Ваш мозг — не компьютер. Человеческий мозг: непознанный биологический компьютер

07.04.2019

Алексей Зеньков

Ваш мозг не обрабатывает информацию, не извлекает знания и не хранит воспоминания. Короче говоря, ваш мозг - не компьютер. Американский психолог Роберт Эпштейн объясняет, почему представление о мозге как о машине неэффективно ни для развития науки, ни для понимания человеческой природы.

Несмотря на все усилия, неврологи и когнитивные психологи никогда не найдут в мозге копии Пятой симфонии Бетховена, слов, картинок, грамматических правил или любых других внешних сигналов. Конечно же, мозг человека не совсем уж пустой. Но он не содержит большинства вещей, которые, по мнению людей, в нем содержатся - даже таких простых вещей, как «воспоминания».

Наше ложное представление о мозге имеет глубокие исторические корни, но особенно запутало нас изобретение компьютеров в 1940-х годах. На протяжении полувека психологи, лингвисты, нейрофизиологи и другие эксперты по вопросам человеческого поведения утверждали, что человеческий мозг работает подобно компьютеру.

Чтобы представить, насколько легкомысленна эта идея, рассмотрим мозг младенцев. Здоровый новорожденный обладает более чем десятью рефлексами. Он поворачивает голову в том направлении, где ему чешут щечку, и всасывает все, что попадает в рот. Он задерживает дыхание при погружении в воду. Он так сильно хватает вещи, попавшие ему в руки, что почти может удерживать свой собственный вес. Но, возможно, важнее всего то, что новорожденные обладают мощными механизмами обучения, позволяющими им быстро изменяться, чтобы они могли более эффективно взаимодействовать с окружающим миром.

Чувства, рефлексы и механизмы обучения - это то, что есть у нас с самого начала, и, если задуматься, это достаточно много. Если бы нам не хватало каких-либо из этих способностей, наверное, нам было бы трудно выжить.

Но вот, чего в нас нет с рождения: информации, данных, правил, знаний, лексики, представлений, алгоритмов, программ, моделей, воспоминаний, образов, процессоров, подпрограмм, кодеров, декодеров, символов и буферов - элементов, которые позволяют цифровым компьютерам вести себя в какой-то степени разумно. Мало того, что этих вещей нет в нас с рождения, они не развиваются в нас и при жизни.

Мы не храним слова или правила, говорящие нам, как ими пользоваться. Мы не создаем образы визуальных импульсов, не храним их в буфере кратковременной памяти и не передаем затем образы в устройство долгосрочной памяти. Мы не вызываем информацию, изображения или слова из реестра памяти. Все это делают компьютеры, но не живые существа.

Компьютеры в буквальном смысле слова обрабатывают информацию - цифры, слова, формулы, изображения. Сначала информация должна быть переведена в формат, который может распознать компьютер, то есть в наборы единиц и нулей («битов»), собранные в небольшие блоки («байты»).

Компьютеры перемещают эти наборы с места на место в различные области физической памяти, реализованной в виде электронных компонентов. Иногда они копируют наборы, а иногда различными способами трансформируют их - скажем, когда вы исправляете ошибки в рукописи или ретушируете фотографию. Правила, которым следует компьютер при перемещении, копировании или работе с массивом информации, тоже хранятся внутри компьютера. Набор правил называется «программой» или «алгоритмом». Совокупность работающих вместе алгоритмов, которую мы используем для разных целей (например, для покупки акций или знакомств в интернете) называется «приложением».

Это известные факты, но их нужно проговорить, чтобы внести ясность: компьютеры работают на символическом представлении мира. Они действительно хранят и извлекают. Они действительно обрабатывают. Они действительно имеют физическую память. Они действительно управляются алгоритмами во всем без исключения.

При этом люди ничего такого не делают. Так почему так много ученых говорит о нашей умственной деятельности так, как если бы мы были компьютерами?

В 2015 году эксперт по искусственному интеллекту Джордж Заркадакис выпустил книгу «По нашему образу», в которой он описывает шесть различных концепций, используемых людьми в течение последних двух тысяч лет для описания устройства человеческого интеллекта.

В наиболее ранней версии, изложенной в Библии, люди были созданы из глины или грязи, которую разумный Бог затем пропитал своим духом. Этот дух и «описывает» наш разум - по крайней мере, с грамматической точки зрения.

Изобретение гидравлики в III веке до нашей эры стало причиной популярности гидравлической концепции человеческого сознания. Идея состояла в том, что ток различных жидкостей в теле - «телесных жидкостей» - приходится и на физические, и на духовные функции. Гидравлическая концепция существовала на протяжении более чем 1600 лет, все это время затрудняя развитие медицины.

К XVI веку появились устройства, приводимые в действие пружинами и зубчатыми передачами, что вдохновило Рене Декарта на суждения о том, что человек - это сложный механизм. В XVII веке британский философ Томас Гоббс предположил, что мышление происходит благодаря небольшим механическим движениям в мозгу. К началу XVIII века открытия в области электричества и химии привели к появлению новой теории человеческого мышления, опять-таки имеющей больше метафорический характер. В середине XIX века немецкий физик Герман фон Гельмгольц, вдохновленный последними достижениями в области связи, сравнил мозг с телеграфом.

Альбрехт фон Галлер. Icones anatomicae

Математик Джон фон Нейман заявил, что функция человеческой нервной системы является «цифровой при отсутствии доказательств в пользу противного», проводя параллели между компонентами компьютерных машин того времени и участками человеческого мозга.

Каждая концепция отражает самые передовые идеи породившей её эпохи. Как и следовало ожидать, всего через несколько лет после зарождения компьютерных технологий в 1940-х годах стали утверждать, что мозг работает, как компьютер: роль физического носителя играл сам мозг, а наши мысли выступали в качестве программного обеспечения.

Такая точка зрения достигла максимального развития в книге «Компьютер и мозг» 1958 года, в которой математик Джон фон Нейман решительно заявил, что функция нервной системы человека является «цифровой при отсутствии доказательств в пользу противного». Хоть он и признавал, что о роли мозга в работе интеллекта и памяти известно очень мало, ученый проводил параллели между компонентами компьютерных машин того времени и участками человеческого мозга.

Изображение: Shutterstock

Благодаря последующим достижениям в области компьютерных технологий и исследования мозга, постепенно развивалось амбициозное междисциплинарное учение о человеческом сознании, в основе которого лежит идея о том, что люди, как и компьютеры - это информационные процессоры. Эта работа в настоящее время включает в себя тысячи исследований, получает миллиарды долларов финансирования, и становится темой для множества трудов. Книга Рэя Курцвейла «Как создать разум: Раскрытие тайны человеческого мышления», выпущенная в 2013 году, иллюстрирует эту точку зрения, описывает «алгоритмы» мозга, методы «обработки информации» и даже то, как он внешне напоминает в своей структуре интегральные схемы.

Представление о человеческом мышлении как об устройстве обработки информации (ОИ) в настоящее время доминирует в человеческом сознании как среди обычных людей, так и среди ученых. Но это, в конце концов, просто еще одна метафора, вымысел, который мы выдаем за действительность, чтобы объяснить то, что на самом деле не понимаем.

Несовершенную логику концепции ОИ довольно легко сформулировать. Она основана на ошибочном силлогизме с двумя разумными предположениями и неверным выводом. Разумное предположение №1: все компьютеры способны на разумное поведение. Разумное предположение №2: все компьютеры являются информационными процессорами. Неверное заключение: все объекты, способные вести себя разумно - информационные процессоры.

Если забыть о формальностях, то идея о том, что люди должны быть информационными процессорами, только потому, что компьютеры являются таковыми – это полная глупость, и когда от концепции ОИ окончательно откажутся, наверняка историками она будет рассматриваться с этой же точки зрения, как сейчас для нас выглядят чушью гидравлическая и механическая концепции.

Проведите эксперимент: нарисуйте сторублевую купюру по памяти, а потом достаньте ее из кошелька и скопируйте. Видите разницу?

Рисунок, сделанный в отсутствие оригинала, наверняка окажется ужасен в сравнении с рисунком, сделанным с натуры. Хотя вообще-то вы видели эту купюру не одну тысячу раз.

В чем проблема? Разве «образ» банкноты не должен «храниться» в «запоминающем регистре» нашего мозга? Почему мы не можем просто «обратиться» к этому «образу» и изобразить его на бумаге?

Очевидно, нет, и тысячи лет исследований не позволят определить расположение образа этой купюры в мозге человека просто потому, что его там нет.

Продвигаемая некоторыми учеными идея о том, что отдельные воспоминания каким-то образом хранятся в специальных нейронах, абсурдна. Помимо прочего эта теория выводит вопрос об устройстве памяти на еще более неразрешимый уровень: как и где тогда память хранится в клетках?

Сама идея того, что воспоминания хранятся в отдельных нейронах, абсурдна: как и где в клетке может храниться информация?

Нам никогда не придется беспокоиться о том, что человеческий разум выйдет из-под контроля в киберпространстве, и нам никогда не удастся достичь бессмертия, скачав душу на другой носитель.

Одно из предсказаний, которое в том или ином виде высказывали футуролог Рэй Курцвейл, физик Стивен Хокинг и многие другие, заключается в том, что если сознание человека подобно программе, то скоро должны появиться технологии, которые позволят загрузить его на компьютер, тем самым многократно усилив интеллектуальные способности и сделав возможным бессмертие. Эта идея легла в основу сюжета фильма-антиутопии «Превосходство» (2014), в котором Джонни Депп сыграл ученого, похожего на Курцвейла. Он загрузил свой разум в интернет, чем вызвал разрушительные последствия для человечества.

Кадр из фильма «Превосходство»

К счастью, концепция ОИ даже близко не имеет ничего общего с действительностью, так что нам не стоит волноваться о том, что человеческий разум выйдет из-под контроля в киберпространстве, и, как это ни прискорбно, нам никогда не удастся достичь бессмертия, скачав душу на другой носитель. Дело не только в отсутствии какого-то ПО в мозге, проблема здесь еще глубже – назовем ее проблемой уникальности, и она одновременно восхищает и угнетает.

Поскольку в нашем мозге нет ни «запоминающих устройств», ни «образов» внешних раздражителей, а в ходе жизни мозг меняется под действием внешних условий, нет повода считать, что любые два человека в мире реагируют на одно и то же воздействие одинаково. Если вы и я посетим один и тот же концерт, изменения, которые произойдут в вашем мозге после прослушивания, будут отличаться от изменений, которые произойдут в моем мозге. Эти изменения зависят от уникальной структуры нервных клеток, которая формировалась в ходе всей предыдущей жизни.

Именно поэтому, как написал Фредерик Бартлетт в 1932 году в книге «Память», два человека, услышавшие одну и ту же историю, не смогут пересказать ее полностью одинаково, а со временем их версии истории будут все меньше походить друг на друга.

«Превосходство»

По-моему, это очень вдохновляет, ведь это значит, что каждый из нас по-настоящему уникален, не только по набору генов, но и по тому, как меняется наш мозг со временем. Однако это также и угнетает, ведь это делает и без того трудную работу нейробиологов практически неразрешимой. Каждое изменение может затронуть тысячи, миллионы нейронов или весь мозг целиком, причем природа этих изменений в каждом случае тоже уникальна.

Хуже того, даже если бы мы смогли записать состояние каждого из 86 миллиардов нейронов мозга и сымитировать все это на компьютере, эта громадная модель оказалась бы бесполезной вне тела, которому принадлежит данный мозг. Это, пожалуй, самое досадное заблуждение об устройстве человека, которым мы обязаны ошибочной концепции ОИ.

В компьютерах хранятся точные копии данных. Они могут оставаться без изменений долгое время даже при отключении питания, в то время как мозг поддерживает наш интеллект, только пока он остается живым. Нет никакого рубильника. Либо мозг будет работать без остановки, либо нас не станет. Более того, как отметил нейробиолог Стивен Роуз в 2005 году в работе «Будущее мозга», копия текущего состояния мозга может быть бесполезна и без знания полной биографии его владельца, даже включая социальный контекст, в котором рос человек.

Тем временем огромные средства расходуются на исследования мозга, основанные на ложных идеях и обещаниях, которые не будут исполнены. Так, в Евросоюзе был запущен проект исследования человеческого мозга стоимостью $1,3 млрд. Европейские власти поверили заманчивым обещаниям Генри Маркрэма создать к 2023 году действующий симулятор работы мозга на базе суперкомпьютера, который бы в корне изменил подход к лечению болезни Альцгеймера и других недугов, и обеспечили проекту практически безграничное финансирование. Меньше чем через два года после запуска проекта он обернулся провалом, и Маркрэма попросили уйти в отставку.

Люди – это живые организмы, а не компьютеры. Примите это. Нужно продолжать тяжелую работу по пониманию самих себя, но не тратить время на ненужный интеллектуальный багаж. За полвека существования концепция ОИ дала нам всего несколько полезных открытий. Настало время нажать на кнопку Delete .

Роберт Эпштейн – старший психолог Американского института поведенческих исследований и технологий в Калифорнии. Он является автором 15 книг, а также бывшим главным редактором журнала Psychology Today.

Экология сознания. Наука и открытия: Как бы они ни старались, нейрофизиологи и когнитивные психологи никогда не найдут в мозгу копию пятой симфонии Бетховена или копии слов, изображений, грамматических правил или любых других внешних раздражителей. Человеческий мозг, конечно, пуст не в буквальном смысле. Но он не содержит большинство вещей, которые, по мнению людей, должен - в нем нет даже таких простых объектов, как «воспоминания».

Как бы они ни старались, нейрофизиологи и когнитивные психологи никогда не найдут в мозгу копию пятой симфонии Бетховена или копии слов, изображений, грамматических правил или любых других внешних раздражителей. Человеческий мозг, конечно, пуст не в буквальном смысле. Но он не содержит большинство вещей, которые, по мнению людей, должен - в нем нет даже таких простых объектов, как «воспоминания».

Наше ложное представление о мозге имеет глубокие исторические корни, но изобретение компьютера в сороковых годах прошлого века особенно запутало нас. Вот уже больше полувека психологи, лингвисты, нейрофизиологи и другие исследователи человеческого поведения заявляют: человеческий мозг работает подобно компьютеру.

Чтобы понять всю поверхностность этой идеи, давайте представим, что мозг - это младенец. Благодаря эволюции новорожденные люди, как и новорожденные любого другого вида млекопитающих, входят в этот мир готовыми к эффективному с ним взаимодействию. Зрение ребенка расплывчато, но он уделяет особое внимание лицам и быстро может распознать лицо матери среди других. Он предпочитает звук голоса другим звукам, он может отличить один базовый речевой звук от другого. Мы, без сомнения, построены с оглядкой на социальное взаимодействие.

Здоровый новорожденный обладает более чем десятком рефлексов - готовых реакций на определенные раздражители; они нужны для выживания. Ребенок поворачивает голову в направлении того, что щекочет ему щеку, и сосет все, что попадает в рот. Он задерживает дыхание, когда погружается в воду. Он хватает вещи, которые попадают ему в руки, так сильно, что почти повисает на них.

Возможно, самое важное заключается в том, что младенцы появляются в этом мире с весьма мощными механизмами обучения , которые позволяют им стремительно изменяться так, чтобы они могли взаимодействовать с миром с возрастающей эффективностью, даже если этот мир и не похож на тот, с которым сталкивались их дальние предки.

Чувства, рефлексы и механизмы обучения - все то, с чем мы начинаем , и по правде говоря, этих вещей довольно много, если задуматься. Если бы у нас не было одной из этих возможностей с рождения, нам было бы значительно труднее выжить.

Но есть и то, с чем мы не родились: информация, данные, правила, программное обеспечение, знания, лексикон, представления, алгоритмы, программы, модели, воспоминания, образы, обработка, подпрограммы, кодеры и декодеры, символы и буферы - дизайнерские элементы, которые позволяют цифровым компьютерам вести себя таким образом, который несколько напоминает разумный. Мы не просто не рождаемся с этим - мы это в себе не развиваем. Никогда.

Мы не храним слова или правила, сообщающие нам, как их использовать. Мы не создаем визуальные проекции раздражителей, не храним их в буфере кратковременной памяти, а после этого не передаем их в хранилище памяти долговременной. Мы не извлекаем информацию или образы и слова из реестров памяти. Этим занимаются компьютеры, но не организмы.

Компьютеры в буквальном смысле слова обрабатывают информацию ― числа, буквы, слова, формулы, изображения. Информация изначально должна быть закодирована в формат, которым могут пользоваться компьютеры, а значит, она должна быть представлена в виде единиц и нулей («битов»), которые собраны в маленькие блоки («байты»). На моем компьютере, где каждый байт содержит 8 бит, некоторые из них обозначают букву «К», другие ― «О», третьи ― «Т». Таким образом все эти байты образуют слово «КОТ». Одно единственное изображение – скажем, фотография моего кота Генри на рабочем столе ― представлена особенным рисунком миллиона таких байтов («один мегабайт»), определенных специальными символами, которые сообщают компьютеру, что это фотография, а не слово.

Компьютеры в буквальном смысле перемещают эти рисунки с места на место в различных отсеках физического хранилища, выделенных внутри электронных компонентов. Иногда они копируют рисунки, а иногда изменяют их самыми разнообразными способами ― скажем, когда мы исправляем ошибку в документе или ретушируем фотографию.

Правила, которым следует компьютер для перемещения, копирования или оперирования этими слоями данных также хранятся внутри компьютера. Собранные воедино наборы правил называются «программами» или «алгоритмами». Группа алгоритмов, которые работают совместно для помощи нам в чем-то (например, при покупке акций или поиске данных онлайн) называется «приложением».

Прошу меня простить за это введение в мир компьютеров, но мне нужно, чтобы вам было все предельно ясно: компьютеры в действительности работают над той стороной нашего мира, которая состоит из символов. Они действительно хранят и извлекают. Они действительно обрабатывают. У них действительно есть физические воспоминания. Они действительно управляются алгоритмами во всем, что делают, без каких-либо исключений.

С другой стороны, люди так не делают - никогда не делали и делать не будут. Учитывая это, хочется спросить: почему же так много ученых рассуждают о нашем психическом здоровье так, будто бы мы и есть компьютеры?

В своей книге «In Our Own Image» (2015) эксперт в области искусственного интеллекта Джордж Заркадакис описывает шесть различных метафор, которые люди использовали в течение двух последних тысячелетий , пытаясь описать человеческий интеллект.

В самой первой, библейской, люди были созданы из глины и грязи, которую затем разумный Бог наделил своей душой, «объясняя» наш интеллект - по крайней мере, грамматически.

Изобретение гидравлической техники в 3 веке до н.э. привело к популяризации гидравлических моделей человеческого интеллекта, идеи о том, что различные жидкости нашего тела - т.н. «телесные жидкости» - имеют отношение как к физическому, так и к психическому функционированию. Метафора сохранялась более 16-ти столетий и все это время применялась в медицинской практике.

К 16-му веку были разработаны автоматические механизмы, приводимые в движение пружинами и шестеренками; они наконец вдохновили ведущих мыслителей того времени, таких как Рене Декарт, на гипотезу о том, что люди представляют собой сложные машины.

В 17-м веке британский философ Томас Гоббс предположил, что мышление возникло из-за механических колебаний в мозге. К началу 18-го века открытия в области электричества и химии привели к новым теориям человеческого интеллекта - и они опять же, имели метафорический характер. В середине того же столетия немецкий физик Герман фон Гельмгольц, вдохновленный достижениями в области связи, сравнил мозг с телеграфом.

Если эта метафора так глупа, почему она все еще правит нашими умами? Что удерживает нас от того, чтобы отбросить ее в сторону как ненужную, так же, как мы отбрасываем ветку, которая преграждает нам путь? Существует ли способ понять человеческий интеллект, не опираясь на выдуманные костыли? И какой ценой нам обойдется столь долгое использование этой опоры? Данная метафора, в конце концов, вдохновила писателей и мыслителей на огромное количество исследований в самых разных областях науки на протяжении десятилетий. Какой ценой?

В аудитории на занятии, которое я проводил за эти годы уже множество раз, я начинаю с выбора добровольца, которому говорю нарисовать купюру в один доллар на доске. «Побольше деталей», - говорю я. Когда он заканчивает, я закрываю рисунок листом бумаги, достаю купюру из кошелька, приклеиваю ее к доске и прошу студента повторить задание. Когда он или она заканчивает, я убираю лист бумаги с первого рисунка и тогда класс комментирует различия.

Возможно, вы никогда не видели подобной демонстрации, или, быть может, у вас могут возникнуть проблемы с тем, чтобы представить результат, поэтому я попросил Джинни Хён, одну из интернов в институте, где я провожу свои исследования, сделать два рисунка. Вот рисунок «по памяти» (обратите внимание на метафору):

А вот рисунок, который она сделала с использованием банкноты:

Джинни была так же удивлена исходом дела, как, возможно, удивлены и вы, но в этом нет ничего необычного. Как вы видите, рисунок, выполненный без опоры на купюру, ужасен в сравнении с тем, что был срисован с образца, несмотря на то, что Джинни видела долларовую купюру тысячи раз.

Так в чем дело? Разве у нас нет «загруженного» в мозговой «регистр памяти» «представления» о том, как выглядит долларовая банкнота? Неужели мы не можем просто-напросто «извлечь» его оттуда и использовать при создании нашего рисунка?

Конечно, нет, и даже тысячи лет исследования в области неврологии не помогут обнаружить представление о виде долларовой банкноты, сохраненное в человеческом мозге, просто потому, что его там нет.

Значительный объем исследований мозга показывает, что в действительности многочисленные и иногда обширные участки мозга зачастую вовлечены в, казалось бы, самые банальные задачи по запоминанию информации.

Когда человек испытывает сильные эмоции, в мозгу могут активизироваться миллионы нейронов. В 2016 году нейрофизиолог из Университета Торонто Брайан Левин с коллегами провел исследование, в котором приняли участие люди, выжившие в авиакатастрофе, позволившее прийти к выводу, что события аварии способствовали росту нейронной активности в «мозжечковой миндалине, медиальной височной доле, передней и задней срединной линии, а также в зрительной коре пассажиров».

Выдвинутая рядом ученых идея о том, что специфические воспоминания каким-то образом сохраняются в отдельных нейронах, абсурдна ; если уж на то пошло, это предположение лишь возводит вопрос памяти на еще более сложный уровень: как и где, в конечном счете, память записана в клетку?

Итак, что происходит, когда Джинни рисует долларовую банкноту, не пользуясь образцом? Если Джинни никогда прежде не видела купюру, ее первый рисунок, вероятно, ни в коей мере не будет похож на второй. Тот факт, что она видела долларовые банкноты прежде, каким-то образом изменил ее. Собственно, ее мозг был изменен так, что она смогла наглядно представить себе банкноту - что, в сущности, эквивалентно - по крайней мере, отчасти - тому, чтобы заново переживать ощущение зрительного контакта с купюрой.

Различие между двумя набросками напоминает нам, что визуализация чего-либо (что представляет собой процесс воссоздания зрительного контакта с тем, что больше не находится у нас перед глазами) намного менее точна, чем если бы мы по-настоящему видели что-либо. Именно поэтому нам намного лучше удается узнавать, нежели вспоминать.

Когда мы ре-продуцируем что-то в памяти (От латинского re - «снова», и produce - «создавать»), мы должны попробовать снова пережить столкновение с предметом или явлением ; однако когда мы узнаем что-то, мы всего лишь должны отдавать себе отчет в том, что ранее у нас уже был опыт субъективного восприятия этого объекта или явления.

Возможно, у вас есть что возразить на это доказательство. Джинни видела долларовые банкноты и раньше, однако она не предпринимала осознанных усилий к тому, чтобы «запомнить» детали. Вы можете заявить, что, если бы она так поступила, она, возможно, смогла бы нарисовать второе изображение, не пользуясь образцом долларовой купюры. Однако даже в этом случае никакое изображение банкноты не было никоим образом «сохранено» в мозгу Джинни. У нее просто возросла степень подготовленности к тому, чтобы нарисовать ее с соблюдением деталей, так же, как, посредством практики, пианист становится искуснее в исполнении фортепианных концертов, при этом не загружая в себя копию нот.

Исходя из этого простого эксперимента, мы можем начать выстраивать основу свободной от метафор теории интеллектуального поведения человека - одну из тех теорий, согласно которым мозг не полностью пуст, однако по меньшей мере свободен от груза IP-метафор.

По мере того, как мы движемся по жизни, мы подвергаемся воздействию множества происходящих с нами событий. Следует особо отметить три типа опыта: 1) Мы наблюдаем за тем, что происходит вокруг нас (как ведут себя другие люди, звуки музыки, адресованные нам указания, слова на страницах, изображения на экранах); 2) Мы подвержены сочетанию незначительных стимулов (к примеру, сирены) и важных стимулов (появление полицейских машин); 3) Мы бываем наказаны или вознаграждены за то, что ведем себя определенным обр азом.

Мы становимся эффективнее, если меняемся сообразно этому опыту - если теперь мы можем рассказать стихотворение или спеть песню, если мы способны следовать данным нам указаниям, если мы реагируем на незначительные стимулы так же, как и на важные, если мы стараемся не вести себя так, чтобы нас наказали, и чаще ведем себя таким образом, чтобы получить награду.

Несмотря на вводящие в заблуждение заголовки, никто не имеет ни малейшего представления о том, какие изменения происходят в мозге после того, как мы научились петь песню или выучили стихотворение. Однако ни песни, ни стихотворения не были «загружены» в наш мозг. Он просто упорядоченно изменился таким образом, что теперь мы можем петь песню или рассказывать стихотворение, если соблюдены определенные условия.

Когда нас просят выступить, ни песня, ни стихотворение не «извлекаются» из какого-то места в мозге - точно так же, как не «извлекаются» движения моих пальцев, когда я барабаню по столу. Мы просто поем или рассказываем - и никакого извлечения нам не нужно.

Несколько лет назад я спросил Эрика Кандела - нейролога из Колумбийского университета, получившего Нобелевскую премию за то, что он идентифицировал некоторые из химических изменений, происходящих в выходных нейтронных синапсах аплизии (морской улитки) после того, как она учится чему-то - сколько времени, по его мнению, пройдет, прежде чем мы поймем механизм функционирования человеческой памяти. Он быстро ответил: «Сотня лет». Я не додумался спросить его, считает ли он, что IP-метафора замедляет прогресс нейрологии, однако некоторые нейрологи и в самом деле начинают помышлять о немыслимом, а именно - о том, что эта метафора не так уж необходима.

Ряд когнтивистов - в частности, Энтони Чемеро из Университета Цинциннати, автор вышедшей в 2009 книги «Radical Embodied Cognitive Science» (Основное воплощение когнитивистики) - теперь абсолютно отрицают представление о том, что деятельность человеческого мозга схожа с работой компьютера. Распространенное мнение заключается в том, что мы, как и компьютеры, осмысляем мир, осуществляя вычисления над его мысленными образами , однако Чемеро и прочие ученые описывают другой способ понимая мыслительного процесса - они определяют его как прямое взаимодействие между организмами и их миром.

Мой любимый пример, иллюстрирующий огромную разницу между IP-подходом и тем, что некоторые называют «анти-репрезентативным» взглядом на функционирование человеческого организма , включает в себя два разных объяснения того, как бейсболисту удается поймать летящий мяч, приведенные Майклом Макбитом, сейчас работающим в Университете штата Аризона, и его коллегами, в статье, опубликованной в 1995 в «Science».

Согласно IP-подходу, игрок должен сформулировать приблизительную оценку разнообразных изначальных условий полета мяча - силу воздействия, угол траектории и все такое прочее, - а затем создать и проанализировать внутреннюю модель траектории, которой, скорее всего, должен следовать мяч, после чего он должен воспользоваться этой моделью, чтобы непрерывно направлять и вовремя корректировать движения, направленные на перехват мяча.

Все было бы прекрасно и замечательно, если бы мы функционировали так же, как компьютеры, однако Макбит и его коллеги дали более простое объяснение: чтобы поймать мяч, игроку нужно всего лишь продолжать двигаться так, чтобы постоянно сохранять визуальную связь применительно к основной базе и окружающему пространству (технически, придерживаться «линейно-оптической траектории»). Это может показаться сложным, однако на самом деле это предельно просто и не подразумевает никаких вычислений, представлений и алгоритмов.

Два целеустремленных профессора психологии из британского Городского Университета Лидса - Эндрю Уилсон и Сабрина Голонка - причисляют пример про бейсболиста к ряду других, которые могут восприниматься вне IP-подхода. На протяжении многих лет они писали в своих блогах о том, что они сами называют «более последовательным, натурализованным подходом к научному изучению человеческого поведения… идущим вразрез с доминирующим когнитивистским нейрологическим подходом».

Однако этот подход далек от того, чтобы лечь в основу отдельного движения; большинство когнитивистов по-прежнему отказываются от критики и придерживаются IP-метафоры, а некоторые из наиболее авторитетных мыслителей мира сделали грандиозные предсказания о будущем человечества, которые зависят от действительности метафоры.

Одно из предсказани й - сделанное, среди прочих, футуристом Курцвейлом, физиком Стивеном Хокингом и нейрологом Рэндаллом Коэном - гласит, что, поскольку человеческое сознание, как предполагается, действует как компьютерные программы, вскоре станет возможным загрузить человеческий разум в аппарат, вследствие чего мы станем обладать безгранично могучим интеллектом и, вполне вероятно, приобретем бессмертие. Эта теория легла в основу антиутопического фильма «Превосходство», главную роль в котором исполнил Джонни Депп, сыгравший похожего на Курцвейла ученого, разум которого был загружен в интернет - что привело к ужасающим последствиям для человечества.

К счастью, поскольку IP-метафора ни в коей мере не верна, нам никогда не придется беспокоиться о том, что человеческий разум обезумеет в киберпространстве, и мы никогда не сможем достичь бессмертия посредством загрузки его куда-либо. Причина тому - не только отсутствие сознательного программного обеспечения в мозгу; проблема глубже - давайте назовем ее проблемой уникальности - что звучит одновременно вдохновляюще и угнетающе.

Поскольку ни «банки памяти», ни «представления» стимулов в мозге не существуют, и поскольку все, что требуется от нас, чтобы функционировать в мире, это изменения мозга в результате приобретаемого нами опыта, нет оснований верить в то, что один и тот же опыт изменяет каждого из нас в одинаковой мере . Если мы с вами посетим один и тот же концерт, изменения, происходящие в моем мозгу при звуках Симфонии №5 Бетховена будут практически наверняка отличаться от тех, что происходят в вашем мозге. Эти изменения, какими бы они ни были, создаются на основе уникальной нейронной структуры, которая уже существует, и каждая из которых развивалась на протяжении вашей жизни, наполненной уникальными переживаниями.

Как показал в своей книге «Вспоминая» (1932) сэр Фредерик Бартлетт, именно поэтому ни один из двух людей никогда не повторит услышанную ими историю одинаково, и со временем их рассказы будут все более и более отличаться друг от друга.

Не создается никакой «копии» истории; скорее, каждый индивид, услышав историю, в какой-то степени меняется - достаточно для того, чтобы когда позже его спросят об этой истории (в некоторых случаях, спустя дни, месяцы или даже годы после того, как Бартлетт впервые прочел им историю) - они смогут в определенной степени вновь пережить те минуты, когда они слушали историю, хотя и не очень точно (см. первое изображение долларовой купюры выше.).

Я полагаю, это вдохновляет, потому что это значит, что каждый из нас по-настоящему уникален - не только своим генетическим кодом, но даже в том, какие изменения происходят со временем с его мозгом . Это также угнетающе, поскольку это делает грандиозную задачу нейрологии практически превосходящей воображение. Для каждого из повседневных переживаний упорядоченное изменение может включать тысячи, миллионы нейронов или даже весь мозг, поскольку процесс изменений различен для каждого отдельного мозга.

Что еще хуже, даже если бы мы обладали способностью сделать моментальный снимок всех 86 миллиардов нейронов мозга и затем симулировать состояние этих нейронов с помощью компьютера, этот пространный шаблон не сгодился бы ни на что за пределами мозга, в котором он был изначально создан .

Возможно, это самый чудовищный эффект, который IP-метафора произвела на наше понимание функционирования человеческого организма. В то время, как компьютеры и в самом деле сохраняют точные копии информации - копии, которые могут оставаться неизменными на протяжении долгого времени, даже если сам компьютер был обесточен - наш мозг поддерживает интеллект только пока мы живы. У нас нет кнопок «вкл/выкл».

Либо мозг продолжает свою активность, либо мы исчезаем. К тому же, как отметил невролог Стивен Роуз в своей вышедшей в 2005 году книге «Будущее мозга», моментальный снимок текущего состояния мозга также может оказаться бессмысленным, если мы не знаем полную историю жизни владельца этого мозга - возможно, даже детали социальной обстановки, в которой он или она вырос(-ла) .

Задумайтесь, насколько сложна эта проблема. Чтобы понять хотя бы основы того, как мозг поддерживает интеллект человека, нам может потребоваться выяснить не только текущее состояние всех 86 миллиардов нейронов и 100 триллионов их пересечений, не только различающуюся силу, с которой они соединены, но также то, как ежеминутная мозговая деятельность поддерживает целостность системы.

Прибавьте сюда уникальность каждого мозга, созданную отчасти благодаря уникальности жизненного пути каждого человека , и предсказание Кэндела начинает казаться чересчур оптимистичным. (В вышедшей недавно редакт орской колонке The New York Times нейролог Кеннет Миллер предположил, что задача хотя бы выяснить базовую нейронную связь займет «века».)

Тем временем, огромные суммы денег выделяются на исследования мозговой активности, основывающиеся на зачастую ошибочных идеях и невыполнимых обещания х. Наиболее вопиющий случай того, когда нейрологическое исследование пошло наперекосяк, был задокументирован в недавно выпущенном отчете Sci entific American . Речь шла о сумме в 1,3 миллиарда долларов, выделенной на запущенный Европейским союзом в 2013 году проект «Человеческий мозг».

Убежденные харизматичным Генри Маркрамом, что он сможет создать симуляцию человеческого мозга на суперкомпьютере к 2023 году, и что подобная модель совершит прорыв в лечении болезни Альцгеймера и других нарушений, власти ЕС профинансировали проект, не налагая буквально никаких ограничений. Спустя менее 2 лет проект превратился в «заворот мозгов», и Маркрама попросили покинуть пост.

Это Вам будет интересно:

Мы живые организмы, а не компьютеры. Смиритесь с этим. Давайте продолжим попытки понять себя, но при этом избавимся от ненужного интеллектуального груза. IP-метафора просуществовала полвека, принеся мизерное количество открытий. Пришло время нажать кнопку DELETE. опубликовано

Перевод: Влада Ольшанская и Денис Пронин.

Представьте себе экспериментальный нанонаркотик, который способен связывать сознания разных людей. Представьте, как группа предприимчивых нейробиологов и инженеров открывает новый способ использования этого наркотика - запустить операционную систему прямо внутри мозга. Тогда люди смогут телепатически общаться между собой, используя мысленный чат, и даже манипулировать телами других людей, подчиняя себе действия их мозга. И несмотря на то, что это сюжет научно-фантастической книги Рамеза Наама «Нексус», описанное им будущее технологий уже не кажется таким далеким.

ИДЕЯ ВКРАТЦЕ

На примере следующих трех технологических проектов и сумасшедших исследовательских идей, можно понять, что мы уже одной ногой в будущем, где парализованные пациенты смогут контактировать с внешним миром, где память мозга можно будет расширить с помощью добавления имплантатов, а компьютерный чип будет работать на живых нейронах человеческого мозга.

Как подсоединить мозг к планшету и помочь парализованным больным общаться

Для пациента T6 2014 стал самым счастливым годом жизни. Это был год, когда она смогла управлять планшетным компьютером Nexus с помощью электромагнитного излучения своего мозга и буквально перенестись из эры 1980-х с их диско-ориентированными системами (Disk Operating System, DOS) в новых век андроидной ОС.

T6 - женщина 50 лет, страдающая боковым амиотрофическим склерозом, известным также как болезнь Лу Герига, которая вызывает прогрессирующее повреждение двигательных нейронов и паралич всех органов тела. T6 парализована почти полностью от шеи и вниз. До 2014 года она абсолютно не могла взаимодействовать с внешним миром.

Паралич может наступить и от повреждений костного мозга, инсульта или нейродегенеративных заболеваний, которые блокируют способность говорить, писать и вообще как-либо общаться с окружающими.

Эра интерфейсов, связывающих мозг и машину, расцвела два десятилетия назад, в процессе создания ассистивных устройств, которые бы помогли таким пациентам. Результат был фантастическим: слежение за взглядом (eye-tracking) и слежение за положением головы пользователя системы (head-tracking) позволили отслеживать движения глаз и использовать их как выходные данные для управления курсором мыши на экране компьютера. Иногда пользователь мог даже кликать по ссылке, фиксируя свой взгляд на одной точке экрана. Это называется »время задержки».

Тем не менее, системы eye-tracking были тяжелы для глаз пользователя и слишком дороги. Тогда появилась технология нейронного протезирования, когда устраняется посредник в виде сенсорного органа и мозг связывается с компьютером напрямую. В мозг пациента вживляется микрочип, и нейросигналы, связанные с желанием или намерением, могут быть расшифрованы с помощью сложных алгоритмов в режиме реального времени и использованы для контроля курсора на интерфейсе компьютера.

Два года назад, пациентке T6 имплантировали в левую сторону мозга, отвечающую за движение, 100-канальную электродную установку. Параллельно Стэнфордская лаборатория работала над созданием прототипа протеза, позволяющего парализованным печатать слова на специально разработанной клавиатуре, просто думая об этих словах. Устройство работало следующим образом: встроенные в мозг электроды записывали мозговую активность пациентки в момент, когда она смотрела на нужную букву на экране, передавали эту информацию на нейропротез, интерпретирующий затем сигналы и превращающий их в непрерывное управление курсором и щелчками на экране.

Однако этот процесс был чрезвычайно медленным. Стало понятно, что на выходе получится устройство, работающее без непосредственного физического соединения с компьютером через электроды. Сам интерфейс тоже должен был выглядеть интереснее, чем в 80-х. Команда клинического института BrainGate, занимающаяся этими исследованиями, поняла, что их система «указания и щелчка» была похожа на нажатие пальцем на сенсорный экран. И поскольку сенсорными планшетами большинство из нас пользуется каждый день, то рынок их огромен. Достаточно просто выбрать и купить любой из них.

Парализованная пациентка T6 смогла «нажимать» на экран планшета Nexus 9. Нейропротез связывался с планшетом через протокол Bluetooth, то есть как беспроводная мышь.

Сейчас команда работает над продлением работоспособности имплантата на срок всей жизни, а также разрабатывает системы других двигательных маневров, таких как «выделить и перетащить» и мультисенсорные движения. Кроме того, BrainGate планируют расширить свою программу на другие операционные системы.

Компьютерный чип из живых клеток мозга

Несколько лет назад исследователи из Германии и Японии смогли симулировать 1 процент активности человеческого мозга за одну секунду. Это стало возможным только благодаря вычислительной мощности одного из самых сильных в мире суперкомпьютеров.

Но человеческий мозг до сих пор остается самым мощным, низко энергозатратным и эффективным компьютером. Что если бы можно было использовать силу этого компьютера для питания машин будущих поколений?

Как бы дико это не звучало, нейробиолог Ош Агаби запустил проект «Конику» (Koniku) как раз для реализации этой цели. Он создал прототип 64-нейронной кремниевой микросхемы. Первым приложением этой разработки стал дрон, который может «чуять» запах взрывчатых веществ.

Одой из самых чутких обонятельных способностей отличаются пчелы. На самом деле, они даже перемещаются в пространстве по запаху. Агаби создал дрон, который не уступает пчелиной способности распознавать и интерпретировать запахи. Он может быть использован не только для военных целей и обнаружении бомб, но и для исследования сельхозугодий, нефтеперерабатывающих заводов - всех мест, где уровень здоровья и безопасности может быть измерен по запаху.

В процессе разработки Агаби и его команда решали три основные проблемы: структурировать нейроны так же, как они структурированы в мозге, прочитать и записать информацию в каждый отдельный нейрон и создать стабильную среду.

Технология индуцированной дифференцировки плюрипотентной клетки - метод, когда зрелая клетка, например, кожи, генетически встроена в исходную стволовую клетку, позволяет любой клетке превратиться в нейрон. Но как и любым электронным компонентам, живым нейронам нужна специальная среда обитания.

Поэтому нейроны были помещены в оболочки с управляемой средой, для регулировки уровня температуры и водорода внутри, а также для подачи им питания. Кроме того, такая оболочка позволяет контролировать взаимодействие нейронов между собой.

Электроды под оболочкой позволяют считывать или записывать информацию на нейроны. Агаби описывает этот процесс так:

«Мы заключаем электроды в оболочку из ДНК и обогащенных протеинов, которая стимулирует нейроны формировать искусственную тесную связь с этими проводниками. Так, мы можем считывать информацию с нейронов или, наоборот, посылать информацию на нейроны тем же способом или посредством света или химических процессов».

Агаби верит, что будущее технологий - за раскрытием возможностей так называемого wetware - человеческого мозга в корреляции с машинным процессом.

«Нет практических границ для того, какими большими мы сделаем наши будущие устройства или как по-разному мы может моделировать мозг. Биология - это единственная граница».

Дальнейшие планы «Конику» включат разработку чипов:

  • с 500 нейронами, который будет управлять машиной без водителя;
  • с 10 000 нейронами - будет способен обрабатывать и распознавать изображения так, как это делает человеческий глаз;
  • с 100 000 нейронами - создаст робота с мультисенсорным входом, который будет практически неотличим от человека по перцептивным свойствам;
  • с миллионом нейронов - даст нам компьютер, который будет думать сам за себя.

Чип памяти, встроенный в мозг

Каждый год сотни миллионов людей испытывают сложности из-за потери памяти. Причины этому разные: повреждения мозга, которые преследуют ветеранов и футбольных игроков, инсульты или болезнь Альцгеймера, проявляющиеся в старости, или просто старение мозга, которое ожидает всех нас. Доктор Теодор Бергер, биомедицинский инженер Университета Южной Калифорнии, на средства Агенства по перспективным оборонным исследованиям Министерства обороны США DARPA, тестирует расширяющий память имплантат, который имитирует обработку сигнала в момент, когда нейроны отказываются работать с новыми долгосрочными воспоминаниями.

Чтобы устройство заработало, ученые должны понять, как работает память. Гиппокамп - это область мозга, которая отвечает за трансформацию краткосрочных воспоминаний в долгосрочные. Как он это делает? И возможно ли симулировать его деятельность в рамках компьютерного чипа?

«По существу, память - это серия электрических импульсов, которые возникают с течением времени и которые генерируются определенным числом нейронов», - объясняет Бергер, - «Это очень важно, так как это значит, что мы можем свести этот процесс к математическому уравнению и поместить его в рамки вычислительного процесса».

Так, нейробиологи начали декодировать поток информации внутри гиппокампа. Ключом к этой дешифровке стал сильный электрический сигнал, который идет от области органа под названием СА3 - «входа» гиппокампа - к СА1 - «выходящему» узлу. Этот сигнал ослабляется у людей с расстройством памяти.

«Если бы мы могли воссоздать его, используя чип, мы бы восстановили или даже увеличили объем памяти», — говорит Бергер.

Но проследить этот путь дешифровки сложно, так как нейроны работают нелинейно. И любой незначительный фактор, замешанный в процессе, может привести к совсем другим результатам.Тем не менее, математика и программирование не стоят на месте, и сегодня могут вместе создать самые сложные вычислительные конструкции со множеством неизвестных и множеством «выходов».

Для начала ученые приучили крыс нажимать тот или иной рычаг, чтобы получить лакомство. В процессе запоминания крысами и превращения этого воспоминания в долгосрочное, исследователи тщательно фиксировали и записывали все трансформации нейронов, и затем по этой математической модели создали компьютерный чип. Далее, они ввели крысам вещество, временно дестабилизирующее их способность запоминать и ввели чип в мозг. Устройство воздействовало на «выходящий» орган СА1, и, вдруг, ученые обнаружили, что воспоминание крыс о том, как добиться лакомства восстановилось.

Следующие тесты были проведены на обезьянах. На этот раз ученые сконцентрировались на префронтальной коре головного мозга, которая получает и модулирует воспоминания, полученные из гиппокампа. Животным была продемонстрирована серия изображений, некоторые из который повторялись. Зафиксировав активность нейронов в момент узнавания ими одной и то же картинки, была создана математическая модель и микросхема, на ее основе. После этого работу префронтальной коры обезьян подавили кокаином и ученые вновь смогли восстановить память.

Когда опыты проводились на людях, Бергер избрал 12 волонтеров, больных эпилепсией, с уже имплантированными электродами в головной мозг, чтобы проследить источник их припадков. Повторяющиеся судороги разрушают ключевые части гиппокампа, необходимые для формирования долгосрочных воспоминаний. Если, к примеру, изучить активность мозга в момент припадков, можно будет восстановить воспоминание.

Точно также, как и в предыдущих экспериментах, был зафиксирован специальный человеческий «код памяти», который впоследствии сможет предсказать паттерн активности в клетках СА1, основываясь на данных, хранящихся или возникающих в СА3. В сравнении с «настоящей» мозговой активностью, такой чип работает с точностью около 80%.

Пока рано говорить о конкретных результатах после опытов на людях. В отличие от моторного кортекса головного мозга, где каждый отдел отвечает за определенный орган, гиппокамп организован хаотично. Также пока рано говорить, сможет ли такой имплантат вернуть память тем, кто страдает от повреждений «выходящего» участка гиппокампа.

Проблемный остается вопрос геерализации алгоритма для такого чипа, так как экспериментальный прототип был создан на индивидуальных данных конкретных пациентов. Что, если код памяти разный для всех, в зависимости от типа входящих данных, которые он получает? Бергер напоминает, что и мозг ограничен своей биофизикой:

«Есть только такое количество способов, которыми электрические сигналы в гиппокампе могут быть обработаны, которое несмотря на свое множество, тем не менее ограничено и конечно», — говорит ученый.

Анастасия Львова

  • Перевод

Все мы помним со школы мучительные упражнения в арифметике. На то, чтобы перемножить числа вроде 3 752 и 6 901 при помощи карандаша и бумаги, уйдёт не меньше минуты. Конечно же, сегодня, когда под рукой у нас телефоны, мы быстро можем проверить, что результат нашего упражнения должен равняться 25 892 552. Процессоры современных телефонов могут выполнять более 100 млрд таких операций в секунду. Более того, эти чипы потребляют всего несколько ватт, что делает их гораздо эффективнее наших медленных мозгов, потребляющих 20 Вт и требующих гораздо большего времени на достижение того же результата.

Конечно же, мозг эволюционировал не для того, чтобы заниматься арифметикой. Поэтому у него это получается плохо. Но он прекрасно справляется с обработкой постоянного потока информации, идущего от нашего окружения. И он реагирует на неё – иногда быстрее, чем мы можем это осознать. И неважно, сколько энергии будет потреблять обычный компьютер – он с трудом будет справляться с тем, что легко даётся мозгу – например, с пониманием языка или с бегом по лестнице.

Если бы могли создать машины, вычислительные способности и энергетическая эффективность которых были бы сравнимы с мозгом, то всё поменялось бы кардинально. Роботы бы ловко двигались в физическом мире и общались бы с нами на естественном языке. Крупномасштабные системы собирали бы огромные объёмы информации по бизнесу, науке, медицине или управлению государством, обнаруживая новые закономерности, находя причинно-следственные связи и делая предсказания. Умные мобильные приложения типа Siri и Cortana могли бы меньше полагаться на облака. Такая технология могла бы позволить нам создать устройства с небольшим энергопотреблением, дополняющие наши чувства, обеспечивающие нас лекарствами и эмулирующие нервные сигналы, компенсируя повреждение органов или паралич.

Но не рано ли ставить себе такие смелые цели? Не слишком ограничено ли наше понимание мозга для того, чтобы мы могли создавать технологии, работающие на основе его принципов? Я считаю, что эмуляция даже простейших особенностей нервных контуров может резко улучшить работу множества коммерческих приложений. Насколько точно компьютеры должны копировать биологические детали строения мозга, чтобы приблизиться к его уровню быстродействия – это пока открытый вопрос. Но сегодняшние системы, вдохновлённые строением мозга, или нейроморфные, станут важными инструментами для поисков ответа на него.

Ключевая особенность обычных компьютеров – физическое разделение памяти, хранящей данные и инструкции, и логики, обрабатывающей эту информацию. В мозгу такого разделения нет. Вычисления и хранение данных происходят одновременно и локально, в обширной сети, состоящей из примерно 100 млрд нервных клеток (нейронов) и более 100 трлн связей (синапсов). По большей части мозг определяется этими связями и тем, как каждый из нейронов реагирует на входящий сигнал других нейронов.

Говоря об исключительных возможностях человеческого мозга, обычно мы имеем в виду недавнее приобретение долгого эволюционного процесса – неокортекс (новую кору). Этот тонкий и крайне складчатый слой формирует внешнюю оболочку мозга и выполняет очень разные задачи, включающие обработку поступающей от чувств информации, управление моторикой, работу с памятью и обучение. Такой широкий спектр возможностей доступен довольно однородной структуре: шесть горизонтальных слоёв и миллион вертикальных столбиков по 500 мкм шириной, состоящих из нейронов, интегрирующих и распределяющих информацию, закодированную в электрических импульсах, вдоль растущих из них усиков – дендритов и аксонов.

Как у всех клеток человеческого тела, у нейрона существует электрический потенциал порядка 70 мВ между внешней поверхностью и внутренностями. Это мембранное напряжение изменяется, когда нейрон получает сигнал от других связанных с ним нейронов. Если мембранное напряжение поднимается до критической величины, он формирует импульс, или скачок напряжения, длящийся несколько миллисекунд, величиной порядка 40 мВ. Этот импульс распространяется по аксону нейрона, пока не доходит до синапса – сложной биохимической структуры, соединяющей аксон одного нейрона с дендритом другого. Если импульс удовлетворяет определённым ограничениям, синапс преобразует его в другой импульс, идущий вниз по ветвящимся дендритам нейрона, получающего сигнал, и меняет его мембранное напряжение в положительную или отрицательную сторону.

Связность – критическая особенность мозга. Пирамидальный нейрон – особенно важный тип клеток человеческого неокортекса – содержит порядка 30 000 синапсов, то есть 30 000 входных каналов от других нейронов. И мозг постоянно приспосабливается. Нейрон и свойства синапса – и даже сама структура сети – постоянно изменяются, в основном под воздействием входных данных с органов чувств и обратной связи окружающей среды.

Современные компьютеры общего назначения цифровые, а не аналоговые; мозг классифицировать не так-то просто. Нейроны накапливают электрический заряд, как конденсаторы в электронных схемах. Это явно аналоговый процесс. Но мозг использует всплески в качестве единиц информации, а это в основе своей двоичная схема: в любое время в любом месте всплеск либо есть, либо его нет. В терминах электроники, мозг – система со смешанными сигналами, с локальными аналоговыми вычислениями и передачей информацией при помощи двоичных всплесков. Поскольку у всплеска есть только значения 0 или 1, он может пройти большое расстояние, не теряя этой основной информации. Он также воспроизводится, достигая следующего нейрона в сети.

Ещё одно ключевое отличие мозга и компьютера – мозг справляется с обработкой информации без центрального тактового генератора, синхронизирующего его работу. Хотя мы и наблюдаем синхронизирующие события – мозговые волны – они организуются сами, возникая как результат работы нейросетей. Что интересно, современные компьютерные системы начинают перенимать асинхронность, свойственную мозгу, чтобы ускорить вычисления, выполняя их параллельно. Но степень и цель параллелизации двух этих систем крайне различны.

У идеи использования мозга в качестве модели для вычислений глубокие корни. Первые попытки были основаны на простом пороговом нейроне , выдающем одно значение, если сумма взвешенных входящих данных превышает порог, и другое – если не превышает. Биологический реализм такого подхода, задуманного Уорреном Маккалохом и Уолтером Питтсом в 1940-х, весьма ограничен. Тем не менее, это был первый шаг к применению концепции срабатывающего нейрона в качестве элемента вычислений.

В 1957 году Фрэнк Розенблатт предложил другой вариант порогового нейрона, перцептрон . Сеть из взаимосвязанных узлов (искусственных нейронов) составляется слоями. Видимые слои на поверхности сети взаимодействуют с внешним миром в качестве входов и выходов, а скрытые слои, находящиеся внутри, выполняют все вычисления.

Розенблатт также предложил использовать основную особенность мозга: сдерживание. Вместо того, чтобы складывать все входы, нейроны в перцептроне могут вносить и отрицательный вклад. Эта особенность позволяет нейросетям использовать единственный скрытый слой для решения задач на XOR в логике, в которых выход равен истине, если только один из двух двоичных входов истинный. Этот простой пример показывает, что добавление биологического реализма может добавлять и новые вычислительные возможности. Но какие функции мозга необходимы для его работы, а какие – бесполезные следы эволюции? Никто не знает.

Нам известно, что впечатляющих вычислительных результатов можно добиться и без попыток создать биологический реализм. Исследователи глубинного обучения продвинулись очень далеко в деле использования компьютеров для анализа крупных объёмов данных и выделения определённых признаков из сложных изображений. Хотя созданные ими нейросети обладают большим количеством входов и скрытых слоёв, чем когда бы то ни было, они всё-таки основаны на крайне простых моделях нейронов. Их широкие возможности отражают не биологический реализм, а масштаб содержащихся в них сетей и мощность используемых для их тренировки компьютеров. Но сетям с глубинным обучением всё ещё очень далеко до вычислительных скоростей, энергетической эффективности и возможностей обучения биологического мозга.

Огромный разрыв между мозгом и современными компьютерами лучше всего подчёркивают крупномасштабные симуляции мозга. За последние годы было сделано несколько таких попыток, но все они были жёстко ограничены двумя факторами: энергией и временем симуляции. К примеру, рассмотрим симуляцию , проведённую Маркусом Дайсманом с его коллегами несколько лет назад при использовании 83 000 процессоров на суперкомпьютере К в Японии. Симуляция 1,73 млрд нейронов потребляла в 10 млрд раз больше энергии, чем эквивалентный участок мозга, хотя они и использовали чрезвычайно упрощённые модели и не проводили никакого обучения. И такие симуляции обычно работали более чем в 1000 раз медленнее реального времени биологического мозга.

Почему же они такие медленные? Симуляция мозга на обычных компьютерах требует вычисления миллиардов дифференциальных уравнений, связанных между собой, и описывающих динамику клеток и сетей: аналоговые процессы вроде перемещения заряда по клеточной мембране. Компьютеры, использующие булевскую логику – меняющую энергию на точность – и разделяющие память и вычисления, крайне неэффективно справляются с моделированием мозга.

Эти симуляции могут стать инструментом познания мозга, передавая полученные в лаборатории данные в симуляции, с которыми мы можем экспериментировать, а затем сравнивать результаты с наблюдениями. Но если мы надеемся идти в другом направлении и использовать уроки нейробиологии для создания новых вычислительных систем, нам необходимо переосмыслить то, как мы разрабатываем и создаём компьютеры.


Нейроны в кремнии.

Копирование работы мозга при помощи электроники может быть более выполнимым, чем это кажется на первый взгляд. Оказывается, что на создание электрического потенциала в синапсе тратится примерно 10 фДж (10 -15 джоулей). Затвор металл-оксид-полупроводникового (МОП) транзистора, значительно более крупного и потребляющего больше энергии, чем те, что используются в ЦП, требует для заряда лишь 0,5 фДж. Получается, что синаптическая передача эквивалентна зарядке 20 транзисторов. Более того, на уровне устройств биологические и электронные схемы не так уж сильно различаются. В принципе можно создать структуры, подобные синапсам и нейронам, из транзисторов, и соединить их так, чтобы получить искусственный мозг, не поглощающий таких вопиющих объёмов энергии.

Идея о создании компьютеров при помощи транзисторов, работающих как нейроны, появилась в 1980-х у профессора Карвера Мида из Калтеха. Одним из ключевых аргументов Мида в пользу «нейроморфных» компьютеров было то, что полупроводниковые устройства могут, работая в определённом режиме, следовать тем же физическим законам, что и нейроны, и что аналоговое поведение можно использовать для расчётов с большой энергоэффективностью.

Группа Мида также изобрела платформу для нейрокоммуникаций, в которой всплески кодируются только их адресами в сети и временем возникновения. Эта работа стала новаторской, поскольку она первой сделала время необходимой особенностью искусственных нейросетей. Время – ключевой фактор для мозга. Сигналам нужно время на распространение, мембранам – время на реакцию, и именно время определяет форму постсинаптических потенциалов.

Несколько активных сегодня исследовательских групп, например, группа Джиакомо Индивери из Швейцарской высшей технической школы и Квабены Боахен из Стэнфорда, пошли по стопам Мида и успешно внедрили элементы биологических корковых сетей. Фокус в том, чтобы работать с транзисторами при помощи тока низкого напряжения, не достигающего их порогового значения, создавая аналоговые схемы, копирующие поведение нервной системы, и при этом потребляющие немного энергии.

Дальнейшие исследования в этом направлении могут найти применение в таких системах, как интерфейс мозг-компьютер. Но между этими системами и реальным размером сети, связности и способностью к обучению животного мозга существует огромный разрыв.

Так что в районе 2005 году три группы исследователей независимо начали разрабатывать нейроморфные системы, существенно отличающиеся от изначального подхода Мида. Они хотели создать крупномасштабные системы с миллионами нейронов.

Ближе всех к обычным компьютерам стоит проект SpiNNaker , руководимый Стивом Фёрбером из Манчестерского университета. Эта группа разработала собственный цифровой чип, состоящий из 18 процессоров ARM, работающих на 200 МГц – примерно одна десятая часть скорости современных CPU. Хотя ядра ARM пришли из мира классических компьютеров, они симулируют всплески, отправляемые через особые маршрутизаторы, разработанные так, чтобы передавать информацию асинхронно – прямо как мозг. В текущей реализации, являющейся частью проекта Евросоюза «Человеческий мозг» , и завершённой в 2016 году, содержится 500 000 ядер ARM. В зависимости от сложности модели нейрона, каждое ядро способно симулировать до 1000 нейронов.

Чип TrueNorth, разработанный Дармендра Мода и его коллегами из Исследовательской лаборатории IBM в Альмадене, отказывается от использования микропроцессоров как вычислительных единиц, и представляет собой на самом деле нейроморфную систему, в которой переплелись вычисления и память. TrueNorth всё равно остаётся цифровой системой, но основана она на специально разработанных нейроконтурах, реализующих определённую модель нейрона. В чипе содержится 5,4 млрд транзисторов, он построен по 28-нм технологии Samsung КМОП (комплементарная структура металл-оксид-полупроводник). Транзисторы эмулируют 1 млн нейроконтуров и 256 млн простых (однобитных) синапсов на одном чипе.

Я бы сказал, что следующий проект, BrainScaleS , отошёл довольно далеко от обычных компьютеров и приблизился к биологическому мозгу. Над этим проектом работали мы с моими коллегами из Гейдельбергского университета для европейской инициативы «Человеческий мозг». BrainScaleS реализует обработку смешанных сигналов. Он комбинирует нейроны и синапсы, в роли которых выступают кремниевые транзисторы, работающие как аналоговые устройства с цифровым обменом информацией. Полноразмерная система состоит из 8-дюймовых кремниевых подложек и позволяет эмулировать 4 млн нейронов и 1 млрд синапсов.

Система может воспроизводить девять различных режимов срабатывания биологических нейронов, и разработана в тесном сотрудничестве с нейробиологами. В отличие от аналогового подхода Мида, BrainScaleS работает в ускоренном режиме, его эмуляция в 10 000 раз быстрее реального времени. Это особенно удобно для изучения процесса обучения и развития.

Обучение, скорее всего, станет критическим компонентом нейроморфных систем. Сейчас чипы, сделанные по образу мозга, а также нейросети, работающие на обычных компьютерах, тренируются на стороне при помощи более мощных компьютеров. Но если мы хотим использовать нейроморфные системы в реальных приложениях – допустим, в роботах, которые должны будут работать бок о бок с нами, они должны будут уметь учиться и адаптироваться на лету.

Во втором поколении нашей системы BrainScaleS мы реализовали возможность обучения, создав на чипе «обработчики гибкости». Они используются для изменения широкого спектра параметров нейронов и синапсов. Эта возможность позволяет нам точно подстраивать параметры для компенсации различий в размере и электрических свойствах при переходе от одного устройства к другому – примерно как сам мозг подстраивается под изменения.

Три описанных мной крупномасштабных системы дополняют друг друга. SpiNNaker можно гибко настраивать и использовать для проверки разных нейромоделей, у TrueNorth высока плотность интеграции, BrainScaleS разработана для постоянного обучения и развития. Поиски правильного способа оценки эффективности таких систем пока продолжаются. Но и ранние результаты многообещающие. Группа TrueNorth от IBM недавно подсчитала, что синаптическая передача в их системе отнимает 26 пДж. И хотя это в 1000 раз больше энергии, требующейся в биологической системе, зато это почти в 100 000 раз меньше энергии, уходящей на передачу в симуляции на компьютерах общего назначения.

Мы всё ещё находимся на ранней стадии понимания того, что могут делать такие системы и как их применять к решению реальных задач. Одновременно мы должны найти способы комбинировать множество нейроморфных чипов в крупные сети с улучшенными возможностями к обучению, при этом понижая энергопотребление. Одна из проблем – связность: мозг трёхмерный, а наши схемы – двумерные. Вопрос трёхмерной интеграции схем сейчас активно изучают, и такие технологии могут нам помочь.

Ещё одним подспорьем могут стать устройства, не основанные на КМОП – мемристоры или PCRAM (память с изменением фазового состояния). Сегодня веса, определяющие реакцию искусственных синапсов на входящие сигналы, хранятся в обычной цифровой памяти, отнимающей большую часть кремниевых ресурсов, необходимых для построения сети. Но другие виды памяти могут помочь нам уменьшить размеры этих ячеек с микрометровых до нанометровых. И основной трудностью современных систем будет поддержка различий между разными устройствами. Для этого смогут помочь принципы калибровки, разработанные в BrainScaleS.

Мы только начали свой путь по дороге к практичным и полезным нейроморфным системам. Но усилия стоят того. В случае успеха мы не только создадим мощные вычислительные системы; мы даже можем получить новую информацию о работе нашего собственного мозга.

1. Мозг — аналоговый, а компьютеры — цифровые.

Нейроны двоичные, и если они достигают нужного уровня, то появляется потенциал действия. Это простое соотношение с цифровой системой «Единица и Нуль» дает совершенно неверное представление о действительно беспрерывных нелинейных процессах, которые прямо влияют на работу нейронной сети и ее устройства.

Скажем так, один из основных способов передачи данных — это скорость, при которой нейроны начинают активироваться. Таким образом, сети нейронов могут активироваться в синхронии или в беспорядочности (все относительно). Такая связь может влиять на силу сигналов, получаемых потоком, состоящим из нейронов. И в самом конце, внутри каждого из нейронов начинается круговорот квазиинтеграторов, которые состоят из ионных цепочек, которых довольно много, и регулярно изменяющихся мембранных потенциалов.

2. Ассоциативная память — память мозга.

Запрос информации в компьютере происходит по определенному адресу (байтовая адресация). Мозг же пользуется другим приемом поиска данных — не по адресу, а по их составляющей, скорее даже, по их представительной части. И в конечном итоге, мозг имеет что-то наподобие «системы Google», в которой достаточно немного ключевых слов, чтобы по ним можно было воспроизвести полный контекст. Конечно, нечто подобное можно воспроизвести и в компьютерах с помощь индексации всей информации, которую хранят и которую надо складировать. Вот таким образом, поиск будет выполняться по релевантной информации.

3. Кратковременная память и ОЗУ — не одно и то же.

Несмотря на то, что многие психологи выявляли действительно очевидные сходства между ОЗУ и кратковременной памятью, более подробный анализ показал обилие более существенных различий.

Хотя для ОЗУ и кратковременной памяти нужна «энергия», кратковременная память может содержать только «отсылки» к долговременной памяти, в то время как операционное запоминающее устройство содержит информацию, которая сходна по составу с той, что располагается на жестком диске.

В отличие от ОЗУ, кратковременная память не ограничена объемом.

4. Обработка и память в мозге осуществляется одними и теми же компонентами.

Компьютер способен обрабатывать информацию из памяти, подключая процессоры, и потом заносить переработанные данные обратно в память. У нас в мозге не может существовать разделения подобного типа. Нейроны как обрабатывают данные, так и преобразуют синапсы (место контакта между двумя нейронами), которые и есть основная память. И как следствие, воссоздание по памяти человек чуть-чуть изменяет те воспоминания.

5. Все органы подчиняются мозгу.

Не менее важно и это. На самом деле, наш мозг может использовать возможность управлять всеми нашими органами. Множество экспериментов показывают, что когда мы смотрим на интерьер, допустим комнаты, то наш мозг разгружает память, так как наша зрительная память очень маленькая, и мы, благодаря этому, можем воспроизвести обстановку, а не точное расположение предметов.

К тому же, мозг гораздо больше абсолютно любого компьютера, который существует ныне.