Виды сетевых атак и основные уязвимости. Характерные особенности сетевых атак

18.08.2019

Классификация сетевых атак

Сетевые атаки столь же разнообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью. Другие может осуществить обычный оператор, даже не предполагающий, какие последствия может иметь его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть Интернет создавалась для связи между государственными учреждениями и университетами в помощь учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широко она распространится. В результате, в спецификациях ранних версий интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми. Через много лет, получив множество рекламаций (RFC - Request for Comments), мы, наконец, стали внедрять средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко обсудим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.


Снифферы пакетов
Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (telnet, FTP, SMTP, POP3 и т.д.), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют один пароль для доступа ко всем ресурсам и приложениям. Если приложение работает в режиме клиент/сервер, а аутентификационные данные передаются по сети в читаемом текстовом формате, эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют наши человеческие слабости (методы атак часто базируются на методах социальной инженерии). Они прекрасно знают, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и поэтому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в сеть и к ее ресурсам.

Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:
Аутентификация - Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под "сильным" мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP - One-Time Passwords). ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке и, во-вторых, по вводимому вами ПИН-коду. Для аутентификации в системе ОТР также требуется ПИН-код и ваша личная карточка. Под "карточкой" (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Заметим, что этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.
Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.
Анти-снифферы - Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые "анти-снифферы" измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать "лишний" трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff(. Боле подробную информацию можно получить на сайте


Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec. IPSec представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К прочим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer).


IP-спуфинг
IP-спуфинг происходит, когда хакер, находящийся внутри корпорации или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:
Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Заметим, что это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.
Фильтрация RFC 2827 - Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным "сетевым гражданином"). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации. Этот тип фильтрации, известный под названием "RFC 2827", может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24. Заметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Так, например, фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).

Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.


Отказ в обслуживании (Denial of Service - DoS)
DoS, без всякого сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Даже среди хакеров атаки DoS считаются тривиальными, а их применение вызывает презрительные усмешки, потому что для организации DoS требуется минимум знаний и умений. Тем не менее, именно простота реализации и огромный причиняемый вред привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите побольше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:


TCP SYN Flood
Ping of Death
Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K)
Trinco
Stacheldracht
Trinity

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к вашей сети или на получение из этой сети какой-либо информации. Атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже не сможете, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (DDoS - distributed DoS).

Угроза атак типа DoS может снижаться тремя способами:
Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
Ограничение объема трафика (traffic rate limiting) - организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.


Парольные атаки
Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, хакеры часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакер получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, хакер может создать для себя "проход" для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

Прежде всего, парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации.

При использовании обычных паролей, старайтесь придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге. Чтобы избежать этого, пользователи и администраторы могут поставить себе на пользу ряд последних технологических достижений. Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные пароли будут надежно защищены приложением. С точки зрения администратора, существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack, которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем. Дополнительную информацию можно получить по адресу


Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.


Атаки на уровне приложений
Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им учиться.

Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

Существуют две взаимно дополняющие друг друга технологии IDS:
сетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;
хост-система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста;
В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения. Самым большим недостатком IDS является ее способность выдавать генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.


Сетевая разведка
Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома.

Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство.


Злоупотребление доверием
Собственно говоря, этот тип действий не является "атакой" или "штурмом". Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети. В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом одного из них приводит к взлому и всех остальных, так как эти серверы доверяют другим системам своей сети. Другим примером является система, установленная в внешней стороны межсетевого экрана, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы, хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.


Переадресация портов
Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост. Внешний хост может подключаться к хосту общего доступа (DMZ), но не к хосту, установленному с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний хост. Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Более подробную информацию можно получить на сайте

Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).


Несанкционированный доступ

Несанкционированный доступ не может считаться отдельным типом атаки. Большинство сетевых атак проводятся ради получения несанкционированного доступа. Чтобы подобрать логин telnet, хакер должен сначала получить подсказку telnet на своей системе. После подключения к порту telnet на экране появляется сообщение "authorization required to use this resource" (для пользования этим ресурсов нужна авторизация). Если после этого хакер продолжит попытки доступа, они будут считаться "несанкционированными". Источник таких атак может находиться как внутри сети, так и снаружи.

Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.


Вирусы и приложения типа "троянский конь"
Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com. "Троянский конь" - это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль. Примером типичного "троянского коня" является программа, которая выглядит, как простая игра для рабочей станции пользователя. Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

Борьба с вирусами и "троянскими конями" ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и, возможно, на уровне сети. Антивирусные средства обнаруживают большинство вирусов и "троянских коней" и пресекают их распространение. Получение самой свежей информации о вирусах поможет эффективнее бороться с ними. По мере появления новых вирусов и "троянских коней" предприятие должно устанавливать новые версии антивирусных средств и приложений.

Цель любой атаки – это устранение конкурента, отбирающего клиентов, ну или просто уникальных посетителей. Многие вебмастера не всегда используют для продвижения своего детища только «белые» методы. Не обходиться и без «черных». За счет продвижения черными методами, владелец компании или просто сайта продвигается в ТОП выдачи за счет уничтожения своих конкурентов.

Но самое страшно, что жертвой атаки могут стать ни в чем неповинные сайты, возможно даже те которые только недавно были созданы, такое может случиться, если атакуют весь сервер. Кстати говоря, это та самая причина по которой нужно покупать выделенный IP для своего сайта. И даже не смотря на то, что данные атаки караются по закону, большинство это не останавливает.

Защитить свой сайт на 100% нельзя. Если у злоумышленников имеется большой бюджет на это дело и сильное желание, то их вряд ли что-то может остановить.

Цели атак

Выделяют несколько основных целей:

— Кража паролей пользователей, доступ в закрытые разделы;

— «Уничтожение» сервера. Цель, довести до нерабочего состояния;

— Получить неограниченный доступ к серверу;

— Вживление в код ссылок, различных вирусов и прочего;

— Понижение сайта в поисковой выдаче до полного его выпадения.

Помимо выше перечисленного атаки делятся на внутренние и внешние. К внутренним можно отнести различные взломы для доступа к сайту или серверу, а к внешним , клевету или спам.

Вести борьбу с внутренними видами атак можно и довольно активно. Что же касается внешних, то тут все гораздо сложнее. Все дело в том, что владелец сервера не может взять ситуацию под контроль, что делает его очень уязвимым.

Виды атак

Ddos атака

Это самая, извиняюсь, поршивая разновидность. Следствием такой атаки будет являться полная остановка сервера, а может даже и нескольких серверов. Самое плохое заключается в том, что 100% полной защиты от DDoS не существует. Если атака не из слабых, то сервер будет находиться в нерабочем состоянии пока не будет прекращена атака.

Очередной характерной чертой DDoS-атак, является её доступность. Чтобы «завалить» сервер конкурента, не нужно быть в этом деле профи хакером. Для этого нужны всего лишь деньги или собственный ботнет (Ботнет- сеть зараженных компьетеров). А для слабенького ддоса хватит нескольких компьютеров.

Ddos – перевод данной аббревиатуры звучит как «распределенный отказ от обслуживания». Смысл атаки, заключается в одновременном, огромном обращении к серверу, которое происходит с многочисленных компьютеров.

Читайте также: Как определить время по солнцу

Как мы знаем у любого сервера есть максимальный предел нагрузки, и если эту нагрузку превысить, что и делает ддос-атака, то сервер «погибает».

Самое интересное, что в атаках участвуют обычные пользователи сети, сами того не зная. И чем больше новых юзеров в сети интернет, тем более армия ботнета, и как следствие сила атаки будет расти в геометрической прогрессии. Но сегодня хакеры перенаправили свои силы с ддос атак на мошеннические проделки для непосредственного заработка денег.

Мощность атак измеряется объемом трафика, направляемого на сервер конкурента в секунду. Атакам, объем трафика которых более нескольких ГБ/сек, противостоять очень сложно. Такой объем трафа очень сложно отфильтровать, практически невозможно. Такие мощные атаки, как правило не длятся долго, но даже и одни сутки простоя крупной компании может нанести серьезный ущерб в виде падения продаж и репутации.

Кстати атакуют не только отдельные сервера, а так же национальные сети, в результате чего отрубается сеть в целых регионах.

Для профилактики следует размещать свои сайты на серверах, на которых есть внушительный запас ресурсов, для того чтобы у вас было время принять меры.

В качестве простых методов против слабых атак можно порекомендовать:
— отдавать вместо главной страницы сайта (если атака идет на нее) страницу с редиректом. Так как ее размер намного меньше, то и нагрузка на сервер будет несравненно меньше; — если количество соединений с одного айпи превышает определенное число, заносить его в черный список;
— уменьшить число клиентов (MaxClients), одновременно подключенных к серверу;
— заблокировать зарубежный трафик, так как чаще всего атаки идут из стран Азии;

Нужно иметь отдельный независимый канал к серверу, через который можно будет получить к нему доступ в случае недоступности основного. Все серверное программное обеспечение нужно регулярно обновлять, ставить все выходящие патчи.

Некое подобие ддос-атаки могут спровоцировать поисковые или иные роботы, активно индексирующие сайт. Если движок сайта не оптимизирован, большое количество обращений к страницам за короткий промежуток времени вызовет слишком высокую нагрузку на сервер.

Взлом сервера и размещение ссылок или вирусов

Многие начинающие вебмастера обнаруживают скрытые ссылки на своих сайтах лишь тогда, когда эти ссылки уже привели к негативным последствиям – например, блокировка сайта хостером, выпадение из индекса поисковых систем, жалоба на домен. Тогда и обнаруживается, что сайт был взломан, и на нем размещены ссылки или с целью продвижения других ресурсов, или для распространения вирусов и троянов.

Читайте также: Как распознать взлом в социальной Сети

Есть вероятность, что был осуществлен взлом непосредственно сервера хостинга. Но в большинстве случаев подобные гадости на сайты попадают через дыры в движках сайта или как следствие халатности вебмастера при хранении паролей.

Скрытые ссылки являются одной из популярных причин санкций поисковиков, в частности, может быть значительная пессимизация (падение всех позиций на несколько сотен пунктов), выйти из-под которой будет крайне сложно. Если вставлены будут не просто ссылки, а код вируса, то хостер может просто удалить сайт без предупреждения. Ресурс и его айпи-адрес могут также попасть в черные списка сомнительной (если не сказать мошеннической) конторы Спамхаус, что означает конец, так как выйти оттуда практически невозможно.

Профилактика простая – следить за обновлениями движков, устанавливать все новые версии и выходящие регулярные дополнения. А пароли просто не хранить у себя на компьютере в открытом виде. Это же касается и всего серверного программного обеспечения.

Определенную опасность представляет предсказуемые названия служебных папок и файлов. (Predictable Resource Location). Путем простого перебора хакер определит их нахождение – и у него будет преимущество. Тут стоит пожертвовать удобством ради безопасности.

SQL-инъекция

Исполнение злоумышленником sql-запроса на чужом сервере, используя уязвимости движков, несовершенство программного кода. Суть бреши безопасности заключается в том, что в GET-параметре можно передать произвольный sql-запрос. Поэтому все строковые параметры необходимо экранировать (mysql_real_escape_string) и обрамлять кавычками.

Использовав инъекцию, хакер может совершить практически любое действие с базой данных – удалить ее, получить доступ к пользовательским данным и паролям и т. п.

Суть XSS-атаки заключается во внедрении в страницу, которая генерируется скриптом, произвольного кода. Это работает, если переменная, передаваемая в адресе страницы, не проверяется на присутствие в ней символов типа кавычек.

Основная опасность – кража cookies, и, следовательно, получение доступа к аккаунтам пользователей. Также хакер может получить информацию о системе посетителя, об истории посещенных сайтов и т. п. Внедрить также можно не только java-скрипт, а и ссылку на php-скрипт, размещенный на стороннем сервере, что намного опаснее.

Одно время этот метод применялся в «черном» СЕО для получения бесплатных ссылок. Владельцам сайтов это не особо вредило.

Спам с адресом сайта и реквизитами

Метод, по большому счету, безобидный, но тут опять же вступает вышеупомянутый Спамхаус. Буквально по одной жалобе сайт и его айпи могут быть занесены в черный список, и хостер будет вынужден отказать в обслуживании. А разослать несколько сотен тысяч писем с адресом любого сайта стоит копейки. Спамить также могут форумы, комментарии и т. п., и крайне сложно будет доказать, что этим занимались конкуренты.

Виды атак

Проникновение в компьютерную сеть осуществляется в форме атак.

Атака – это такое событие, при котором посторонние лица пытаются проникнуть внутрь чужых сетей. Современная сетевая атака зачастую предполагает использование уязвимых мест программного обеспечения. Одними из распространенных в начале 2000-х годов были точечные атаки по типу «отказ в обслуживании», DoS (Dental of Service) и распределенные атаки DDoS (Distributed DoS). Атака DoS делает объект нападения недоступным для обычного применения за счет превышения допустимых пределов функционирования такого сетевого устройства. DoS – атака относится к точечной (сосредоточенной), так как поступает от одного источника. В случае распределенной DDoS, нападение осуществляется из множества источников, распределенных в пространстве, зачастую принадлежащим к различным сетям. Несколько лет назад стал применяться термин вредоносный программный код ВПК, который обозначает вирусы, черви, троянские системы, средства для сетевых атак, рассылку спама и другие нежелательные для пользователя действия. Учитывая разнообразный характер угроз, современные системы защиты стали многоуровневыми и приобрели комплексный характер. Сетевые черви распространяют свои копии по компьютерным сетям с помощью электронной почты, обмена сообщениями. Наиболее распространенные сегодня троянские программы, совершающие несанкционированные действия: они разрушают данные, используют ресурсы компьютеров в злонамеренных целях. К числу наиболее опасных троянских программ относятся шпионское программное обеспечения. Оно собирает информацию о всех действиях пользователя, а затем незаметно для него передает эту информацию злоумышленникам. Год 2007 можно назвать годом «смерти» некоммерческих вредоносных программ. Никто уже не разрабатывает эти программы для самовыражения. Можно отметить, что в 2007 году ни одна вредоносная программа не имела бы под собой финансовой подоплеки. Одной из новых вредоносных программ считается «Штормовой червь» (Storm Worm), который появился в январе 2007 года. Для распространения червь использовал как традиционные возможности, например, e-mail, так и распространение в виде видеофайлов. Техника сокрытия своего присутствия в системе (руткиты) могут применяться не только в троянских программах, но и в файловых вирусах. Вредоносные программы теперь стремятся выжить в системе даже после их обнаружения.

Одним из опасных способов сокрытия их присутствия - использование технологии заражения загрузочного сектора жесткого диска – так называемые «буткиты». Такая вредоносная программа может получить управление еще до загрузки основной части ОС.

Круг проблем безопасности уже не ограничивается задачей защиты от вирусов, с которыми приходилось сталкиваться примерно пять лет назад. Опасность внутренних утечек в информации стала более серьезной, чем внешние угрозы. Кроме того, с началом XXI века целью компьютерной преступности стало хищение экономической информации, банковых счетов, нарушение работоспособности информационных систем конкурентов, массовая рассылка рекламы. Не меньшую, а порой даже большую угрозу для корпоративных IT-систем представляют инсайдеры – работники компаний, имеющие доступ к конфиденциальной информации и использующие ее в неблагоприятных целях. Многие эксперты считают, что ущерб, наносимый инсайдерами не менее значительный, чем приносимый вредоносным ПО. Характерно, что значительная часть утечек информации происходит не по вине злоумышленных действий сотрудников, а из-за их невнимательности. Главными техническими средствами борьбы с подобными факторами должны быть средства аутентификации и администрирования доступа к данным. Тем не менее, число инцидентов продолжает расти (за последние годы примерно на 30% в год). Постепенно средства защиты от утечек/инсайдеров начинают интегрироваться в общую систему защиты информации. В заключении приведем обобщенную классификацию сетевых угроз (Рис. 11.3)

переполнение буферов, являются составной частью многих видов вредоносных атак. Атаки переполнения имеют, в свою очередь , много разновидностей. Одна из наиболее опасных предполагает ввод в диалоговое окно , помимо текста, присоединенного к нему исполняемого кода. Такой ввод может привести к записи этого кода поверх исполняемой программы, что рано или поздно вызовет его исполнение . Последствия нетрудно себе представить.

"Пассивные" атаки с помощью, например, sniffer , особенно опасны, так как, во-первых, практически не детектируемы, во-вторых, предпринимаются из локальной сети (внешний Firewall бессилен).

Вирусы - вредоносные программы, способные к самокопированию и к саморассылке. Еще в декабре 1994 года я получил предупреждение о распространении сетевых вирусов (good times и xxx-1) по Интернет :

С момента создания до момента обнаружения вируса проходят часы, дни, недели, а иногда и месяцы. Это зависит от того, насколько быстро проявляются последствия заражения. Чем это время больше, тем большее число ЭВМ оказывается заражено. После выявления факта заражения и распространения новой разновидности вируса требуется от пары часов (например, для Email_Worm.Win32.Bagle.bj) до трех недель (W32.Netsky.N@mm) на выявление сигнатуры, создания противоядия и включения его сигнатуры в базу данных противовирусной программы. Временная диаграмма жизненного цикла вируса представлена на рис. 12.1 (" Network Security ", v.2005, Issue 6, June 2005, p 16-18). Только за 2004 год зарегистрировано 10000 новых сигнатур вирусов . Червь Blaster заразил 90% машин за 10 минут. За это время антивирусная группа должна обнаружить объект , квалифицировать и разработать средство противодействия. Понятно, что это нереально. Так что антивирусная программа является не столько средством противодействия, сколько успокоительным . Эти же соображения справедливы и для всех других видов атак. Когда сигнатура атаки становится известной, сама атака обычно не опасна, так как уже выработаны средства противодействия и уязвимость перекрыта. Именно по этой причине такое внимание уделяется системе управления программными обновлениями (пэтчами).

Некоторые вирусы и черви имеют встроенные SMTP-программы, предназначенные для их рассылки, и люки для беспрепятственного проникновения в зараженную машину. Новейшие версии снабжены средствами подавления активности других вирусов или червей. Таким образом могут создаваться целые сети зараженных машин (BotNet ), готовых по команде начать, например, DDoS -атаку. Для управления такими машинами-зомби может использоваться протокол IRC ( Internet Relay Chart ). Эта система рассылки сообщений поддерживается большим числом серверов и поэтому такой канал обычно трудно отследить и запротоколировать. Этому способствует также то, что большинство систем более тщательно контролируют входной трафик, а не выходной. Следует иметь в виду, что зараженная машина может служить, помимо DoS-атак , для сканирования других ЭВМ и рассылки SPAM , для хранения нелегальных программных продуктов, для управления самой машиной и кражи документов, хранящихся там, для выявления паролей и ключей, используемых хозяином. Ущерб от вируса Blaster оценивается в 475000$.

К сожалению, пока не придумано надежных средств обнаружения новых вирусов (сигнатура которых не известна) .


Рис. 12.1.

В 2005 году выявлена еще одна угроза – распространение вирусов и сетевых червей с помощью программ-роботов поисковых систем ( bots ), базирующихся на IRC .

Программы bots не всегда опасны, некоторые их разновидности применяются для сбора данных, в частности, о предпочтениях клиентов, а в поисковой системе Google они работают для сбора и индексации документов. Но в руках хакера эти программы превращаются в опасное оружие. Наиболее известная атака была предпринята в 2005 году, хотя подготовка и "первые опыты" начались в сентябре 2004 года. Программа искала машины со специфическими уязвимостями, в частности, LSASS ( Local Security Authority Subsystem Service , Windows ). Подсистема LSASS, призванная способствовать обеспечению безопасности, оказалась сама уязвимой для атак типа переполнения буфера. Хотя уязвимость уже ликвидирована, число машин с необновленной версией остается значительным. После вторжения хакер обычно использует IRC для выполнения нужных ему операций (открытие определенного порта, рассылка SPAM , запуск сканирования других потенциальных жертв). Новой особенностью таких программ является их встраивание в операционную системы таким образом (rootkit ), что они не могут быть обнаружены, так как размещаются в зоне ядра ОС. Если антивирусная программы попытается получить доступ к определенной области памяти с целью выявления вредоносного кода, rootkit перехватывает такой запрос и отправляет тестирующей программе уведомление, что все в порядке. Что еще хуже, bot-программы могут модифицировать содержимое

Интернет полностью меняет наш образ жизни: работу, учебу, досуг. Эти изменения будут происходить как в уже известных нам областях (электронная коммерция, доступ к информации в реальном времени, расширение возможностей связи и т.д.), так и в тех сферах, о которых мы пока не имеем представления.

Может наступить такое время, когда корпорация будет производить все свои телефонные звонки через Интернет, причем совершенно бесплатно. В частной жизни возможно появление специальных Web-сайтов, при помощи которых родители смогут в любой момент узнать, как обстоят дела у их детей. Наше общество только начинает осознавать безграничные возможности Интернета.

Введение

Одновременно с колоссальным ростом популярности Интернета возникает беспрецедентная опасность разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д.

Каждый день хакеры подвергают угрозе эти ресурсы, пытаясь получить к ним доступ при помощи специальных атак, которые постепенно становятся, с одной стороны, более изощренными, а с другой - простыми в исполнении. Этому способствуют два основных фактора.

Во-первых , это повсеместное проникновение Интернета. Сегодня к Сети подключены миллионы устройств, и многие миллионы устройств будут подключены к Интернету в ближайшем будущем, поэтому вероятность доступа хакеров к уязвимым устройствам постоянно возрастает.

Кроме того, широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Простой поиск по ключевым словам типа «хакер », «взлом », «hack », «crack » или «phreak » даст вам тысячи сайтов, на многих из которых можно найти вредоносные коды и способы их использования.

Во-вторых , это широчайшее распространение простых в использовании операционных систем и сред разработки. Данный фактор резко снижает уровень необходимых хакеру знаний и навыков. Раньше, чтобы создавать и распространять простые в использовании приложения, хакер должен был обладать хорошими навыками программирования.

Теперь, чтобы получить доступ к хакерскому средству, нужно только знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышью.

Классификация сетевых атак

Сетевые атаки столь же многообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью, другие по силам обычному оператору, даже не предполагающему, к каким последствиям может привести его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть

Интернет создавалась для связи между государственными учреждениями и университетами с целью оказания помощи учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широкое распространение она получит. В результате в спецификациях ранних версий Интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми.

Через много лет, после множества рекламаций (Request for Comments, RFC ), наконец стали внедряться средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко рассмотрим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.

Сниффер пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки).

При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д .), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют единый пароль для доступа ко всем ресурсам и приложениям.

Если приложение работает в режиме «клиент-сервер », а аутентификационные данные передаются по сети в читаемом текстовом формате, то эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют человеческие слабости (методы атак часто базируются на методах социальной инженерии).

Они прекрасно представляют себе, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и потому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в Сеть и к ее ресурсам.

Снизить угрозу сниффинга пакетов можно с помощью следующих средств :

Аутентификация . Сильные средства аутентификации являются важнейшим способом защиты от сниффинга пакетов. Под «сильными » мы понимаем такие методы аутентификации, которые трудно обойти. Примером такой аутентификации являются однократные пароли (One-Time Passwords, OTP ).

ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке, а во-вторых, по вводимому вами пин-коду. Для аутентификации в системе ОТР также требуются пин-код и ваша личная карточка.

Под «карточкой » (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает данный пароль с помощью сниффера, то эта информация будет бесполезной, поскольку в этот момент пароль уже будет использован и выведен из употребления.

Отметим, что этот способ борьбы со сниффингом эффективен только в случаях перехвата паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.

Коммутируемая инфраструктура . Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктура не устраняет угрозы сниффинга, но заметно снижает ее остроту.

Антиснифферы . Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Антиснифферы измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать лишний трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff.

Криптография . Этот самый эффективный способ борьбы со сниффингом пакетов хотя и не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, то хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec, который представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К другим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer) .

IP-спуфинг

IP-спуфинг происходит в том случае, когда хакер, находящийся внутри корпорации или вне ее, выдает себя за санкционированного пользователя. Это можно сделать двумя способами: хакер может воспользоваться или IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам.

Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Как правило, IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами.

Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений - если главная задача заключается в получении от системы важного файла, то ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, он получит все пакеты и сможет отвечать на них так, как будто является санкционированным пользователем.

Угрозу спуфинга можно ослабить (но не устранить) с помощью перечисленных ниже меров:

  • Контроль доступа . Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфинга, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети.

    Правда, это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса; если же санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным;

  • Фильтрация RFC 2827 . Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным сетевым гражданином). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации.

    Данный тип фильтрации, известный под названием RFC 2827, может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24.

Отметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Например , фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).

Наиболее эффективный метод борьбы с IP-спуфингом - тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов.

Поэтому внедрение дополнительных методов аутентификации делает подобные атаки бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

Отказ в обслуживании

Denial of Service (DoS) , без сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Среди хакеров атаки DoS считаются детской забавой, а их применение вызывает презрительные усмешки, поскольку для организации DoS требуется минимум знаний и умений.

Тем не менее именно простота реализации и огромные масштабы причиняемого вреда привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите больше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:

  • TCP SYN Flood;
  • Ping of Death;
  • Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K);
  • Trinco;
  • Stacheldracht;
  • Trinity.

Прекрасным источником информации по вопросам безопасности является группа экстренного реагирования на компьютерные проблемы (Computer Emergency Response Team, CERT), опубликовавшая отличную работу по борьбе с атаками DoS.

Атаки DoS отличаются от атак других типов. Они не нацелены ни на получение доступа к вашей сети, ни на получение из этой сети какой-либо информации, но атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская обслуживания рядовых пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ).

Большинство атак DoS рассчитано не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов.

Данный тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если не остановить у провайдера трафик, предназначенный для переполнения вашей сети, то сделать это на входе в сеть вы уже не сможете, поскольку вся полоса пропускания будет занята. Когда атака данного типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (distributed DoS, DDoS ).

Угроза атак типа DoS может быть снижена тремя способами:

  • Функции антиспуфинга . Правильная конфигурация функций антиспуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции как минимум должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
  • Функции анти-DoS . Правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах способна ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
  • Ограничение объема трафика (traffic rate limiting) . Организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Типичным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.

Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль зачастую можно получить при помощи IP-спуфинга и сниффинга пакетов, хакеры нередко пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ).

Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакеру предоставляется доступ к ресурсам, то он получает его на правах обычного пользователя, пароль которого был подобран.

Если этот пользователь имеет значительные привилегии доступа, хакер может создать себе «проход » для будущего доступа, который будет действовать, даже если пользователь изменит свои пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: к корпоративной, персональной и к системам Интернета. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, то хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают вышеуказанные методы аутентификации.

При использовании обычных паролей старайтесь придумать такой, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.).

Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать их на бумаге. Чтобы избежать этого, пользователи и администраторы могут использовать ряд последних технологических достижений.

Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные будут надежно защищены приложением.

Для администратора существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack , которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем. Дополнительную информацию можно получить по адресу http://www.l0phtcrack.com/ .

Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак данного типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации.

Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Отметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), то это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них - использование хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа).

Сведения об атаках на уровне приложений широко публикуются, чтобы дать администраторам возможность исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им совершенствоваться.

Главная проблема при атаках на уровне приложений заключается в том, что хакеры часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку web-сервер предоставляет пользователям Web-страницы, то межсетевой экран должен обеспечивать доступ к этому порту. С точки зрения межсетевого экрана атака рассматривается как стандартный трафик для порта 80.

Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете новые уязвимые места прикладных программ. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • читайте лог-файлы операционных систем и сетевые лог-файлы и/или анализируйте их с помощью специальных аналитических приложений;
  • подпишитесь на услуги по рассылке данных о слабых местах прикладных программ: Bugtrad (http://www.securityfocus.com ).

Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования и сканирования портов.

Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате он добывает информацию, которую можно использовать для взлома.

Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, то вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев.

Кроме того, сканировать порты можно и без предварительного эхо-тестирования - просто это займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство:

  1. пользуйтесь самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);
  2. кроме системного администрирования, пользуйтесь системами распознавания атак (IDS) - двумя взаимодополняющими друг друга технологиями ID:
    • сетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;
    • система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста.

В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения.

Самым большим недостатком IDS является их способность генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.

Злоупотребление доверием

Собственно говоря, этот тип действий не является в полном смысле слова атакой или штурмом. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети.

В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом любого из них приводит к взлому всех остальных, так как эти серверы доверяют другим системам своей сети.

Другим примером является установленная с внешней стороны межсетевого экрана система, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, ни при каких условиях не должны пользоваться абсолютным доверием со стороны защищенных экраном систем.

Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост.

Внешний хост может подключаться к хосту общего доступа (DMZ), но не к тому, что установлен с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний.

Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Более подробную информацию можно получить на сайте http://www.avian.org .

Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

Несанкционированный доступ

Несанкционированный доступ не может быть выделен в отдельный тип атаки, поскольку большинство сетевых атак проводятся именно ради получения несанкционированного доступа. Чтобы подобрать логин Тelnet, хакер должен сначала получить подсказку Тelnet на своей системе. После подключения к порту Тelnet на экране появляется сообщение «authorization required to use this resource» («Для пользования этим ресурсом нужна авторизация »).

Если после этого хакер продолжит попытки доступа, они будут считаться несанкционированными. Источник таких атак может находиться как внутри сети, так и снаружи.

Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола.

В качестве примера можно рассмотреть недопущение хакерского доступа к порту Telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

Вирусы и приложения типа «троянский конь»

Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com.

Троянский конь - это не программная вставка, а настоящая программа, которая на первый взгляд кажется полезным приложением, а на деле исполняет вредную роль. Примером типичного троянского коня является программа, которая выглядит, как простая игра для рабочей станции пользователя.

Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

Эта статья для тех, кто впервые столкнулся с необходимостью установить удаленное соединение с базой данных MySQL. В статье рассказывается о сложностях, которые…

Почти на каждом сайте с регистрацией есть форма "Вспомнить пароль", с ее помощью можно получить забытый пароль не E-Mail. Высылать пароль не совсем безопасно,…