В каком году был выпущен микропроцессор. История создания процессоров

03.05.2019

Федерико Фаджин присоединился к компании Intel, чтобы превратить видение Теда Хоффа в кремниевую реальность. Менее чем через год он и его команда создали микропроцессор 4004, который был представлен в ноябре 1971 г. Первой серьезной проблемой для Фаджина стала разработка методологии использования новой технологии кремниевых затворов. Это позволило по-другому создавать сложные схемы. Поскольку ничего подобного до этого никто не делал, пришлось все начинать с нуля. И Федерико Фаджину это удалось - он самостоятельно разработал чип всего за 9 месяцев 1970 г. Это фантастически короткий срок по сравнению с процессорами «Интел» следующих поколений. Например, для создания 32-разрядного чипа уже потребовалось 100 человеко-лет.

Конструктивное исполнение

Дизайн на основе кремниевых затворов, созданный Федерико Фаджином, сделал первый микропроцессор реальностью в 1971 г. Он был необычным, так как интеграция такой сложности никогда раньше не достигалась. Фаджин смог разработать процессор Intel 4004 только благодаря своим инновациям в МОП-технологии производства Начальная загрузка и скрытый контакт стали идеями, которые легли в основу впервые примененной им методологии проектирования, позволили спасти архитектуру Хоффа и реализовать ее в 1970 г. Без этого она была бы неосуществима, потому что результат был бы слишком медленным и дорогостоящим, чтобы иметь практическое применение. Таким образом, изобретение не заключалось в разработке модели простого ЦПУ, недостатка в которых в то время не было, но в создании и внедрении технологии, которая впервые позволила разместить на одном кристалле все функциональные блоки процессора.

Тед Хофф надеялся, что предложенная им архитектура и набор команд могут быть размещены на одном кристалле. Однако он не мог оценить осуществимость проекта или воплотить его, поскольку не являлся МОП-разработчиком. Именно Федерико Фаджин изобрел дизайн и компоновку 2300 транзисторов произвольной логики на кристалле размером всего 3х4 мм, недорогом, с 5-кратной скоростью работы и вдвое большей плотностью размещения элементов, чем у существовавшей в то время технологии МОП.

Методология Фаджина стала прорывом и использовалась во всех ранних микропроцессорах компании. Итальянский инженер привел проект к успешному завершению и сыграл роль в продвижении нового процессора Intel, продемонстрировав руководству компании, что чип может использоваться не только в калькуляторах.

Технические характеристики

Спецификации процессора Intel 4004 следующие:

  • Площадь кристалла: 12 мм 2 .
  • Максимальная тактовая частота: 740 кГц.
  • Время цикла: 10,8 мкс (8 тактов / цикл команды).
  • Время выполнения команды - 1 или 2 цикла команды (10,8 или 21,6 мкс), 46300-92600 команд в секунду.
  • Сложение двух 8-значных чисел (по 32 бита каждое) занимает 850 мкс, т. е. 79 циклов команд, около 10 циклов на десятичную цифру.
  • Раздельное хранение программ и данных. В отличие от дизайнов на основе использующих отдельные шины, в 4004 есть одна мультиплексированная 4-битная шина для передачи 12-разрядных адресов, 8-битных команд и 4-битных слов данных.
  • Прямая адресация 51220 бит (640 байт) ОЗУ, организованного в виде 1280 4-разрядных «символов», из которых 1024 представляют данные и 256 - состояние.
  • Прямая адресация 32768 бит ПЗУ (4096 байт).
  • Набор из 46 команд (из которых 41 шириной 8 бит и 5 - 16 бит).
  • 16 регистров по 4 бита.
  • Внутренний стек подпрограмм глубиной в 3 уровня.

Заказ Busicom

Компьютер с хранимой программой, использовавшийся в качестве калькулятора в 1950-х и 1960-х годах, был одним из лучших достижений послевоенной эпохи и был знаком всем инженерам, работающим в полупроводниковой промышленности.

В 1969 г. японский производитель калькуляторов Busicom обратился к компании Intel, чтобы воплотить в кремнии их логический дизайн для серии калькуляторов. Их подход повторял реализацию первого в мире настольного программируемого калькулятора Olivetti"s Programma 101, представленного на Всемирной ярмарке в Нью-Йорке в 1965 г. и поступившего в продажу в том же году. Programma 101 имел ЦПУ (центральное процессорное устройство) и с последовательным чтением и записью, которые были выполнены из дискретных компонентов. Компания Busicom предложила аналогичную архитектуру, предусматривавшую реализацию процессора на трех МОП-микросхемах, ПЗУ и регистра еще на двух, с двумя другими чипами ввода-вывода.

Архитектура MCS-4

Руководитель отдела прикладных исследований Тед Хофф признал, что сложность дизайна Busicom заключалась в использовании последовательной памяти, и поскольку Intel разрабатывала свое первое динамическое ОЗУ (оперативное запоминающее устройство), он видел, что конструкцию можно существенно упростить, используя традиционную и более универсальную компьютерную архитектуру, основанную на ОЗУ. С помощью Стэна Мазора и благодаря взаимодействию с инженерами Busicom, среди которых был Масатоши Сима, Хофф сформулировал архитектуру MCS-4, сократив дизайн с 7 до 4 чипов. Хофф полагал, что ЦПУ можно было бы реализовать в одном 4-битном микропроцессоре, но ни он, ни Мазор не были МОП-разработчиками, и у Intel не было специалистов, способных создавать сложные ИС с произвольной логической структурой. Поэтому предложение Хоффа простаивало около 6 месяцев, пока в апреле 1970 года не был принят на работу Федерико Фаджин, который и возглавил этот проект.

Инновационная технология

Федерико Фаджин перешел в Intel из Fairchild Semiconductor, где в 1968 г. он разработал МОП-технологию с кремниевыми затворами и создал на ее основе первую в мире коммерческую интегральную схему 3708. Технология была принята компанией Intel и впоследствии всей мировой полупроводниковой промышленностью, и в течение 40 лет являлась базовой структурой, использовавшейся почти во всех микросхемах. соучредитель компании «Интел», признал, что основным компонентом ее раннего успеха стал именно этот шаг. МОП-технология с кремниевыми затворами обеспечила конкурентоспособные характеристики Intel 4004: чип был примерно в 5 раз быстрее, имел в 100 раз меньшую утечку перехода и вмещал в 2 раза больше логических транзисторов произвольного типа по сравнению с чипом того же размера, изготовленного с алюминиевыми затворами, и рассеивал равную мощность. Это позволило создавать первые коммерчески успешные динамические ОЗУ, датчики изображения с ПЗС-матрицей (приборы с зарядовой связью), энергонезависимые запоминающие устройства и микропроцессоры. Впервые в истории процессор содержал все компоненты компьютера общего назначения.

Создание нового дизайна и макета

Тэд Хофф не был конструктором МОП-схем. Его роль заключалась в создании архитектуры и в дальнейшей поддержке продуктов. После определения набора команд проект был передан команде МОП-разработчиков, возглавляемой Федерико Фаджином. Работы велись очень быстро, и примерно за 9 месяцев были созданы 3 основных чипа. Последним из них в январе 1971 года появился микропроцессор Intel 4004.

По словам Стэна Мазора, заслуга Фаджина состояла в том то, что он осуществил инженерный дизайн, а Хоффа - в создании оригинальной концепции и архитектуры. Сам Мазор являлся своего рода посредником, который помогал, как мог, и делал то, что мог.

Федерико Фаджин разработал методологию проектирования МОП-структур с кремниевым затвором, используемых в произвольных логических схемах. Эта было необходимо, поскольку новая технология требовала другого дизайна, и особенно макета.

По словам Фаджина, он решил, что вместо того, чтобы отдельно проектировать логику, а затем схему, следует делать их вместе на одном листе. При этом необходимо учитывать расположение, насколько это возможно, чтобы проводники и транзисторы располагались как можно ближе к окончательной компоновке. Очевидно, для этого нужно было предварительно провести общее планирование чипа, чтобы знать размещение различных блоков. Именно тогда он и ​​уточнил методологию создания такого типа схем.

Проектирование нового процессора Intel и руководство проектом MCS-4 с начала разработки до производства мог осилить только тот, кто был способен внедрять инновации в технологию процесса, макетирование микросхем, схемотехнику, логический дизайн и компьютерную архитектуру. Фаджин приобрел такие навыки и знания через свое образование и опыт работы до того, как он присоединился к Intel. После окончания технического вуза в Виченце (Италия) он участвовал в разработке и создании небольшого транзисторного экспериментального компьютера с памятью на магнитных сердечниках в компании Olivetti в Борголомбардо (Италия) в возрасте 19 лет. Затем он с отличием окончил Университет Падуи и занялся разработкой технологии МОП, создав 2 коммерческие микросхемы, когда работал в SGS-Fairchild (теперь ST Micro). В 1968 г. он был направлен в Fairchild Semiconductor R&D в Пало-Альто (Калифорния), где создал технологию МОП с кремниевым затвором и др.

Реальные инновации

Концептуализация первого процессора, ставшая основным вкладом Хоффа в проект 4004, происходила и в других компаниях. К такому же выводу пришли несколько групп независимо друг от друга. Поэтому главным в изобретении микропроцессора было создание экономически обоснованного продукта. Только один человек в мире знал, как сделать следующий шаг и перевести архитектуру в рабочий дизайн. Это был Федерико Фаджин. Без него первый микропроцессор никогда бы не был построен. Еще в Fairchild он изобрел технологию, которая легла в основу будущих устройств. После начала работы в компании «Интел», он исправил ошибки отсутствующего Хоффа, а затем сделал первый чип Intel 4004, после чего возглавил разработку 8008 и являлся главным архитектором 8080.

В то время инженеры знали, как создавать небольшие компьютеры, делать логический дизайн ЦПУ и создавать программы. Идея о микропроцессоре, т. е. о размещении на одном кристалле универсального компьютера, тоже витала в воздухе. Некоторые архитектуры уже были реализованы на нескольких МОП-микросхемах. Тем не менее, никто не знал, как установить 2300 транзисторов произвольной логики - минимально необходимое количество для простого процессора - в микросхему достаточно маленького размера, чтобы производство было дешевым, скорость работы была высокой, а рассеиваемая мощность достаточной для размещения в существующих корпусах.

Таким образом, реальная инновация в микропроцессоре заключалась в его компоновке на одном кремниевом чипе, поскольку все остальное было сделано раньше. И это удалось Фаджину без какой-либо значимой помощи со стороны Теда Хоффа и Стэна Мазора.

Единственный, кто ему помогал, - это инженер Busicom Масатоши Сима. Он пришел в Intel, чтобы проверить прогресс выполнения заказа через пару дней после того, как Фаджин был нанят на работу. Он понял, что за предыдущие 6 месяцев не было достигнуто никакого прогресса. Учитывая задержку в проекте и отсутствие какого-либо инженера Intel, способного помочь, Симе было разрешено остаться на 6 месяцев, чтобы ускорить работу. Однако он мало знал об и, хотя он был очень полезным, все творческие решения принимал Фаджин. Начальник последнего, Лесли Вадаш, был так озабочен дизайном 1103 (первым 1024-битным динамическим ОЗУ, считавшегося будущим Intel), что не мог обеспечить технический контроль над проектом MCS-4. После успеха с 4004 Фаджин руководил внедрением 8008, а также задумал и определил архитектуры самых успешных из всех первых процессоров - 4040 и 8080.

Сомнения разработчиков

По словам Стэна Мазора, он и Тед Хофф полагали, что Intel 4004 был слишком агрессивным. Они не были уверены, что его можно сделать, поэтому начали с другого чипа, названного 4005. Это был совместный проект с MIL, который был партнером Intel в Канаде. Они определили намного более простую архитектуру, чем 4004. Канадская компания должна была разработать чип, а Intel - предоставить память. Оказалось, что она не смогла сделать 4005.

Хофф и Мазор в 1994 г. не были уверены в возможности реализации 4004. Вот почему через несколько месяцев после того, как Фаджин присоединился к Intel, они создали более простую архитектуру 4005 и отдали в канадскую компанию MIL для разработки. Но инженерам MIL микропроцессор сделать не удалось. Стало понятно, что даже создание простого чипа было далеко от рутинной работы. Кроме того, Хофф и Мазор сомневались, что 4004 может пригодиться для приложений, отличных от калькуляторов, кассовых аппаратов и т.п. Они думали, что только 1201, а позже и 8008 будут иметь достаточно универсальную архитектуру, чтобы использоваться в различных приложениях. После завершения проекта 4004 Фаджин продемонстрировал, что микропроцессор может применяться в различных системах управления и призвал руководство вывести Intel 4004 на рынок.

Неудачи с 8008

Другим примером, доказывающим то, насколько необходимой была методология Фаджина, является Intel 8008, архитектура которого первоначально разрабатывалась корпорацией Computer Terminal Corporation (CTC). Работа над чипом, первоначально названным 1201, началась до того, как Фаджин присоединился к Intel, но проект, назначенный разработчику процессоров с произвольной логикой, который перешел из General Instrument, далеко не продвинулся, потому что в то время отсутствовала какая-либо методология и библиотеки схем. Работы над 8008 были приостановлены и возобновились только в год выпуска Intel 4004.

Микропроцессор TI

Еще одним примером является первый одночиповый ЦПУ, который стал вторым источником для 8008, заказанных CTC у компании Texas Instruments. Объявленный в прессе в середине 1971 года, всего через несколько месяцев после успешного создания 4004, этот процессор так никогда и не заработал и никогда не продавался. Он был создан с использованием МОП-технологии с металлическим затвором компанией, которая имела многолетний опыт разработки ИС со сложной произвольной логикой. По сравнению с процессором «Интел-8008», размер чипа ТІ был вдвое больше, обеспечивая выполнение тех же функций. Скорость работы и рассеиваемая мощность никогда не обнародовались.

Пример для подражания

После того, как проект 4004 был завершен, другие инженеры, как внутри, так и вне компании Intel, смогли изучить методы, используемые Фаджином, исследовав дизайн под микроскопом. Этот же стиль использовался во всех других ранних микропроцессорах Intel и Zilog.

В заключение

4004 стал самым первым в истории процессором, сделанным по технологии кремниевого затвора. Это была самая передовая интегральная микросхема того времени. Ее создание требовало не только экстраординарных творческих способностей и навыков от дизайнера, но и глубокого знания новой технологии, которое мог иметь только ее разработчик. Кроме того, для успешного завершения проекта, который требовалось завершить за 10 месяцев из-за предыдущих невыполненных обязательств перед клиентом, были необходимы большое мужество, мотивация, навыки управления и устойчивая напряженная работа.

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

Введение

1 Развитие микропроцессоров

2 Микропроцессоры i80386

3 Микропроцессоры i80486

4 Процессоры Pentium

5 Производительность процессоров

6 Сопроцессоры

Список используемой литературы


Введение

Важнейший элемент любого PC - микропроцессор. Он в большей степени определяет возможности вычислительной системы. Первый микропроцессор i4004 был изготовлен в 1971г и с тех пор фирма Intel прочно удерживает лидирующее положение на сегменте рынка. Наиболее успешен проект разработки i8080. Именно на ней был основан компьютер "Альтаир", для которого Б. Гейтс написал свой первый интерпретатор Basic. Классическая архитектура i8080 оказала огромное влияние на дальнейшее развитие однокристальных микропроцессоров. Настоящим промышленным стандартом для PC стал микропроцессор i8088, который был анонсирован Intel в июне 1979г. В 1981г "голубой гигант" (фирма IBM) выбрала этот процессор для своего PC. Первоначально микропроцессор i8088 работал на частоте 4.77 МГц и имел быстродействие около 0.33 Mops, однако потом были разработаны его клоны, рассчитанные на более высокую тактовую частоту 8 МГц. Микропроцессор i8086 появился ровно на год раньше, в июле 1978г, стал популярен благодаря компьютеру CompaqDecPro. Опираясь на архитектуру i8086 и учитывая запросы рынка, в феврале 1982г Intel выпустила i80286. Он появился одновременно с новым компьютером IBM PC AT. Наряду с увеличением производительности имел защищенный режим (использовал более изощренную технику управления памятью). Защищенный режим позволил таким программам, как Windows 3.0 и OS/2 работать с ОЗУ выше 1Мб. Благодаря 16-ти разрядным данным на новой системной шине можно обмениваться с ПУ 2-х байтными сообщениями. Новый микропроцессор позволял в защищенном режиме обращаться к 16Мб ОЗУ. В процессоре i80286 впервые на уровне микросхем были реализованы мультизадачность и управление виртуальной памятью. При тактовой частоте 8 МГц достигалась производительность 1.2 Mips.

1 Развитие микропроцессоров

ЭВМ получили широкое распространение, начиная с 50-х годов. Прежде это были очень большие и дорогие устройства, используемые лишь в государственных учреждениях и крупных фирмах. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

В 1970 году Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ - первый микропроцессор Intel-4004, который уже в 1971 году был выпущен в продажу.

Это был настоящий прорыв, ибо МП Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда работал он гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но и стоил первый МП в десятки тысяч раз дешевле.

Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП технологии с проектными нормами 10 мкм. Электрическая схема прибора насчитывала 2300 транзисторов. МП работал на тактовой частоте 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел адресный стек (счетчик команд и три регистра стека типа LIFO), блок РОНов (регистры сверхоперативной памяти или регистровый файл - РФ), 4-разрядное параллельное АЛУ, аккумулятор, регистр команд с дешифратором команд и схемой управления, а также схему связи с внешними устройствами. Все эти функциональные узлы объединялись между собой 4-разрядной ШД. Память команд достигала 4 Кбайт (для сравнения: объем ЗУ миниЭВМ в начале 70-х годов редко превышал 16 Кбайт), а РФ ЦП насчитывал 16 4-разрядных регистров, которые можно было использовать и как 8 8-разрядных. Такая организация РОНов сохранена и в последующих МП фирмы Intel. Три регистра стека обеспечивали три уровня вложения подпрограмм. МП i4004 монтировался в пластмассовый или металлокерамический корпус типа DIP (Dual In-line Package) всего с 16 выводами. В систему его команд входило всего 46 инструкций.

Вместе с тем кристалл располагал весьма ограниченными средствами ввода/вывода, а в системе команд отсутствовали операции логической обработки данных (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ), в связи с чем их приходилось реализовывать с помощью специальных подпрограмм. Модуль i4004 не имел возможности останова (команды HALT) и обработки прерываний.

Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.

1 апреля 1972 г. фирма Intel начала поставки первого в отрасли 8-разрядного прибора i8008. Кристалл изготавливался по р-канальной МОП-технологии с проектными нормами 10 мкм и содержал 3500 транзисторов. Процессор работал на частоте 500 кГц при длительности машинного цикла 20 мкс (10 периодов задающего генератора).

В отличие от своих предшественников МП имел архитектуру ЭВМ принстонского типа, а в качестве памяти допускал применение комбинации ПЗУ и ОЗУ.

По сравнению с i4004 число РОН уменьшилось с 16 до 8, причем два регистра использовались для хранения адреса при косвенной адресации памяти (ограничение технологии - блок РОН аналогично кристаллам 4004 и 4040 в МП 8008 был реализован в виде динамической памяти). Почти вдвое сократилась длительность машинного цикла (с 8 до 5 состояний). Для синхронизации работы с медленными устройствами был введен сигнал готовности READY.

Система команд насчитывала 65 инструкций. МП мог адресовать память объемом 16 Кбайт. Его производительность по сравнению с четырехразрядными МП возросла в 2,3 раза. В среднем для сопряжения процессора с памятью и устройствами ввода/вывода требовалось около 20 схем средней степени интеграции.

Возможности р-канальной технологии для создания сложных высокопроизводительных МП были почти исчерпаны, поэтому "направление главного удара" перенесли на n-канальную МОП технологию.

1 апреля 1974 МП Intel 8080 был представлен вниманию всех заинтересованных лиц. Благодаря использованию технологии п-МОП с проектными нормами 6 мкм, на кристалле удалось разместить 6 тыс. транзисторов. Тактовая частота процессора была доведена до 2 Мгц, а длительность цикла команд составила уже 2 мкс. Объем памяти, адресуемой процессором, был увеличен до 64 Кбайт.

За счет использования 40-выводного корпуса удалось разделить ША и ШД, общее число микросхем, требовавшихся для построения системы в минимальной конфигурации, сократилось до 6.

В РФ были введены указатель стека, активно используемый при обработке прерываний, а также два программнонедоступных регистра для внутренних пересылок. Блок РОНов был реализован на микросхемах статической памяти. Исключение аккумулятора из РФ и введение его в состав АЛУ упростило схему управления внутренней шиной.

Новое в архитектуре МП - использование многоуровневой системы прерываний по вектору. Такое техническое решение позволило довести общее число источников прерываний до 256 (до появления БИС контроллеров прерываний схема формирования векторов прерываний требовала применения до 10 дополнительных чипов средней интеграции). В i8080 появился механизм прямого доступа в память (ПДП) (как ранее в универсальных ЭВМ IBM System 360 и др.).

ПДП открыл зеленую улицу для применения в микроЭВМ таких сложных устройств, как накопители на магнитных дисках и лентах дисплеи на ЭЛТ, которые и превратили микроЭВМ в полноценную вычислительную систему.

Традицией компании, начиная с первого кристалла, стал выпуск не отдельного чипа ЦП, а семейства БИС, рассчитанных на совместное использование.

Современные микропроцессоры построены на 32-х битной архитектуре x86 или IA-32 (Intel Architecture 32 bit), но совсем скоро произойдет переход на более совершенную, производительную 64-х битную архитектуру IA-64 (Intel Architecture 64 bit). Фактически переход уже начался, этому свидетельствует массовый выпуск и выход в продажу в 2003 году нового микропроцессора Athlon 64 корпорации AMD (Advanced Micro Devices), этот микропроцессор примечателен тем, что может работать как с 32-х битными приложениями, так и с 64-х битными. Производительность 64-х битных микропроцессоров намного выше.

2 Микропроцессоры i80386

В октябре 1985 года Intel анонсировал первый 32-разрядный микропроцессор i80386. Первым компьютером, использующий этот микропроцессор, был CompaqDeskPro 386. Полностью 32-разрядная архитектура в новом микропроцессоре была дополнена расширенным устройством управления памятью, которое помимо блока сегментации было дополнено блоком управления страницами. Этого устройство позволяет легко переставлять сегменты из одного места памяти в другое. На тактовой частоте 16 МГц быстродействие составляло 6 Mips. 32-адресные линии позволяли физически адресовать 4Gb памяти, кроме того, был введен новый режим управления виртуальной памятью V86. В этом режиме могли одновременно могли выполняться несколько задач для i8086.

Микропроцессор i80386, изготовленный на 1 кристалле с сопроцессором, назывался i80386DX. Более дешевая модель 32-разрядного микропроцессора появилась только в июле 1988г (i80386SX). Новый микропроцессор использовал 16-разрядную шину данных и 24-разрядную шину адреса. Это было особенно удобно для стандартного IBM PC AT. Программное обеспечение, написанное для i80386DX, работало на i80386DX. Внутренние регистры были полностью идентичны. Индекс SX произошел от слова "шестнадцать"(16-разрядная шина данных). Для i486 SX стал означать отсутствие сопроцессора. На осенней выставке в 1989г Intel анонсировала i80486DX, который содержал 1.2 млн. транзисторов на одном кристалле и был полностью совместим с остальными 86-ми процессорами. Новые микросхемы впервые объединили на 1 кристалле ЦП, сопроцессор и Кэш-память. Использование конвейерной архитектуры, присущей RISC-процессорам, позволяющим достичь 4-х кратного производительности обычных 32-разрядных систем. 8Кб встроенной Кэш-памяти ускоряли выполнение за счет промежуточного хранения часто используемых команд и данных. На тактовой частоте 25 МГц микропроцессор имел производительность 16.5 Mips. Созданная в январе 1991г. версия микропроцессора с тактовой частотой 50 МГц позволял увеличить производительность еще на 50%. Встроенный сопроцессор существенно ускорял математические вычисления, однако впоследствии стало ясно, что подобный микропроцессор необходим только 30% пользователей.

Cтраница 1


Первые микропроцессоры на четыре разряда (бита) состояли из одного кристалла.  

Первые микропроцессоры были выполнены на р - МОП-схе-мах. Современные микропроцессоры выполняются на и - МОП-схемах, имеющих низкую стоимость и среднее быстродействие, на предельно-маломощных КМОП-схемах и на ТТЛ-схемах с высоким быстродействием.  

Первые микропроцессоры (МП) появились в начале 70 - х годов в результате совместных усилий системотехников, решающих проблемы архитектурной организации средств вычислительной техники, и схемотехников, занимающихся вопросами конструирования и технологии производства радиоэлектронных средств.  

Первый микропроцессор - 4-разрядный Intel 404 - поступил на неподготовленный к этому событию рынок в 1971 г. МП 4004 разработанный с ориентацией на требования изготовителей калькуляторов, предстал перед миром как знамение новой эры интегральной электроники.  

В первых микропроцессорах применялся способ управления памятью, известный как чисто машинный.  

Стоит напомнить, что первые микропроцессоры, импортированные в Японию в 1971 г., стоили около тысячи долларов.  

За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо.  

Операционные системы создаются для какого-либо типа микропроцессоров на основе той системы команд, которая закладывается в микропроцессор при разработке. Первый микропроцессор был создан в фирме Intel, лидировавшей в производстве микросхем.  

Может ли какое-либо техническое достижение компьютерной эры соперничать по своей значимости с микропроцессором. Первые микропроцессоры, короткая история которых началась всего десятилетие назад, основывались главным образом на достижениях микроэлектроники - технологии, возникшей гораздо позднее появления самих ЭВМ и в значительной степени независимо от них. С самого начала конструкторы и изготовители микропроцессоров вызывали бурное одобрение, как только им удавалось продемонстрировать, что каждая их новая разработка еще на какой-то шажок становится ближе по структуре к современной средней или большой вычислительной машине. Наблюдатели без труда приходили к выводу, что если плотность монтажа, быстродействие и возможности автоматического проектирования будут продолжать возрастать в соответствии с ожиданиями, то микропроцессоры вскоре по мощности и логике сравняются с крупными мини - ЭВМ, а возможно, и с большими вычислительными машинами.  

В 1970 г. был сделан еще один важный шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004 (см. рис. справа), который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда, возможности Intel-4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, - он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле.  

Создание такой операционной системы, как PC-DOS, не является ни делом случая, ни результатом чисто технократического планирования. Экономическая конкуренция давно привела к появлению операционных систем для больших ЭВМ еще до появления первых микропроцессоров.  

Он представляет собой одну-единственную микросхему, управляющую всем, что происходит в ПК. Микросхема эта работает на определенной тактовой частоте, измеряемой некоторым количеством мегагерц. По сегодняшним меркам первые микропроцессоры (8088 или 80286) были до ужаса медлительны и не смогли бы управлять современными программами.  

Переконструировать большую интегральную схему всякий раз, когда компания пожелает обновить ассортимент выпускаемой продукции, что случается очень часто, действительно колоссальная работа. Микропроцессор появился на свет благодаря идее, выдвинутой специалистами из Бизиком: необходимо CKOEI-струировать такую интегральную схему, которую легко можно приспособить к любому новому изделию, осваиваемому их фирмой. Увы, тогда Япония была еще слишком слаба в сфере опытно-конструкторских разработок; поэтому Соединенным Штатам удалось подхватить мячик и убежать, создав первый микропроцессор.  

Однако фирма Intel продолжала придерживаться прототипа, средства на разработку которого уже были израсходованы. Таким образом, хорошо известный МП Intel 8008 стал первым микропроцессором на мировом рынке.