В. матрица корреляции и матрица факторов

13.10.2021

Познакомившись с понятиями факторной нагрузки и области совместных изменений, можно пойти дальше, снова привлекая для изложения аппарат матриц, элементами которых на этот раз будут коэффициенты корреляции.

Матрица коэффициентов корреляции, полученных, как правило, экспериментальным путем, называется матрицей корреляции, или корреляционной матрицей.

Элементы этой матрицы являются коэффициентами корреляции между всеми переменными данной совокупности.

Если мы имеем, например, набор, состоящий из тестов, то число коэффициентов корреляции, полученных экспериментальным путем, составит

Эти коэффициенты заполняют половину матрицы, находящуюся по одну сторону ее главной диагонали. По другую сторону находятся, очевидно, те же коэффициенты, так как и т. д. Поэтому корреляционная матрица симметрична.

Схема 3.2. Полная матрица корреляции

На диагонали этой матрицы находятся единицы, поскольку корреляция каждой переменной с самой собой равна +1.

Матрица корреляции, у которой элементы главной диагонали равны 1, называется «полной матрицей» корреляции (схема 3.2) и обозначается

Необходимо отметить, что, помещая на главной диагонали единицы, или корреляции каждой переменной с самой собой, мы учитываем полную дисперсию каждой переменной, представленной в матрице. Тем самым принимается во внимание влияние не только общих, но и специфичных факторов.

Наоборот, если на главной диагонали корреляционной матрицы находятся элементы соответствующие общностям и относящиеся лишь к общей дисперсии переменных, то учитывается влияние только общих факторов, элиминируется влияние специфичных факторов и ошибок, т. е. отбрасываются специфичность и дисперсия ошибок.

Матрица корреляции, в которой элементы главной диагонали соответствуют общностям, называется редуцированной и обозначается R (схема 3.3).

Схема 3.3. Редуцированная матрица корреляции

Выше уже говорилось о факторной нагрузке, или наполнении данной переменной конкретным фактором. При этом подчеркивалось, что факторная нагрузка имеет вид коэффициента корреляции между данной переменной и данным фактором.

Матрица, столбцы которой состоят из нагрузок данного фактора применительно ко всем переменным данной совокупности, а строки - из факторных нагрузок данной переменной, называется матрицей факторов, или факторной матрицей. Здесь также можно говорить о полной и редуцированной факторной матрице. Элементы полной факторной матрицы соответствуют полной единичной дисперсии каждой переменной из данной совокупности. Если нагрузки на общие факторы обозначить через с, а нагрузки специфичных факторов - через и, то полную факторную матрицу можно представить в следующем виде:

Схема 3.4. Полная факторная матрица для четырех переменных

Показанная здесь факторная матрица состоит из двух частей Первая часть содержит элементы, относящиеся к четырем переменным и трем общим факторам, причем предполагается, что все они относятся ко всем переменным. Это не есть необходимое условие, так как некоторые элементы первой части матрицы могут быть равными нулю, а это значит, что некоторые факторы относятся не ко всем переменным. Элементы первой части матрицы - это нагрузки общих факторов (например, элемент показывает нагрузку второго общего фактора при первой переменной).

Во второй части матрицы мы видим 4 нагрузки характерных факторов, по одной в каждой строке, что соответствует их характерности. Каждый из этих факторов относится лишь к одной переменной. Все другие элементы этой части матрицы равны нулю. Характерные факторы можно, очевидно, разбить на специфичные и обусловленные ошибками.

Столбец факторной матрицы характеризует фактор и его влияние на все переменные. Строка характеризует переменную и, ее наполненность различными факторами, иначе говоря, факторную структуру переменной.

При анализе только первой части матрицы мы имеем дело с факторной матрицей, показывающей общую дисперсию каждой переменной. Эта часть матрицы называется редуцированной и обозначается F. Эта матрица не учитывает нагрузки характерных факторов и не принимает во внимание специфичной дисперсии. Напомним, что в соответствии со сказанным выше об общих дисперсиях и факторных нагрузках, представляющих собой квадратные корни из общих дисперсий, сумма квадратов элементов каждой строки редуцированной факторной матрицы F равна общности данной переменной

Соответственно сумма квадратов всех элементов строки полной матрицы факторов равна , или полной дисперсии данной переменной.

Так как в факторном анализе основное внимание уделяется общим факторам, то мы в дальнейшем будем использовать главным образом редуцированную корреляционную и редуцированную факторную матрицу.


Основные положения

Факторный анализ – это один из новых разделов многомерного статистического анализа. Первоначально этот метод разрабатывался для объяснения корреляции между исходными параметрами. Результатом корреляционного анализа является матрица коэффициентов корреляции. При малом числе признаков (переменных) можно провести визуальный анализ этой матрицы. С ростом числа признаков (10 и более) визуальный анализ не даст положительных результатов. Оказывается, что все многообразие корреляционных связей можно объяснить действием нескольких обобщенных факторов, которые являются функциями исследуемых параметров, при этом сами факторы могут быть неизвестны, но их можно выразить через исследуемые признаки. Основоположником факторного анализа является американский ученый Л.Терстоун.

Современные статистики под факторным анализом понимают совокупность методов, которые на основе реально существующей связи между признаками позволяет выявить латентные (скрытые) обобщающие характеристики организационной структуры и механизмы развития изучаемых явлений и процессов.

Пример: предположим, что n автомобилей оценивается по 2 признакам:

x 1 – стоимость автомобиля,

x 2 – длительность рабочего ресурса мотора.

При условии коррелированности x 1 и x 2 в системе координат появляется направленное и достаточно плотное скопление точек, формально отображаемое новыми осями и(Рис.5).

Рис.6

Характерная особенность F 1 и F 2 заключается в том, что они проходят через плотные скопления точек и в свою очередь коррелируют с x 1 x 2 .Максимальное

число новых осей будет равно числу элементарных признаков. Дальнейшие разработки факторного анализа показали, что этот метод может быть с успехом применены в задачах группировки и классификации объектов.

Представление информации в факторном анализе.

Для проведения факторного анализа информация должна быть представлена в виде матрицы размером m x n:

Строки матрицы соответствуют объектам наблюдений (i=), а столбцы – признакам (j=).

Признаки, характеризующие объект имеют разную размерность. Для того, чтобы их привести к одной размерности и обеспечить сопоставимость признаков матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным способом нормировки является стандартизация. От переменных переходят к переменным

Среднее значение j признака,

Среднеквадратическое отклонение.

Такое преобразование называется стандартизацией.

Основная модель факторного анализа

Основная модель факторного анализа имеет вид:

z j – j -й признак (величина случайная);

F 1 , F 2 , …, F p – общие факторы (величины случайные, нормально распределенные);

u j – характерный фактор;

j1 , j2 , …, jp факторы нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);

Общие факторы имеют существенное значение для анализа всех признаков. Характерные факторы показывают, что он относится только к данному -му признаку, это специфика признака, которая не может быть выражена через факторы. Факторные нагрузки j1 , j2 , …, jp характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа – определить факторные нагрузки. Дисперсию S j 2 каждого признака, можно разделить на 2 составляющие:

    первая часть обуславливает действие общих факторов – общность h j 2 ;

    вторая часть обуславливает действие характерного фактора –характерность - d j 2 .

Все переменные представлены в стандартизованном виде, поэтому дисперсия - гопризнака S j 2 = 1.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде:

где - доля дисперсии признака, приходящаяся на k -ый фактор.

Полный вклад какого-либо фактора в суммарную дисперсию равен:

Вклад всех общих факторов в суммарную дисперсию:

Результаты факторного анализа удобно представить в виде таблицы.

Факторные нагрузки

Общности

a 11 a 21 … a p1

a 12 a 22 a p2

… … … …

a 1m a 2m a pm

факторов

V 1 V 2 … V p

А - матрица факторных нагрузок. Ее можно получить различными способами, в настоящее время наиболее распространение получил метод главных компонент или главных факторов.

Вычислительная процедура метода главных факторов.

Решение задачи с помощью главных компонент сводится к поэтапному преобразованию матрицы исходных данных X :

Х - матрица исходных данных;

Z – матрица стандартизированных значений признаков,

R – матрица парных корреляций:

Диагональная матрица собственных (характеристических) чисел,

j находят решением характеристического уравнения

Е –единичная матрица,

 j – показатель дисперсии каждой главной компоненты ,

при условии стандартизации исходных данных , тогда=m

U – матрица собственных векторов, которые находят из уравнения:

Реально это означает решение m систем линейных уравнений для каждого

Т.е. каждому собственному числу соответствует система уравнений.

Затем находят V - матрицу нормированных собственных векторов.

Матрицу факторного отображения А вычисляют по формуле:

Затем находим значения главных компонент по одной из эквивалентных формул:

Совокупность из четырех промышленных предприятий оценена по трем характерным признакам:

    среднегодовая выработка на одного работника х 1 ;

    уровень рентабельности х 2 ;

Уровень фондоотдачи х 3.

Результат представлен в стандартизированной матрице Z :

По матрице Z получена матрица парных корреляций R :

    Найдем определитель матрицы парных корреляций(например методом Фаддеева):

    Построим характеристическое уравнение:

    Решая это уравнение найдем:

Таким образом исходные элементарные признаки х 1 , х 2 , х 3 могут быть обобщены значениями трех главных компонент, причем:

F 1 объясняет примерно всей вариации,

F 2 - , аF 3 -

Все три главные компоненты объясняют вариации полностью на 100%.

Решая эту систему находим:

Аналогично строятся системы для  2 и  3 . Для  2 решение системы:

Матрица собственных векторов U принимает вид:

    Каждый элемент матрицы разделим на сумму квадратов элементов j-го

столбца, получим нормированную матрицу V .

Отметим, что должно выполнятся равенство =E .

    Матрицу факторного отображения получим из матричного соотношения

=

По смыслу каждый элемент матрицы А представляет частные коэффициенты матрицы корреляции между исходным признаком x j и главными компонентами F r . Поэтому все элементы .

Из равенства следует условиеr - число компонент .

Полный вклад каждого фактора в суммарную дисперсию признаков равен:

Модель факторного анализа примет вид:

Найдем значения главных компонент (матрицу F ) по формуле

Центр распределения значений главных компонент находится в точке (0,0,0).

Далее аналитические выводы по результатам расчетов следуют уже после принятия решения о числе значащих признаков и главных компоненти определения названий главным компонентам. Задачи распознавания главных компонент, определения для них названий решают субъективно на основе весовых коэффициентовиз матрицы отображенияА .

Рассмотрим вопрос формулировки названий главных компонент.

Обозначим w 1 – множество незначимых весовых коэффициентов, в которое включаются близкие к нулю элементы,,

w 2 - множество значимых весовых коэффициентов,

w 3 – подмножество значимых весовых коэффициентов, не участвующих в формировании названия главной компоненты.

w 2 - w 3 – подмножество весовых коэффициентов, участвующих в формировании названия.

Вычисляем коэффициент информативности для каждого главного фактора

Набор объяснимых признаков считаем удовлетворительным, если значения коэффициентов информативности лежат в пределах 0,75-0,95.

a 11 =0,776 a 12 =-0,130 a 13 =0,308

a 12 =0,904 a 22 =-0,210 a 23 =-0,420

а 31 =0,616 а 32 =0,902 а 33 =0,236

Для j=1 w 1 = ,w 2 ={a 11 ,a 21 ,a 31 },

.

Для j=2 w 1 ={ a 12 , a 22 }, w 2 ={ а 32 },

Для j=3 w 1 ={ а 33 }, w 2 ={a 13 ,a 33 },

Значениями признаков x 1 , x 2 , x 3 определяется состав главной компоненты на 100%. при этом наибольший вклад признакаx 2 , смысл которого-рентабельность. корректным для названия признака F 1 будет эффективность производства .

F 2 определяется компонентой x 3 (фондоотдача), назовем ее эффективность использования основных производственных средств .

F 3 определяется компонентами x 1 ,x 2 –в анализе может не рассматриваться т.к. она объясняет всего 10% общей вариации.

Литература.

    Попов А.А.

Excel: Практическое руководство, ДЕСС КОМ.-М.-2000.

    Дьяконов В.П., Абраменкова И.В. Mathcad7 в математике, физике и в Internet. Изд-во « Номидж», М.-1998, раздел 2.13. Выполнение регрессии.

    Л.А. Сошникова, В.Н. Томашевич и др. Многомерный статистический анализ в экономике под ред. В.Н. Томашевича.- М. –Наука, 1980.

    Колемаев В.А., О.В. Староверов, В.Б. Турундаевский Теория вероятностей и математическая статистика. –М. – Высшая школа- 1991.

    К Иберла. Факторный анализ.-М. Статистика.-1980.

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (например из предшествующего опыта или найдены теоретически). По независимым выборкам объемов n и m, извлеченным из этих совокупностей, найдены выборочные средние x в и y в.

Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. Н 0: М(X) = М(Y).

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, т. е. М(x в) = М(X) и М(y в) = М(Y), нулевую гипотезу можно записать так: Н 0: М(x в) = М(y в).

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится, потому что, как правило, выборочные средние являются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Если нулевая гипотеза будет отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами. А объясняется тем, что сами генеральные средние (математические ожидания) различны.

В качестве проверки нулевой гипотезы примем случайную величину.

Критерий Z – нормированная нормальная случайная величина. Действительно, величина Z распределена нормально, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из генеральных совокупностей; Z – нормированная величина, потому что М(Z) = 0, при справедливости нулевой гипотезы D(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай . Нулевая гипотеза Н 0:М(X)=М(Y). Конкурирующая гипотеза Н 1: М(X) ¹М(Y).

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости .

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый интервал критической области равна:

P(Z < zлев.кр)=a¤2,

P(Z > zправ.кр)=a¤2. (1)

Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через zкр, то левая граница -zкр.

Итак, достаточно найти правую границу, чтобы найти саму двустороннюю критическую область Z < -zкр, Z > zкр и область принятия нулевой гипотезы (-zкр, zкр).

Покажем, как найти zкр – правую границу двусторонней критической области, используя функцию Лапласа Ф(Z). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервале (0;z):

Р(0 < Z

Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал (0; ¥) равна 1/2. Следовательно, если разбить этот интервал точкой zкр на интервал (0, zкр) и (zкр, ¥), то по теореме сложения Р(0< Z < zкр)+Р(Z > zкр)=1/2.

В силу (1) и (2) получим Ф(zкр)+a/2=1/2. Следовательно, Ф(zкр) =(1-a)/2.

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (zкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1-a)/2.

Тогда двусторонняя критическая область определяется неравенствами Z < – zкр, Z > zкр, или равносильным неравенством ½Z½ > zкр, а область принятия нулевой гипотезы неравенством – zкр < Z < zкр или равносильным неравенством çZ ç< zкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через zнабл и сформулируем правило проверки нулевой гипотезы.

Правило.

1. Вычислить наблюдаемое значение критерия

2. По таблице функции Лапласа найти критическую точку по равенству Ф(zкр)=(1-a)/2.

3. Если ç zнабл ç < zкр – нет оснований отвергнуть нулевую гипотезу.

Если ç zнабл ç> zкр – нулевую гипотезу отвергают.

Второй случай . Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)>M(Y).

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости:

P(Z> zкр)=a. (3)

Покажем, как найти критическую точку при помощи функции Лапласа. Воспользуемся соотношением

P(0 zкр)=1/2.

В силу (2) и (3) имеем Ф(zкр)+a=1/2. Следовательно, Ф(zкр)=(1-2a)/2.

Отсюда заключаем, для того чтобы найти границу правосторонней критической области (zкр), достаточно найти значение функции Лапласа, равное (1-2a)/2. Тогда правосторонняя критическая область определяется неравенством Z > zкр, а область принятия нулевой гипотезы – неравенством Z < zкр.

Правило.

1. Вычислить наблюдаемое значение критерия zнабл.

2. По таблице функции Лапласа найти критическую точку из равенства Ф(zкр)=(1-2a)/2.

3. Если Z набл < z кр – нет оснований отвергнуть нулевую гипотезу. Если Z набл > z кр – нулевую гипотезу отвергаем.

Третий случай. Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)

В этом случае строят левостороннюю критическую область исходя из требования, вероятность попадания критерия в эту область, в пред-

положении справедливости нулевой гипотезы, была равна принятому уровню значимости P(Z < z’кр)=a, т.е. z’кр= – zкр. Таким образом, для того чтобы найти точку z’кр, достаточно сначала найти “вспомогательную точку” zкр а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z < -zкр, а область принятия нулевой гипотезы – неравенством Z > -zкр.

Правило.

1. Вычислить Zнабл.

2. По таблице функции Лапласа найти “вспомогательную точку” zкр по равенству Ф(zкр)=(1-2a)/2, а затем положить z’кр = -zкр.

3. Если Zнабл > -zкр, – нет оснований отвергать нулевую гипотезу.

Если Zнабл < -zкр, – нулевую гипотезу отвергают.

В общем случае для объяснения корреляционной матрицы потребуется не один, а несколько факторов. Каждый фактор характеризуется столбцом, каждая переменная - строкойматрицы . Фактор называется генеральным, если все его нагрузки значительно отличаются от нуля и он имеет нагрузки от всех переменных. Генеральный фактор имеет нагрузки от всех переменных и схематически такой фактор изображен на рис.1. столбцом .Фактор называется общим , если хотя бы две его нагрузки значительно отличаются от нуля. Столбцы , на рис. 1. представляют такие общие факторы. Они имеют нагрузки от более чем двух переменных. Если у фактора только одна нагрузка, значительно отличающаяся от нуля, то он называется характерным фактором (см. столбцы на рис. 1. ) Каждый такой фактор представляет только одну переменную. Решающее значение в факторном анализе имеют общие факторы. Если общие факторы установлены, то характерные факторы получаются автоматически. Число высоких нагрузок переменной на общие факторы называется сложностью . Например, переменная на рис.1. имеет сложность 2, а переменная - три.

Рис. 1. Схематическое изображение факторного отображения. Крестик означает высокую факторную нагрузку.

Итак, построим модель

, (4)

где - ненаблюдаемые факторы m < k ,

Наблюдаемые переменные (исходные признаки),

Факторные нагрузки,

Случайная ошибка связанная только с с нулевым средним и дисперсией :

И - некорpелированы,

Некоррелированные случайные величины с нулевым средним и единичной дисперсией .

(5)

Здесь - i -ая общность представляющая собой часть дисперсии , обусловленная факторами, - часть дисперсии , обусловленная ошибкой. В матричной записи факторная модель примет вид:

(6)

где - матрица нагрузок, - вектор факторов, - вектор ошибок.

Корреляции между переменными, выраженные факторами, можно вывести следующим образом:

где - диагональная матрица порядка , содержащая дисперсии ошибок[i]. Основное условие: - диагональная, - неотрицательно определенная матрица. Дополнительным условием единственности решения является диагональность матрицы .

Имеется множество методов решения факторного уравнения. Наиболее ранним методом факторного анализа является метод главных факторов , в котором методика анализа главных компонент используется применительно к редуцированной корреляционной матрице с общностями на главной диагонали. Для оценки общностей обычно пользуются коэффициентом множественной корреляции между соответствующей переменной и совокупностью остальных переменных.

Факторный анализ проводится исходя из характеристического уравнения, как и в анализе главных компонент:

(8)

Решая которое, получают собственные числа λ i и матрицу нормированных (характеристических) векторов V, и затем находят матрицу факторного отображения:

Для получения оценок общностей и факторных нагрузок используется эмпирический итеративный алгоритм, который сходится к истинным оценкам параметров. Сущность алгоритма сводится к следующему: первоначальные оценки факторных нагрузок определяются с помощью метода главных факторов. На основании корреляционной матрицы R формально определяются оценки главных компонент и общих факторов:

(9)

где - соответствующее собственное значение матрицы R;

Исходные данные (вектор-столбцы);

Коэффициенты при общих факторах;

Главные компоненты (вектор-столбцы).

Оценками факторных нагрузок служат величины

Оценки общностей получаются как

На следующей итерации модифицируется матрица R - вместо элементов главной диагонали подставляются оценки общностей, полученные на предыдущей итерации; на основании модифицированной матрицы R с помощью вычислительной схемы компонентного анализа повторяется расчет главных компонент (которые не являются таковыми с точки зрения компонентного анализа), ищутся оценки главных факторов, факторных нагрузок, общностей, специфичностей. Факторный анализ можно считать законченным, когда на двух соседних итерациях оценки общностей меняются слабо.

Примечание. Преобразования матрицы R могут нарушать положительную определенность матрицы R + и, как следствие, некоторые собственные значения R + могут быть отрицательными.

Национальный исследовательский ядерный университет «МИФИ»
Факультет бизнес-информатики и управления
комплексными системами
Кафедра экономики и менеджмента
в промышленности (№ 71)
Математические и инструментальные методы обработки
статистической информации
Киреев В.С.,
к.т.н., доцент
Email:
Москва, 2017
1

Нормализация

Десятичное масштабирование
Минимаксная нормализация
Нормализация с помощью стандартного преобразования
Нормализация с помощью поэлементных преобразований
2

Десятичное масштабирование

Vi
"
Vi k , max (Vi) 1
10
"
3

Минимаксная нормализация

Vi
Vi min (Vi)
"
i
max (Vi) min (Vi)
i
i
4

Нормализация с помощью стандартного отклонения

Vi
"
V
V
Vi V
V
- выборочное
среднее
- выборочное среднее квадратическое
отклонение
5

Нормализация с помощью поэлементных преобразований

Vi f Vi
"
Vi 1
"
log Vi
, Vi log Vi
"
Vi exp Vi
"
Vi Vi , Vi 1 y
Vi
"
y
"
6

Факторный анализ

(ФА) представляет собой совокупность методов, которые на
основе реально существующих связей анализируемых признаков, связей самих
наблюдаемых объектов, позволяют выявлять скрытые (неявные, латентные)
обобщающие характеристики организационной структуры и механизма развития
изучаемых явлений, процессов.
Методы факторного анализа в исследовательской практике применяются главным
образом с целью сжатия информации, получения небольшого числа обобщающих
признаков, объясняющих вариативность (дисперсию) элементарных признаков (Rтехника факторного анализа) или вариативность наблюдаемых объектов (Q-техника
факторного анализа).
Алгоритмы факторного анализа основываются на использовании редуцированной
матрицы парных корреляций (ковариаций). Редуцированная матрица – это матрица, на
главной диагонали которой расположены не единицы (оценки) полной корреляции или
оценки полной дисперсии, а их редуцированные, несколько уменьшенные величины. При
этом постулируется, что в результате анализа будет объяснена не вся дисперсия
изучаемых признаков (объектов), а ее некоторая часть, обычно большая. Оставшаяся
необъясненная часть дисперсии - это характерность, возникающая из-за специфичности
наблюдаемых объектов, или ошибок, допускаемых при регистрации явлений, процессов,
т.е. ненадежности вводных данных.
7

Классификация методов ФА

8

Метод главных компонент

(МГК) применяется для снижения размерности
пространства наблюдаемых векторов, не приводя к существенной потере
информативности. Предпосылкой МГК является нормальный закон распределения
многомерных векторов. В МГК линейные комбинации случайных величин определяются
характеристическими
векторами
ковариационной
матрицы.
Главные
компоненты представляют собой ортогональную систему координат, в которой дисперсии
компонент характеризуют их статистические свойства. МГК не относят к ФА, хотя он имеет
схожий алгоритм и решает схожие аналитические задачи. Его главное отличие
заключается в том, что обработке подлежит не редуцированная, а обычная матрица
парных корреляций, ковариаций, на главной диагонали которой расположены единицы.
Пусть дан исходный набор векторов X линейного пространства Lk. Применение
метода главных компонент позволяет перейти к базису пространства Lm (m≤k), такому
что: первая компонента (первый вектор базиса) соответствует направлению, вдоль
которого дисперсия векторов исходного набора максимальна. Направление второй
компоненты (второго вектора базиса) выбрано таким образом, чтобы дисперсия исходных
векторов вдоль него была максимальной при условии ортогональности первому вектору
базиса. Аналогично определяются остальные векторы базиса. В результате, направления
векторов базиса выбраны так, чтобы максимизировать дисперсию исходного набора
вдоль первых компонент, называемых главными компонентами (или главными
осями).Получается, что основная изменчивость векторов исходного набора векторов
представлена несколькими первыми компонентами, и появляется возможность, отбросив
менее существенные компоненты, перейти к пространству меньшей размерности.
9

10. Метод главных компонент. Схема

10

11. Метод главных компонент. Матрица счетов

Матрица счетов T дает нам проекции исходных образцов (J –мерных
векторов
x1,…,xI)
на
подпространство
главных
компонент
(A-мерное).
Строки t1,…,tI матрицы T – это координаты образцов в новой системе координат.
Столбцы t1,…,tA матрицы T – ортогональны и представляют проекции всех образцов на
одну новую координатную ось.
При исследовании данных методом PCA, особое внимание уделяется графикам
счетов. Они несут в себе информацию, полезную для понимания того, как устроены
данные. На графике счетов каждый образец изображается в координатах (ti, tj), чаще всего
– (t1, t2), обозначаемых PC1 и PC2. Близость двух точек означает их схожесть, т.е.
положительную корреляцию. Точки, расположенные под прямым углом, являются
некоррелироваными, а расположенные диаметрально противоположно – имеют
отрицательную корреляцию.
11

12. Метод главных компонент. Матрица нагрузок

Матрица нагрузок P – это матрица перехода из исходного пространства
переменных x1, …xJ (J-мерного) в пространство главных компонент (A-мерное). Каждая
строка матрицы P состоит из коэффициентов, связывающих переменные t и x.
Например, a-я строка – это проекция всех переменных x1, …xJ на a-ю ось главных
компонент. Каждый столбец P – это проекция соответствующей переменной xj на новую
систему координат.
График нагрузок применяется для исследования роли переменных. На этом
графике каждая переменная xj отображается точкой в координатах (pi, pj), например
(p1, p2). Анализируя его аналогично графику счетов, можно понять, какие переменные
связаны, а какие независимы. Совместное исследование парных графиков счетов и
нагрузок, также может дать много полезной информации о данных.
12

13. Особенности метода главных компонент

В основе метода главных компонент лежат следующие допущения:
допущение о том, что размерность данных может быть эффективно понижена
путем линейного преобразования;
допущение о том, что больше всего информации несут те направления, в которых
дисперсия входных данных максимальна.
Можно легко видеть, что эти условия далеко не всегда выполняются. Например,
если точки входного множества располагаются на поверхности гиперсферы, то никакое
линейное преобразование не сможет понизить размерность (но с этим легко справится
нелинейное преобразование, опирающееся на расстояние от точки до центра сферы).
Это недостаток в равной мере свойственен всем линейным алгоритмам и может быть
преодолен за счет использования дополнительных фиктивных переменных, являющихся
нелинейными функциями от элементов набора входных данных (т.н. kernel trick).
Второй недостаток метода главных компонент состоит в том, что направления,
максимизирующие дисперсию, далеко не всегда максимизируют информативность.
Например, переменная с максимальной дисперсией может не нести почти никакой
информации, в то время как переменная с минимальной дисперсией позволяет
полностью разделить классы. Метод главных компонент в данном случае отдаст
предпочтение первой (менее информативной) переменной. Вся дополнительная
информация, связанная с вектором (например, принадлежность образа к одному из
классов), игнорируется.
13

14. Пример данных для МГК

К. Эсбенсен. Анализ многомерных данных, сокр. пер. с англ. под
ред. О. Родионовой, Из-во ИПХФ РАН, 2005
14

15. Пример данных для МГК. Обозначения

Height
Рост: в сантиметрах
Weight
Вес: в килограммах
Hair
Волосы: короткие: –1, или длинные:
+1
Shoes
Обувь: размер по европейскому
стандарту
Age
Возраст: в годах
Income
Доход: в тысячах евро в год
Beer
Пиво: потребление в литрах в год
Wine
Вино: потребление в литрах в год
Sex
Пол: мужской: –1, или женский: +1
Strength
Сила: индекс, основанный на
проверке физических способностей
Region
Регион: север: –1, или юг: +1
IQ
Коэффициент интеллекта,
измеряемый по стандартному тесту
15

16. Матрица счетов

16

17. Матрица нагрузок

17

18. Объекты выборки в пространстве новых компонент

Женщины (F) обозначены кружками ● и ●, а
мужчины (M) – квадратами ■ и ■. Север (N)
представлен голубым ■, а юг (S) – красным
цветом ●.
Размер и цвет символов отражает доход – чем
больше и светлее, тем он больше. Числа
представляют возраст
18

19. Исходные переменные в пространстве новых компонент

19

20. График «каменистой осыпи» (scree plot)

20

21. Метод главных факторов

В парадигме метода главных факторов задача снижения размерности признакового
пространства выглядит так, что n признаков можно объяснить с помощью меньшего
количества m-латентных признаков - общих факторов, где m< исходными признаками и введёнными общими факторами (линейными комбинациями)
учитывают с помощью так называемых характерных факторов.
Конечная цель статистического исследования, проводимого с привлечением
аппарата факторного анализа, как правило, состоит в выявлении и интерпретации
латентных общих факторов с одновременным стремлением минимизировать как их
число, так и степень зависимости от своих специфических остаточных случайных
компонент.
Каждый признак
является результатом
воздействия m гипотетических общих и
одного характерного факторов:
X 1 a11 f1 a12 f 2 a1m f m d1V1
X a f a f a f d V
2
21 1
22 2
2m m
2
X n a n1 f1 a n 2 f 2 a nm f m d nVn
21

22. Вращение факторов

Вращение - это способ превращения факторов, полученных на предыдущем этапе,
в более осмысленные. Вращение делится на:
графическое (проведение осей, не применяется при более чем двухмерном
анализе),
аналитическое (выбирается некий критерий вращения, различают ортогональное и
косоугольное) и
матрично-приближенное (вращение состоит в приближении к некой заданной
целевой матрице).
Результатом вращения является вторичная структура факторов. Первичная
факторная структура (состоящая из первичных нагрузок (полученных на предыдущем
этапе) - это, фактически, проекции точек на ортогональные оси координат. Очевидно, что
если проекции будут нулевыми, то структура будет проще. А проекции будут нулевыми,
если точка лежит на какой-то оси. Таким образом, можно считать вращение переходом от
одной системы координат к другой при известных координатах в одной системе(
первичные факторы) и итеративно подбираемых координатах в другой системе
(вторичные факторы). При получении вторичной структуры стремятся перейти к такой
системе координат, чтобы провести через точки (объекты) как можно больше осей, чтобы
как можно больше проекции (и соответственно нагрузок) были нулевыми. При этом могут
сниматься ограничения ортогональности и убывания значимости от первого к последнему
факторам, характерные для первичной структуры.
22

23. Ортогональное вращение

подразумевает, что мы будем вращать факторы, но не
будем нарушать их ортогональности друг другу. Ортогональное вращение
подразумевает умножение исходной матрицы первичных нагрузок на ортогональную
матрицу R(такую матрицу, что
V=BR
Алгоритм ортогонального вращения в общем случае таков:
0. B - матрица первичных факторов.
1.
Ищем
ортогональную
матрицу
RT
размера
2*2
для
двух
столбцов(факторов) bi и bj матрицы B такую, что критерий для матрицы
R максимален.
2.
Заменяем столбцы bi и bj на столбцы
3.
Проверяем, все ли столбцы перебрали. Если нет, то переход на 1.
4.
Проверяем, что критерий для всей матрицы вырос. Если да, то переход на 1. Если
нет, то конец алгоритма.
.
23

24. Варимаксное вращение

Этот критерий использует формализацию
дисперсию квадратов нагрузок переменной:
сложности
фактора
через
Тогда критерий в общем виде можно записать как:
При этом, факторные нагрузки могут нормироваться для избавления от
влияния отдельных переменных.
24

25. Квартимаксное вращение

Формализуем понятие факторной сложности q i-ой переменной через
дисперсию квадратов факторных нагрузок факторов:
где r - число столбцов факторной матрицы, bij - факторная нагрузка j-го
фактора на i-ю переменную, - среднее значение. Критерий квартимакс старается
максимизировать сложность всей совокупности переменных, чтобы достичь
легкости интерпретации факторов (стремится облегчить описание столбцов):
Учитывая, что
- константа (сумма собственных чисел матрицы
ковариации) и раскрыв среднее значение (а также учтя, что степенная функция
растет пропорционально аргументу), получим окончательный вид критерия для
максимизации:
25

26. Критерии определения числа факторов

Главной проблемой факторного анализа является выделение и интерпретация
главных факторов. При отборе компонент исследователь обычно сталкивается с
существенными трудностями, так как не существует однозначного критерия выделения
факторов, и потому здесь неизбежен субъективизм интерпретаций результатов.
Существует несколько часто употребляемых критериев определения числа факторов.
Некоторые из них являются альтернативными по отношению к другим, а часть этих
критериев можно использовать вместе, чтобы один дополнял другой:
Критерий Кайзера или критерий собственных чисел. Этот критерий предложен
Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только
факторы с собственными значениями равными или большими 1. Это означает, что если
фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной
переменной, то он опускается.
Критерий каменистой осыпи (англ. scree) или критерий отсеивания. Он является
графическим методом, впервые предложенным психологом Кэттелом. Собственные
значения возможно изобразить в виде простого графика. Кэттел предложил найти такое
место на графике, где убывание собственных значений слева направо максимально
замедляется. Предполагается, что справа от этой точки находится только
«факториальная осыпь» - «осыпь» является геологическим термином, обозначающим
обломки горных пород, скапливающиеся в нижней части скалистого склона.
26

27. Критерии определения числа факторов. Продолжение

Критерий значимости. Он особенно эффективен, когда модель генеральной
совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден
для поиска изменений в модели и реализуем только в факторном анализе по методу
наименьших квадратов или максимального правдоподобия.
Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле
детерминируемой дисперсии, когда процент дисперсии оказывается несущественным,
выделение следует остановить. Желательно, чтобы выделенные факторы объясняли
более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, вовторых, специфика данных может быть такова, что все главные факторы не смогут
совокупно объяснить желательного процента разброса. Поэтому главные факторы
должны вместе объяснять не меньше 50,1 % дисперсии.
Критерий интерпретируемости и инвариантности. Данный критерий сочетает
статистическую точность с субъективными интересами. Согласно ему, главные факторы
можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою
очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы
одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант -
если сильные нагрузки имеются, однако интерпретация затруднительна, от этой
компоненты предпочтительно отказаться.
27

28. Пример использования МГК

Пусть
имеются
следующие
показатели
экономической
деятельности
предприятия: трудоемкость (x1), удельный вес покупных изделий в продукции (x2),
коэффициент сменности оборудования (x3), удельный вес рабочих в составе предприятия
(x4), премии и вознаграждения на одного работника (x5), рентабельность (y). Линейная
регрессионная модель имеет вид:
y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5
x1
x2
x3
x4
x5
y
0,51
0,2
1,47
0,72
0,67
9,8
0,36
0,64
1,27
0,7
0,98
13,2
0,23
0,42
1,51
0,66
1,16
17,3
0,26
0,27
1,46
0,69
0,54
7,1
0,27
0,37
1,27
0,71
1,23
11,5
0,29
0,38
1,43
0,73
0,78
12,1
0,01
0,35
1,5
0,65
1,16
15,2
0,02
0,42
1,35
0,82
2,44
31,3
0,18
0,32
1,41
0,8
1,06
11,6
0,25
0,33
1,47
0,83
2,13
30,1
28

29. Пример использования МГК

Построение регрессионной модели в статистическом пакете показывает,
коэффициент X4 не значим (p-Value > α = 5%) , и его можно исключить из модели.
что
После исключения X4 снова запускается процесс построения модели.
29

30. Пример использования МГК

Критерий Кайзера для МГК показывает, что можно оставить 2 компоненты, объясняющие
около 80% исходной дисперсии.
Для выделенных компонент можно построить уравнения в исходной системе координат:
U1 = 0,41*x1 - 0,57*x2 + 0,49*x3 - 0,52*x5
U2 = 0,61*x1 + 0,38*x2 - 0,53*x3 - 0,44*x5
30

31. Пример использования МГК

Теперь можно построить в новых компонентах новую регрессионную модель:
y = 15,92 - 3,74*U1 - 3,87*U2
31

32. Метод сингулярного разложения (SVD)

Beltrami и Jordan считаются основателями теории сингулярного
разложения. Beltrami – за то, что он первым опубликовал работу о
сингулярном разложении, а Jordan – за элегантность и полноту своей
работы. Работа Beltrami появилась в журнале “Journal of Mathematics for
the Use of the Students of the Italian Universities” в 1873 году, основная
цель которой заключалась в том, чтобы ознакомить студентов с
билинейными формами.Суть метода в разложении матрицы A размера n
x m с рангом d = rank (M) <= min(n,m) в произведение матриц меньшего
ранга:
A =UDVT,
где матрицы U размера n x d и V размера m x d состоят из
ортонормальных столбцов, являющихся собственными векторами при
ненулевых собственных значениях матриц AAT и ATA соответственно и
UTU = V TV = I , а D размера d x d - диагональная матрица с
положительными диагональными элементами, отсортированными в
порядке убывания. Столбцы матрицы U представляют собой,
ортонормальный базис пространства столбцов матрицы A, а столбцы
матрицы V – ортонормальный базис пространства строк матрицы A.
32

33. Метод сингулярного разложения (SVD)

Важным свойством SVD-разложения является тот факт, что если
для k только из k наибольших диагональных элементов, а также
оставить в матрицах U и V только k первых столбцов, то матрица
Ak=UkDkVkT
будет являться лучшей аппроксимацией матрицы A относительно
нормы Фробениуса среди всех матриц с рангом k.
Это усечение во-первых уменьшает размерность векторного
пространства, снижает требования хранения и вычислительные
требования к модели.
Во-вторых, отбрасывая малые сингулярные числа, малые
искажения в результате шума в данных удаляются, оставляя
только самые сильные эффекты и тенденции в этой модели.

Дисперсионный анализ факторов

Факторная матрица

Переменная Фактор А Фактор Б

Как видно из матрицы, факторные нагрузки (или веса) А и Б для различных потребительских требований значительно отличаются. Факторная нагрузка А для требования Т 1 соответствует тесноте связи, характеризующейся коэффициентом корреляции, равным 0,83, т.е. хорошая (тесная) зависимость. Факторная нагрузка Б для того же требования дает r k = 0,3, что соответствует слабой тесноте связи. Как и предполагалось, фактор Б очень хоро­шо коррелируется с потребительскими требованиями Т 2 , Т 4 и Т 6 .

Учитывая, что факторные нагрузки как А, так и Б влияют на не относящиеся в их группу потребительские требования с теснотой связи не более 0,4 (т.е. слабо), можно считать, что представленная выше матрица интеркорреляций определяется двумя независимыми факторами, которые в свою очередь определяют шесть потребительских требований (за исключением Т 7).

Переменную Т 7 можно было выделить в самостоятельный фактор, так как ни с одним потребительским требованием она не имеет значимой корреляционной нагрузки (более 0,4). Но, на наш взгляд, этого не следует делать, так как фактор «дверь не должна ржаветь» не имеет непосредственного отношения к потребительским требованиям по конструкции двери.

Таким образом, при утверждении технического задания на проектирование конструкции дверей автомобиля именно названия полученных факторов будут вписаны как потребительские требования, по которым необходимо найти конструктивное решение в виде инженерных характеристик.

Укажем на одно принципиально важное свойство коэффициента корреляции между переменными: возведенный в квадрат, он показывает, какая часть дисперсии (разброса) признака является общей для двух переменных, насколько сильно эти переменные перекрываются. Так, например, если две переменные Т 1 и Т 3 с корреляцией 0,8 перекрываются со степенью 0,64 (0,8 2), то это означает, что 64% дисперсий той и другой переменной являются общими, т.е. совпадают. Можно также сказать, что общность этих переменных равна 64%.

Напомним, что факторные нагрузки в факторной матрице являются тоже коэффициентами корреляции, но между факторами и переменными (потребительскими требованиями).

Переменная Фактор А Фактор Б

Поэтому возведенная в квадрат факторная нагрузка (дисперсия) характеризует степень общности (или перекрытия) данной переменной и данного фактора. Определим степень перекрытия (дисперсию D) обоих факторов с переменной (потребительским требованием) Т 1 . Для этого необходимо вычислить сумму квадратов весов факторов с первой переменной, т.е. 0,83 х 0,83 + 0,3 х 0,3 = 0,70. Таким образом, общность переменной Т 1 с обоими факторами составляет 70%. Это достаточно значимое перекрытие.


В то же время низкая общность может свидетельствовать о том, что переменная измеряет или отражает нечто, качественно отличающеёся от других переменных, включенных в анализ. Это подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо она измеряет другое понятие (как, например, переменная Т 7), либо имеет большую ошибку измерения, либо существуют искажающие дисперсию признаки.

Следует отметить, что значимость каждого фактора также определяется величиной дисперсии между переменными и факторной нагрузкой (весом). Для того чтобы вычислить собственное значение фактора, нужно найти в каждом столбце факторной матрицы сумму квадратов факторной нагрузки для каждой переменной. Таким образом, например, дисперсия фактора А (D А) составит 2,42 (0,83 х 0,83 + 0,3 х 0,3 + 0,83 х 0,83 + 0,4 х 0,4 + 0,8 х 0,8 + 0,35 х 0,35). Расчет значимости фактора Б показал, что D Б = 2,64, т.е. значимость фактора Б выше, чем фактора А.

Если собственное значение фактора разделить на число переменных (в нашем примере их семь), то полученная величина покажет, какую долю дисперсии (или объем информации) γ в исходной корреляционной матрице составит этот фактор. Для фактора А γ ~ 0,34 (34%), а для фактора Б - γ = 0,38 (38%). Просуммировав результаты, получим 72%. Таким образом, два фактора, будучи объединены, заполняют только 72% дисперсии показателей исходной матрицы. Это означает, что в результате факторизации часть информации в исходной матрице была принесена в жертву построения двухфакторной модели. В результате упущено 28% информации, которая могла бы восстановиться, если бы была принята шестифакторная модель.

Где же допущена ошибка, учитывая, что все рассмотренные пере­менные, имеющие отношение к требованиям по конструкции двери, учтены? Наиболее вероятно, что значения коэффициентов корреляции переменных, относящихся к одному фактору, несколько занижены. С учетом проведенного анализа можно было бы вернуться к формированию иных значений коэффициентов корреляции в матрице интеркорреляций (см. табл. 2.2).

На практике часто сталкиваются с такой ситуацией, при которой число независимых факторов достаточно велико, чтобы их все учесть в решении проблемы или с технической или экономической точки зрения. Существует ряд способов по ограничению числа факторов. Наиболее известный из них - анализ Парето. При этом отбираются те факторы (по мере уменьшения значимости), которые попадают в 80-85%-ную границу их суммарной значимости.

Факторный анализ можно использовать при реализации метода структурирования функции качества (QFD), широко применяемого за рубежом при формировании технического задания на новое изделие.