK называют субстрактивной моделью потому, что бумага и прочие печатные материалы являются поверхностями, отражающими свет. Удобнее считать, какое количество света отразилось от той или иной поверхности, нежели сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета - RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» - из белого вычитаются первичные цвета.

Key Color (черный) используется в этой цветовой модели в качестве замены смешению в равных пропорциях красок триады CMY. Дело в том, что только в идеальном варианте при смешении красок триады получается чистый черный цвет. На практике же он получится, скорее, грязно-коричневым - в результате внешних условий, условий впитываемости краски материалом и неидеальности красителей. К тому же, возрастает риск неприводки в элементах, напечатанных черным цветом, а также переувлажнения материала (бумаги).



В цветовом пространстве Lab значение светлоты отделено от значения хроматической составляющей цвета (тон, насыщенность). Светлота задана координатой L (изменяется от 0 до 100, то есть от самого темного до самого светлого), хроматическая составляющая - двумя декартовыми координатами a и b. Первая обозначает положение цвета в диапазоне от зеленого до пурпурного, вторая - от синего до желтого.

В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха на производстве или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цветокоррекции.

Благодаря характеру определения цвета в Lab появляется возможность отдельно воздействовать на яркость, контраст изображения и на его цвет. Во многих случаях это позволяет ускорить обработку изображений, например, при допечатной подготовке. Lab предоставляет возможность избирательного воздействия на отдельные цвета в изображении, усилиения цветового контраста, незаменимыми являются и возможности, которые это цветовое пространство предоставляет для борьбы с шумом на цифровых фотографиях.


HSB - модель, которая в принципе является аналогом RGB, она основана на её цветах, но отличается системой координат.

Любой цвет в этой модели характеризуется тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness). Тон - это собственно цвет. Насыщенность - процент добавленной к цвету белой краски. Яркость - процент добавленной чёрной краски. Итак, HSB - трёхканальная цветовая модель. Любой цвет в HSB получается добавлением к основному спектру чёрной или белой, т.е. фактически серой краски. Модель HSB не является строгой математической моделью. Описание цветов в ней не соответствует цветам, воспринимаемых глазом. Дело в том, что глаз воспринимает цвета, как имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В HSB все цвета основного спектра (канала тона) считаются обладающими 100%-й яркостью. На самом деле это не соответствует действительности.

Хотя модель HSB декларирована как аппаратно-независимая, на самом деле в её основе лежит RGB. В любом случае HSB конвертируется в RGB для отображения на мониторе и в CMYK для печати,а любая конвертация не обходится без потерь.


Стандартный набор красок

В стандартном случае полиграфическая печать осуществляется голубой, пурпурной, желтой и черной красками, что, собственно и составляет палитру CMYK. Макеты, подготовленные для печати, должны быть в этом пространстве, поскольку в процессе подготовки фотоформ растровый процессор однозначно трактует любой цвет как составляющую CMYK. Соответственно, RGB-рисунок, который на экране смотрится очень красиво и ярко, на конечной продукции будет выглядеть совсем не так, а, скорее, серым и бледным. Цветовой охват CMYK меньше, чем RGB, поэтому все изображения, подготавливаемые для полиграфической печати, требуют цветокоррекции и правильной конвертации в цветовой пространство CMYK!. В частности, если вы пользуетесь Adobe Photoshop для обработки растровых изображений, следует пользоваться командой Convert to Profile из меню Edit.

Печать дополнительными красками

В связи с тем, что для воспроизведения очень ярких, "ядовитых" цветов цветового охвата CMYK недостаточно, в отдельных случаях используется печать CMYK + дополнительные (SPOT) краски . Дополнительные краски обычно называют Pantone , хотя это не совсем верно (каталог Pantone описывает все цвета, как входящие в CMYK, так и не содержащиеся в нем) - правильно называть такие цвета SPOT (плашечные), в отличие от смесевых, то есть CMYK.

Физически это означает, что вместо четырех печатных секций со стандартными CMYK-цветами используется большее их количество. Если печатных секций всего четыре, организовывается дополнительный прогон, при котором в уже готовое изделие впечатываются дополнительные цвета.

Существуют печатные машины с пятью печатными секциями, поэтому печать всех цветов происходит за один прогон, что, несомненно, улучшает качество приводки цвета в готовом изделии. В случае печати в 4 CMYK-секциях и дополнительным прогоном через печатную машину с плашечными красками цветосовпадение может страдать. Особенно это будет заметно на машинах с менее чем 4 печатными секциями - наверняка не раз вы видели рекламные листовки, где за края, к примеру, красивых ярко-красных букв может немного выступать желтая рамочка, которая есть ни что иное, как желтая краска из раскладки данного красивого красного цвета.

Подготовка макетов для полиграфии

Если вы готовите макет для печати в типографии и вами не оговорена возможность печати дополнительными (SPOT) красками, готовьте макет в цветовом пространстве CMYK, какими бы привлекательными вам не казались цвета в палитрах Pantone. Дело в том, что для имитации цвета Pantone на экране используются цвета, выходящие за пределы цветового пространства CMYK. Соответственно, все ваши SPOT-краски будут автоматически переведены в CMYK и результат будет совсем не таким, как вы ожидаете.

Если в вашем макете (при договоренности об использовании триады) все-таки есть не CMYK краски, будьте готовы к тому, что макет вам вернут и попросят переделать.

При составлении статьи за основу были взяты материалы с citypress72.ru и masters.donntu.edu.ua/

Наверняка многие слышали о таких цветовых моделях как RGB и CMYK, но на самом деле таких схем не 2 и не 5, а больше.

Цветовые модели бывают разные и о них пойдет сегодня речь.

RGB - R ed G reen B lue, как известно, что почти любой цвет можно задать комбинацией трех цветов - красный+зеленый+синий.

Вот из википедии пример такой модельки:

Данная модель называется аддитивной, так как для указания любого из цветов, используется добавление одного из цветовых каналов к черному. Что прекрасно видно на рисунке

Принцип RGB основан на восприятии цвета сетчаткой глаза человека:

Как видно из рисунка и описания, если ни один из цветовых каналов не задан - изображение будет черным. Если же задать все цветовые каналы по-максимуму, то получится белый цвет.

В отличии от CMYK, RGB-модель охватывает гораздо большое число цветовых тонов и нашла свое широкое применение в телевизорах и мониторах. В телевизорах (ЭЛТ) как раз стоят 3 "пушки", которые бомбардируют пучки цвета на экран. В LCD экранах жидкие-кристаллы также состоят из RGB составляющих.

В компьютерах RGB модель так и задается в виде чисел от 0 до 255 для каждого цвета. Если брать html, то черный цвет будет #000000 , красный #FF0000 , зеленый #00FF00 , синий #0000FF , а белый как #FFFFFF . Серый цвет буде что-то вроде #d3d3d3 .

Те, кто знаком с полиграфией, знают, что там используется другая цветовая модель - CMYK. C - Cyan, M - magenta, Y - yellow, K - blacK (насчет K много споров, многие считают его производным от k ey plate - ключевая поверхность, кто-то от k ontur - контурная пленка, а кто-то от k obalt - темно-серый цвет). По-русски это Голубой, Пурпурный, Желтый и Черный цвета.

Так же, как и в RGB, используется задание цвета путем указания процентного содержания одного из цветовых каналов.

Причем г+п+ж = черный цвет, но эстетам полиграфии этого мало. Они имеют дело с различным оборудованием и с различным материалом, на котором печатается изображение. Для полиграфии важно насколько изображение итоговое копирует оригинал. Ведь при использовании RGB модели, печать на черном и на белом фоне (а также, например, на кремовом) - будет отличаться. А вот CMYK модель позволяет нивелировать (свести к минимуму) подобные косяки. Причем для конкретного оборудования и конкретного материала рекомендуется создавать свою схему CMYK, что приводит к расходам на настройщика. Прям пианино, а не принтер =)

В разных странах свои стандарты CMYK также. В Америке одни, в Европе другие и тд.

Черный цвет (а в CMYK-принтера, например, лазерных цветных, 4 картриджа), который задается смешиванием 100%-но насыщенных г+п+ж приводит также к излишнему намоканию бумаги (поверхности), что приводит к ее деформации от влаги. Поэтому и стоит отдельный картридж. Ну и отдельный черный цвет дешевле других (поэтому и в обычных принтерах есть цветной отдельный и отдельный черный картридж).

Раз мы уже говорили выше о восприятии глазом RGB-модели, то для CMYK она такая же:

Если очень близко друг к друг разместить 3 (или 4, в случае с CMYK) разноцветных точки, то сетчатка сольет их в одну точку с определенным цветом. Вот для примера увеличенное изображение курсора мышки на БЕЛОМ фоне обычного LCD монитора:

Макросьемка курсора на белом фоне для TN+film матрице монитора:

Точно также и для остальных цветовых моделей. Глаз сам дорисовывает цвет.

CIE XYZ - линейная трехкомпонентная цветовая модель, основана на изучении человеческого глаза организацией CIE (Commission Internationale de l"Eclairage ). Ученые создали модель стандартного человеческого глаза и уже на ее основе цветовую модель. Грубо говоря, CIE XYZ это то, как видет трехкомпонентное изображение стандарный человек .

Из википедии:

Как известно, цветовое зрение человека обусловлено наличием трёх видов световосприимчивых рецепторов на сетчатке глаза, максимумы спектральной чувствительности которых локализованы в области 420, 534 и 564 нм, что соответствует синему, зелёному и жёлтому (хотя в литературе обычно пишут «красному») цветам. Они являются базовыми, все остальные тона воспринимаются как их смешение в определённой пропорции. Например, чтобы получить жёлтый спектральный цвет, совсем необязательно воспроизводить его точную длину волны 570—590 нм, достаточно создать такой спектр излучения, который возбуждает рецепторы глаза сходным образом. Это явление называется .

Комитет CIE провёл множество экспериментов с огромным количеством людей, предлагая им сравнивать различные цвета, а затем с помощью совокупных данных этих экспериментов построил так называемые функции соответствия цветов (color-matching functions) и универсальное цветовое пространство (universal color space), в котором был представлен диапазон видимых цветов, характерный для среднестатистического человека.

Функции соответствия цветов — это значения каждой первичной составляющей света — красной, зелёной и синей, которые должны присутствовать, чтобы человек со средним зрением мог воспринимать все цвета видимого спектра. Этим трём первичным составляющим были поставлены в соответствие координаты X, Y и Z.

YUV - линейная трехкомпонентная цветовая модель, в основе которой стоит яркость и две цветоразностных компоненты. Подобную модель мы уже рассматривали в .

Кратко модель можно описать так:

Для любого пикселя (если речь идет о компьютерном изображении) создается слой яркости (в оттенках серого), а также 2 слоя, необходимых для восстановления оригинала. Модель использовалась для перехода от ч/б ТВ к цветному, так как старые телевизоры могли использовать лишь один слой, а новые цветные все 3 компонента. Думаю технология аналогичная используется и в окрашивании старых советских кино в цвет.

Модель YUV:

HSV (Hue, Saturation, Value — тон, насыщенность, значение) или HSB (Hue, Saturation, Brightness — оттенок, насыщенность, яркость) - цветовая модель, тоже трехкомпанентная.

Как видно из рисунка, данные модели представляются в трехмерном формате (цилиндр и конус). Из-за трехмерности не совсем удобно их использовать в качестве цветовой модели внутри ПО и изображений, но зато в качестве визуализации они подходят очень кстати.

Думаю подобные палитры в графических редакторах видели многие из вас:

Для выбора цвета из палитры, действительно, такой формат представления удобен и часто используется в прикладном ПО.

RYB - модель на основе 3х компонентов - Красного, Желтого и Синего цветов. Раньше считалась правильной, но не все цвета можно такой моделью задать, особенно оттенки зеленого. Основана на палитре художников, которые смешивают краски для получения нужного цвета, но художники используют не 3 цвета, а большее количество, поэтому модель не используется сейчас уже.

Lab — аббревиатура названия двух разных (хотя и похожих) . Более известным и распространенным является CIELAB (точнее, CIE 1976 L*a*b*), другим — Hunter Lab (точнее, Hunter L, a, b). Таким образом, Lab — это неформальная аббревиатура, не определяющая цветовое пространство однозначно. Чаще всего, говоря о пространстве Lab, подразумевают CIELAB.

При разработке Lab преследовалась цель создания цветового пространства, изменения цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета. Таким образом математически корректировалась бы нелинейность восприятия цвета человеком. Оба цветовых пространства рассчитываются относительно определенного значения . Если значение точки белого дополнительно не указывается, подразумевается, что значения Lab рассчитаны для стандартного осветителя D50. (c) Wikipedia

Для простых смертных, RGB и CMYK это то, как мы будем кодировать цвета для машин, причем не учитывая итог (CMYK учитывает итог путем калибровки инструмента и цветовой модели). А вот LAB обеспечивает отображение именно того цвета, который увидит человек. Часто используется как промежуточная цветовая модель при переводе из одной модели к другой.

NCS (Natural Color System , естественная система цвета) — цветовая модель, предложенная Скандинавским институтом цвета (Skandinaviska Färginstitutet AB), Стокгольм, Швеция. Она основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции.

За основу взяты 6 цветов: Белый, черный, голубой, желтый, зеленый и красный.

Остальные цвета получаются путем задания темноты, насыщенности и двух основных цветов.

Вроде (беру из головы):

Оранжевый: 5% темноты, 80% насыщенности, 50% желтого, 50% красного.

Ну и в таком духе.

Цветовая модель Пантон , система PMS (Pantone Matching System) — стандартизованная система подбора цвета, разработанная американской фирмой Pantone Inc в середине XX века. Использует цифровую идентификацию цветов изображения для полиграфии печати как смесевыми, так и красками. Эталонные пронумерованные цвета напечатаны в специальной книге, страницы которой веерообразно раскладываются.

Существуют и другие цветовые модели, я отобрал наиболее приглянувшиеся и интересные. Для наших простых нужд хватает RGB, YUV, LAB моделей, для полиграфии добавляются еще CMYK и другие.

Вообще довольно интересно было узнать о том, как вроде бы простой цвет задают совершенно разными моделями.

Цветовая модель RGB (от англ. Red, Green, Blue - красный, зелёный, синий) - аддитивная цветовая модель, описывающая способ синтеза цвета для цветовоспроизведения. В российской традиции иногда обозначается как КЗС.

История
В 1861 г. английский физик Джеймс Кларк Максвелл выступил с предложением использовать способ получения цветного изображения, который известен как - аддитивное слияние цветов. Аддитивная (суммирующая) система цветопередачи означает, что цвета в этой модели добавляются к черному (Black) цвету. Аддитивное смещение цветов можно трактовать как, - процесс объединения световых потоков различных цветов до того, как они достигнут глаза.
Аддитивными моделями цвета (от англ. add - складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на
Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.
Существуют две разновидности аддитивной модели цвета: аппаратно зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному.
Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.
В 1931 г. Международная комиссия по освещению (CIE) стандартизовала цветовую систему, а также завершила работу, позволившую создать математическую модель человеческого зрения. Было принято цветовое пространство CIE 1931 XYZ, являющееся базовой моделью по сей день.

Механизм формирования цветов
При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых цветов в разных соотношениях.На представлена цветовая модель . R+G=Y (Yellow - желтый); G+B=C (Cyan - голубой); B+R=M (Magenta - пурпурный).Сумма всех трех основных цветов в равных долях дает белый (White) цвет R+G+B=W (White - белый). Например, на экране монитора с электронно-лучевой трубкой, а также аналогичного телевизора изображение строится при помощи засветки люминофора пучком электронов. При таком воздействии люминофор начинает излучать свет. В зависимости от состава люминофора, этот свет имеет ту или иную окраску.
Промежуточные оттенки получаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанный оттенок. Если же зерна одного цвета засветить не так, как остальные, то смешанный цвет не будет оттенком серого, а приобретет окраску. Такой способ формирования цвета напоминает освещение белого экрана в полной темноте разноцветными прожекторами. Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы, RGB 1 бит на каждый компонент RGB то мы получим все восемь различных цветов . На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256 х 256 х 256 = 16 777 216 цветов. Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. . Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие. Возможность отобразить не менее 16,7 миллиона оттенков это полно цветные типы изображения которые иногда называют True Color (истинные или правдивые цвета). потому что человеческий глаз все равно не в силах различить большего разнообразия. Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная - черному цвету. Поэтому белый цвет имеет в десятеричном представлении код (255,255,255), а в шестнадцатеричном - FFFFFF. Черный цвет кодирует соответственно (0,0,0) или 000000. Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях (200,200,200) или C8C8C8 получается светло-серый цвет, а при значениях (100,100,100) или 646464 - темно-серый. Чем более темный оттенок серого нужно получить, тем меньшее число нужно вводить в каждое текстовое поле. Черный цвет образуется, когда интенсивность всех трех составляющих равна нулю, а белый - когда их интенсивность максимальна.

Ограничения
У модели цвета RGB есть три принципиальных недостатка: Первый - недостаточность цветового охвата. Независимо от размера цветового пространства модели цвета RGB, в ней невозможно воспроизвести много воспринимаемых глазом цветов (например, спектрально чистые голубой и оранжевый). У таких цветов в формуле цвета RGB имеются отрицательные значения интенсивностей базового цвета, а реализовать не сложение, а вычитание базовых цветов при технической реализации аддитивной модели очень сложно. Этот недостаток устранен в перцептивной аддитивной модели.
Второй недостаток модели цвета RGB состоит в невозможности единообразного воспроизведения цвета на различных устройствах (аппаратная зависимость) из-за того, что базовые цвета этой модели зависят от технических параметров устройств вывода изображений. Поэтому, строго говоря, единого цветового пространства RGB не существует, области воспроизводимых цветов различны для каждого устройства вывода. Более того, даже сравнивать эти пространства численно можно только с помощью других моделей цвета. Третий недостаток коррелированность цветовых каналов (при увеличении яркости одного канала другие уменьшают ее).

Достоинства
Множество компьютерного оборудования работает с использованием модели RGB, кроме того, эта модель очень проста, ее "генетическое" родство с аппаратурой (сканером и монитором), широкий цветовой охват (возможность отображать многообразие цветов, близкое к возможностям человеческого зрения) этим объясняется ее широкое распространение.
Главные достоинства модели цвета RGB состоят в ее простоте, наглядности и в том, что любой точке ее цветового пространства соответствует визуально воспринимаемый цвет.
Благодаря простоте этой модели она легко реализуется аппаратно. В частности, в мониторах управляемыми источниками света с различным спектральным распределением служат микроскопические частицы люминофора трех видов. Они хорошо заметны через увеличительное стекло, но при рассматривании монитора невооруженным глазом из-за явления визуального смыкания видно непрерывное изображение.
Интенсивность светового излучения в мониторах на основе электроннолучевых трубок регулируется с помощью трех электронных пушек, возбуждающих свечение люминофоров. Доступность многих процедур обработки изображения (фильтров) в программах растровой графики, небольшой (по сравнению с моделью CMYK) объем, занимаемый изображением в оперативной памяти компьютера и на диске.

Применение
Цветовая модель RGB повсеместно используется в компьютерной графике по той причине, что основное устройство вывода информации (монитор) работает именно в этой системе. Изображение на мониторе образуется из отдельных светящихся точек красного, зеленого и синего цветов. Посмотрев на экран работающего монитора через увеличительное стекло, можно разглядеть отдельные цветные точки - а еще проще это увидеть на экране телевизора, поскольку его точки значительно крупнее.
Широко используется при разработке электронных (мультимедийных) и полиграфических изданий.
Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии.
В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенка цветного изображения.

Используемые источники
1. Домасев М. В. Цвет, управление цветом, цветовые расчеты и измерения. Санкт-Петербург: Питер 2009 г.
2. Петров М. Н. Компьютерная графика. Учебник для вузов. Санкт-Петербург: Питер 2002 г.
3. ru.wikipedia.org/wiki/Цветовая модель.
4. darkroomphoto.ru
5. bourabai.kz/graphics/0104.htm
6. litpedia.ru
7. youtube.com/watch?v=sA9s8HL-7ZM

RGB - сокращение английских слов Красный (Red), Зеленый (Green), Синий (Blue). Эта модель предназначена для описания залучаемых цветов. Базовые компоненты модели основаны на трех лучах - красном, синем и зеленом, т.к. человеческое восприятие цвета основано именно на них. Вся остальная палитра создается путем смешения трех основных цветов в различных соотношениях. Следует отметить, что приложении двух основных цветов полученный цвет будет светлее, чем базовые составляющие. С другой стороны, белый цвет оттенок серого создаются путем смешения трех базовых цветов в равной степени, но с различной насыщенностью. Цвета такой модели называют аддитивными.

Цветовая модель RGB

Изображения на экране монитора, а также получаемые методом сканирования кодируются в модели RGB.

Цветовое пространство модели иногда представляют в виде цветового куба.

Представление модели RGB в графическом виде

По осям откладываются значения цветовых каналов, каждый из которых может принимать значения от нуля (свет отсутствует) до 255 (наибольшая яркость света). Внутри куба содержатся все цвета модели. В точке начала отсчета координатных осей все значения каналов равны нулю (черный цвет), а в противоположной точке максимальные значения каналов при смешении образуют белый цвет. Если две эти точки соединить отрезком, то на этом отрезке будет располагаться шкала оттенков от черного к белому - серая шкала. Три вершины куба дают три чистых исходных цвета. В свою очередь, каждая из трех других вершин между ними дает чистый, смешанный из двух основных, цвет. Каждый цветовой канал и серая шкала имеет 256 градаций серого.

Модель CMY предназначена для описания отраженных цветов. Цвета этой модели основаны на вычитании части спектра падающего света (белого) и называются субтрактивными. При смешении двух основных цветов результат окажется темнее любого из исходных, поскольку каждый из цветов поглощает свою часть спектра. Каналы CMY представляют собой остаток вычитания основных RGB-компонентов из белого цвета (как известно, белый цвет состоит из полного спектра цветов). При этом остаются следующие цвета: Cyan - голубой (белый цвет минус красный). Magenta - пурпурный (белый минус зеленый), Yellow - желтый (белый минус синий).

Цветовая модель CMY

В качестве усовершенствования этой модели появилась модель CMYK, которая была создана для описания процесса полноцветной печати, к примеру, на цветном принтере. Пурпурная, голубая и желтая краски последовательно наносятся на бумагу в различных пропорциях. Головка принтера устроена таким образом, что позволяет использовать эти цвета (полиграфическую триаду) одновременно и за один проход по бумаге. Нанесенные на одно место основные цвета смешиваются, образуя требуемые оттенки. Однако черный цвет получить методом смешения трех основных цветов не удастся, т.к. вместо черного получится скорее серо-коричневый цвет. Для получения чистого черного и оттенков серого в модель CMY был добавлен новый компонент - черный цвет. В цветовой модели CMYK - это и есть буква К (В1асК). Таким образом, CMYK - четырехканальная цветовая модель.

Модель CMYK предназначена для описания печатных изображений. Ее цветовой охват значительно ниже, чем у RGB, так как модель CMYK описывает отраженные цвета, интенсивность которых всегда меньше, чем у излучающих. Рассматривать CMYK можно как производную модели CMY. Пространство этой модели аналогично пространству модели RGB, только с перемещением начала координат.

Представление модели CMYK в графическом виде

Смешение всех трех компонентов при максимальных значениях дает черный цвет. С другой стороны, при полном отсутствии краски и, соответственно, нулевых значениях основных компонентов получится белый цвет. Применительно к CMYK, белый цвет следует воспринимать как белую бумагу. При смешивании основных компонентов с равными значениями получаются оттенки серого цвета и образуется серая шкала.

Эта цветовая модель имеет несколько особенностей, из-за которых переход в нее может создать некоторые проблемы. Дело в том, что цветовой охват CMYK недостаточно велик, и перевод в эту модель из модели RGB может привести к некоторым искажениям цветопередачи. Часть цветов из охвата модели RGB не может быть передана на бумаге, вследствие чего не входит в охват модели CMYK. Эта модель имеет проблемы с передачей ярко-голубых, синих, зеленых и оранжевых цветов. При конвертировании эти цвета приводятся к наиболее близким к ним в модели CMYK.

Хотя в CMYK и не редактируют изображение, однако, если оно готовится к печати, то часто возникает необходимость просмотреть соответствие цветов изображения цветовому охвату модели. Каждый раз, когда возникает такая необходимость, перевод изображения в CMYK и обратно в RGB с большой долей вероятности приведет к ухудшению качества изображения. Поэтому, если есть такая возможность, нужно прибегать к дополнительным средствам, как, например, в Photoshop - функция просмотра изображения в модели CMYK без действительного перевода в эту модель.

Как и модель RGB, модель CMYK является annapamнo-зависимой. Это означает, что при работе с различными устройствами вывода и печати изображения (например, мониторами и цветными принтерами) одно и то же графическое изображение будет выглядеть по-разному. Следует также иметь в виду, что получаемый цвет зависит не только от значений базовых составляющих, но и от параметров устройств: свойств используемой бумаги, особенностей принтеров, свойств люминофора у мониторов от различных фирм-производителей, наличия аппаратного цветового контроля монитора, а также свойств видеокарты.

В процессе работы по подготовке и выводу на печать изображения участвуют устройства, работающие как в модели RGB, так и CMYK. К первым можно отнести мониторы, сканеры и цифровые камеры, а ко вторым - цветные принтеры и фотонаборные автоматы. Поскольку цветовые охваты этих устройств различаются, необходимые преобразования из одной модели в другую сопряжены с неизбежными искажениями цветов и оттенков. Поэтому для достижения предсказуемого цвета была создана специальная система цветокоррекции - программа, цель которой заключается в достижении одинаковых цветов для всех этапов работы с изображениями, начиная сканированием и заканчивая выводом на печать.