Возможности подключения Wi-Fi модуля esp8266 к arduino. Управление машинкой через WiFi с помощью ESP8266 NodeMCU

16.07.2019

Совсем немного времени прошло с освоения новых микроконтроллеров Ардуино, как мне на глаза попадется информация о модуле ESP8266, и я решаюсь окунуться в новый для себя мир: новый микроконтроллер и беспроводная сеть Wifi. Радовало то, что программировать такие модули можно через уже освоенную программу Arduino IDE. Но каждый шаг надо проверять.

ESP8266 EX-12E :


 имеет 11 входов ввода-вывода (GPIO), что расширяет его возможности
 только в этой версии есть вход АЦП
 возможность SMD монтажа Подготовка к эксплуатации

Для работы модуля требуется:

 подать логическую единицу на вход EN (CH_PD)
 для входа в режим прошивки перед включением модуля надо замкнуть на землю GPIO0
 подать 3,3 v на VCC

Для первых шагов мне показалось несколько рискованным начинать работу с этим модулем, и я заказал комплект NodeMCU DevKit ESP8266 E-12 и макетную плату Motor shield ESP 8266 E-12 Я не собирался управлять двигателями, но меня привлекла возможность непосредственного подключения модуля к USB и согласование по питанию всех цепей.


Установил ARDUINO 1,6,6. Затем вписал в настройках программы http://arduino.esp8266.com/stable/package_esp8266com_index.json и в Инструментах отобразились платы, в том числе NodeMCU 1.0(ESP-12E Module) Загрузил пример WiFiClient и при компиляции получаю кучу сообщениий об ошибках. Обратился на форум ESP8266.ru , где мне посоветовали пользоваться предыдущей версией программы Arduino - 1.6.5. Для надежности я переустановил систему (восстановил с бэкапа) и установил Arduino 1.6.5. Проделал те же процедуры, чтобы подключить необходимые библиотеки. Делаю проверку, все отлично - ошибок нет!

Хватит лирики, теперь конкретно и с картинками, что я сделал.

1. Вписать путь к библиотекам (можно через запятую. На картинке один путь)


2. Выбрать в меню Boards Manadger


3. В самом низу открывшегося списка появится поле с новой библиотекой ESP8266 . (Открыть пришлось два раза, так как менеджер еще не подхватил библиотеки). Необходимо выбрать мышкой это поле, чтобы появилась кнопка Install


4. Снова заходим в меню Интсрументы и выбираем плату NodeMCU 1.0(ESP-12E module)

Если плата подключена к компьютеру, то сразу стоит установить порт. Если компьютер не распознает новое устройсто, что можно увидеть в диспетчере устройств компьютера, то следует установить необходимый драйвер. Для моего модуля потребовался драйвер CP2102 USB .

Пришло время сообщить, что я задумал сделать. Дома на стене висит большая карта мира, на которой подсвечены светодиодами разных цветов места, где я побывал. Так, синие светодиоды подсвечивают порты и точки в океане - работа в институте Океанологии; желтые - армия, и так далее. Светодиоды меняют свою яркость и иногда перемигиваются. Всем этим управляет Arduino Nano. Теперь же я хочу, чтобы всем управлял модуль ESP8266 и можно было менять режимы со смартфона через wifi. Задача не сложная, когда знаешь, как делать, а когда в первый раз?!

Первое, что потребовалось проверить - какие выводы у ESP8266 я смогу использовать для вывода ШИМ сигналов, чтобы управлять яркостью цветных светодиодных каналов. Всего на карте мира четыре цветовых канала. В каждом канале около 20 светодиодов. Тщетно проведя поиски в Интернете, я стал методом перебора, изменяя в программе активность выводов GPIO, определил 4 вывода. Позже я нашел таблицу, карту ножек, модуля ESP8266, которая подходила под мой вариант.

IO index ESP8266 pin IO index ESP8266 pin
0 GPIO16 7 GPIO13
1 GPIO5 8 GPIO15
2 GPIO4 9 GPIO3
3 GPIO0 10 GPIO1
4 GPIO2 11 GPIO9
5 GPIO14 12 GPIO10
6 GPIO12

Итак, первая часть программы работает. Я выбрал первые четыре вывода 0-3, то есть в программе это соответственно GPIO16, GPIO5, GPIO4, GPIO0, а на модуле DevKit ESP8266 E-12, это выводы D0-D3 соответсвенно.

Как задействовать wifi?

В поисках решения я вышел на сайт blynk.cc , с которого скачал и установил программу для смартфона (BLYNK FOR ANDROID) и библиотеку для Android IDE. Программа для смартфона устанавливается автоматом непосредственно с сайта blynk.cc без проблем.
Также без проблем я скачал библиотеку Blynk_v0.3.1.zip (275 Кб) и установил. Для этого следует запустить программу Arduino, выбрать в меню ADD .ZIP Library...


Библиотеки установились прямо из архива, это удобно.

Как правило, лучше программу перезапускать после нововведений.

Выбрал образец Blynk>BoardsAndShields>ESP8266_Standalone и на его базе написал свой скетч:

В смартфоне я подключил 4 больших слайдера, установив диапазон 0-1023 и одну кнопку переключающий режимы подсветки карты мира.

В правом нижнем углу карты размещен модуль DevKit ESP8266.

Схема достаточно простая. Единственно, что мне необходимо было сделать, это организовать питание и уровни управляющих сигналов. Основной блок питания на 12 вольт запитывает свтодиоды. На DevKit я подал 5 вольт через преобразователь


На рисунке показана одна группа светодиодов. Всего таких групп четыре и они отличаются цветом. Каждая группа может состоять из разного количества светодиодных линеек, соединенных параллельно, но в каждой линейке не больше 5 светодиодов, это определяется питающим напряжением 12 в. Если требуется меньшее количество светодиодов, то либо в цепь включается гасящее сопротивление, либо потенциометром канала добиваются необходимой яркости.

Всё больше набирает популярности, и уже Arduino подхватывает инициативу - добавляя эти Wi-Fi модули в список поддерживаемых плат.
Но как же его подключить к ардуино? И возможно как-то обойтись вообще без ардуино? Сегодня именно об этом и пойдёт речь в этой статье.

Забегая наперёд, скажу, что будет вторая статья, уже более практическая, по теме прошивки и программирования модуля ESP8266 в среде разработки Arduino IDE . Но, обо всём по порядку.

Этот видеоролик, полностью дублирует материал, представленный в статье.



На данный момент, существует много разновидностей этого модуля, вот некоторые из них:

А вот распиновка ESP01, ESP03, ESP12:


* Данную картинку можно посмотреть в хорошем качестве на офф. сайте pighixxx.com .

Лично мне, больше всего нравится версия ESP07. Как минимум за то, что тут есть металлический экран (он защищает микросхемы от внешних наводок, тем самым обеспечивает более стабильную работу), своя керамическая антенна, разъём для внешней антенны. Получается, подключив к нему внешнюю антенну, например типа биквадрат , то можно добиться неплохой дальности. К тому же, тут есть немало портов ввода вывода, так называемых GPIO(General Purpose Input Output - порты ввода-вывода общего назначения), по аналогии с ардуино - пинов.

Давайте вернёмся к нашим баранам Wi-Fi модулям и Arduino. В этой статье, я буду рассматривать подключение ESP8266(модели ESP01) к Arduino Nano V3.

Но, данная информация будет актуальна для большинства модулей ESP8266 и так же разных Arduino плат, например самой популярной Arduino UNO.

Пару слов по ножкам ESP01:

Vcc и GND (на картинке выше это 8 и 1) - питание, на ножку Vcc можно подавать, судя по документации , от 3 до 3.6 В , а GND - земля (минус питания). Я видел, как один человек подключал этот модуль к двум AA аккумуляторам (напряжение питания в этом случае было примерно 2.7 В) и модуль был работоспособным. Но всё же разработчики указали диапазон напряжений, в котором модуль должен гарантированно работать, если вы используете другой - ваши проблемы.

Внимание! Этот модуль основан на 3.3 В логике, а Arduino в основном - 5 В логика. 5 В запросто могут вывести из строя ESP8266, потому на него нужно отдельно от ардуино подавать питание .

- На моей ардуинке есть ножка, где написано 3.3 В, почему бы не использовать её?

Наверное подумаете вы. Дело в том, что ESP8266 довольно таки прожорливый модуль, и в пиках может потреблять токи до 200 мА, и почти никакая ардуинка по умолчанию не способна выдать такой ток, разве что исключением является Arduino Due , у которой ток по линии 3.3 В может достигать 800 мА, чего с запасом хватит, в других же случаях советую использовать дополнительный стабилизатор на 3.3 В, например AMS1117 3.3 В . Таких валом как в Китае, так и у нас.

Ножка RST 6 - предназначена «железной» для перезагрузки модуля, кратковременно подав на неё низкий логический уровень, модуль перезагрузиться. Хоть и на видео я этим пренебрёг, но всё же вам советую «прижимать» данную ногу резистором на 10 кОм к плюсу питания , дабы добиться лучшей стабильности в работе модуля, а то у меня перезагружался от малейших наводок.

Ножка CP_PD 4(или по-другому EN ) - служит, опять же, для «железного» перевода модуля в энергосберегающий режим, в котором он потребляет очень маленький ток. Ну и снова - не будет лишним «прижать» эту ногу резистором на 10 кОм к плюсу питалова. На видео я тупо закоротил эту ногу на Vcc, потому как под рукой не оказалось такого резистора.

Ноги RXD0 7 TXD0 2 - аппаратный UART, который используется для перепрошивки, но ведь никто не запрещает использовать эти порты как GPIO(GPIO3 и GPIO1 соотвественно). GPIO3 на картинке почему-то не размечен, но в даташите он есть:

К стати, к ножке TXD0 2 подключен светодиод «Connect», и горит он при низком логическом уровне на GPIO1, ну или когда модуль отправляет что-то по UART.

GPIO0 5 - может быть не только портом ввода/вывода, но и переводить модуль в режим программирования. Делается это подключив этот порт к низкому логическому уровню(«прижав» к GND) и подав питание на модуль. На видео я делаю это обычной кнопкой. После перепрошивки - не забудьте вытащить перемычку/отжать кнопку(кнопку во время перепрошивки держать не обязательно, модуль при включении переходит в режим программирования, и остаётся в нём до перезагрузки).

GPIO2 3 - порт ввода/вывода.

И ещё один немаловажный момент, каждый GPIO Wi-Fi модуля может безопасно выдавать ток до 6 мА , чтобы его не спалить, обязательно ставьте резисторы последовательно портам ввода/вывода на… Вспоминаем закон Ома R = U/I = 3.3В / 0.006 А = 550 Ом, то есть, на 560 Ом . Или же пренебрегайте этим, и потом удивляйтесь почему оно не работает.

В ESP01 все GPIO поддерживают ШИМ, так что к нашим четырём GPIO, то есть GPIO0-3 можно подключить драйвер двигателя, аля L293 / L298 и рулить двумя двигателями, например катера, или же сделать RGB Wi-Fi приблуду. Да, да, данный модуль имеет на борту много чего, и для простеньких проектов скрипач Arduino не нужен, только для перепрошивки. А если использовать ESP07 то там вообще портов почти как у Uno, что даёт возможность уже уверенно обходиться без ардуино. Правда есть один неприятный момент, аналоговых портов у ESP01 вообще нет, а у ESP07 только один, ADC зовётся. Это конечно усугубляет работу с аналоговыми датчиками. В таком случае ардуино аналоговый мультиплексор в помощь.

Всё вроде как по распиновке пояснил, и вот схема подключения ESP8266 к Arduino Nano:

Видите на Arduino Nano перемычка на ножках RST и GND? Это нужно для того, чтобы ардуинка не мешала прошивке модуля, в случае подключения ESP8266 при помощи Arduino - обязательное условие.

Так же если подключаете к Arduino - RX модуля должен идти к RX ардуинки, TX - TX. Это потому, что микросхема преобразователь уже подключена к ножкам ардуино в перекрестном порядке.

Так же немаловажен резистивный делитель, состоящий из резисторов на 1 кОм и 2 кОм (можно сделать из двух резисторов на 1 кОм последовательно соединив их) по линии RX модуля. Потому как ардуино это 5 В логика а модуль 3.3. Получается примитивный преобразователь уровней. Он обязательно должен быть, потому что ноги RXD TXD модуля не толерантные к 5 В.

Ну и можно вообще обойтись без ардуино, подключив ESP8266 через обычный USB-UART преобразователь. В случае подключения к ардуино, мы, по сути, используем штатный конвертер интерфейсов usb и uart, минуя мозги. Так зачем тратиться лишний раз, если можно обойтись и без ардуино вообще? Только в этом случае, мы подключаем RXD модуля к TXD конвертора, TXD - RXD.

Если вам лениво заморачиваться с подключением, возится с резисторами и стабилизаторами - есть готовые решения NodeMcu:

Тут всё значительно проще, воткнул кабель в компьютер, установил драйвера и программируй, только не забывай задействовать перемычку/кнопку на GPIO0 для перевода модуля в режим прошивки.

Ну вот, с теорией наверное всё, статья получилась пожалуй довольно таки большая, и практическую часть, аля прошивка и программирование модуля, я опубликую немного позже.

Часть 1. Подготовка ESP8266

Зачем эта статья? На хабре уже есть ряд статей про использование ESP в разных конфигурациях, но почему-то без подробностей о том, как именно все подключается, прошивается и программируется. Типа «я взял ESP, две пальчиковые батарейки, DHT22, закинул в коробку, потряс часик и термометр готов!». В итоге, получается странно: те, кто уже работают с ESP не видят в сделанном ничего необычного, а те, кто хочет научиться - не понимают с чего начать. Поэтому, я решил написать подробную статью о том, как подключается и прошивается ESP, как его связать с Arduino и внешним миром и какие проблемы мне попадались на этом пути. Ссылки на Aliexpress привожу лишь для представления порядка цен и внешнего вида компонентов.

Итак, у меня было два микроконтроллера, семь разных сенсоров, пять источников питания, температурный датчик DHT22 и целое множество проводков всех сортов и расцветок, а так же бессчетное количество сопротивлений, конденсаторов и диодов. Не то, чтобы все это было необходимо для термометра, но если уж начал заниматься микроэлектроникой, то становится трудно остановиться.


Питание

Для работы ESP8266 нужно напряжение 3.3В и ток не ниже 300мА. К сожалению, Arduino Uno не в состоянии обеспечить такой ток, как не в состоянии обеспечить его и переходники USB-UART (программаторы) типа FT232RL - их предел около 50мА. А значит придется организовать отдельное питание. И лучше бы, чтобы Arduino тоже работал от 3.3В, чтобы избежать проблем типа «я подал пятивольтовый сигнал на вывод RX модуля ESP, почему пахнет паленой пластмассой?».

Есть три решения.

2. Купить готовый модуль с регулятором напряжения, понижающий 5В до 3.3В. Пожалуй, это самый удобный вариант.

3. Собрать модуль самому из регулятора AMS1117 и одного танталового конденсатора на 22мкФ.

Я выбрал третий пункт, поскольку мне часто нужно 3.3В, я жадный и я люблю встраивать регуляторы прямо в блоки питания.

С AMS1117 все просто: если положить его текстом вверх, то напряжение на ногах растет слева направо: 0(Gnd), 3.3В (Vout), 5В (Vin).
Между нулем и выходом нужен танталовый конденсатор на 22мкФ (так по инструкции , что будет если поставить электролитический - я не проверял). У танталового SMD-конденсатора плюс там, где полоска. Немного чудовищной пайки совершенно не предназначенных для такого варварства SMD-компонентов и:

Обязательно проверяйте выходное напряжение. Если оно значительно меньше 3.3В (например, 1.17В) - дайте регулятору остыть после пайки и проверьте контакты. Если поставите конденсатор больше, чем на 22мкФ, то мультиметр может показать более высокое напряжение.

Почему именно AMS1117? Он широко используется. Его вы можете найти почти везде, даже в Arduino Uno, как правило, стоит AMS1117-5.0.
Если вы знаете что-то схожих габаритов и цены, еще более простое в использовании - напишите, пожалуйста.

Важный момент. Не знаю уж почему, но AMS1117 крайне капризно относится к качеству соединений. Контакты должны быть надежны. Лучше - пропаяны. Иначе он на тестах выдает 3.3В, но под нагрузкой не выдает ничего.

Подключение ESP8266

Я выбрал модель 07, поскольку у нее отличный металлический экран, который работает как защита от наводок, механических воздействий и как радиатор. Последнее обеспечивает разницу между сгоревшим модулем и просто нагревшимся. Кроме того, есть гнездо под внешнюю антенну.

Чтобы чип запустился нужно соединить VCC и CH_P через резистор 10кОм. Если такого нет, то сгодится любой из диапазона 1-20кОм. Кроме того, конкретно модель 07 еще требует, чтобы GPIO15 (самый ближний к GND) был «на земле» (этого на картинке не видно, потому что соединение с другой стороны).

Теперь берем переходник USB-UART, переключаем его на 3.3В и подключаем RX к TX, TX к RX и GND к «земле» (у меня без этого передача нестабильна). Если вы не можете переключить на 3.3В, то можно использовать простейший резисторный делитель напряжения: соедините ESP RX с TX переходника через сопротивление в 1кОм, а ESP RX с «землей» через 2кОм. Существует масса более сложных и более надежных способов связать 3.3В и 5В, но в данном случае и так сойдет.

И соединяемся на скорости 9600 по нужному COM-порту (можно посмотреть в диспетчере устройств).

Я использую SecureCRT, Putty тоже подойдет, а ценители Линукса и так знают, что делать и где смотреть.

(AT+RST перезагружает чип)

Если ничего не происходит - выключите - включите питание, если все равно ничего не происходит - проверьте соответствие TX/RX, попробуйте переставить их местами или припаять к чипу.

Иногда чип в ходе издевательств экспериментов зависает и тогда его надо обесточить, в том числе отключив и переходник (например, вытащив его из USB), поскольку чипу хватает даже поступающих крох питания, чтобы упорно тупить и не работать.

Иногда фокусы с переходником вешают USB-порт. Можно в качестве временного решения использовать другой USB-порт, но вообще лучше перезагрузить компьютер.

Иногда при этом меняется номер COM-порта. Под Linux это можно решить с помощью udev.

Если вместо текста приходит мусор, то проверьте настройки скорости. Некоторые старые чипы работают на 115200.

На старте чип нагревается, но если он реально горячий и продолжает греться - отключайте и проверяйте все соединения. Чтобы на корпус не попадало +3.3В, чтобы 5В к нему вообще никуда не приходили, чтобы «земля» переходника была соединена с «землей» чипа. Модели с металлическим экраном очень трудно сжечь (но нет ничего невозможного), а на модели без экранов жалуются, мол даже небольшая ошибка может стать последней в жизни чипа. Но это я не проверял.

Прошивка

Мой выбор - NodeMCU . У нее проблемы с памятью и поддержкой железа, но это многократно окупается простотой кода и легкостью отладки.

Так же потребуются NodeMCU flasher и LuaLoader (последнее - опционально, есть и другие клиенты для работы с этой прошивкой).

Выключаем чип. Подсоединяем GPIO0 к земле и включаем чип:

Если ничего не происходит и поля AP MAC/STA MAC пустые - проверьте еще раз, чтобы GPIO0 был на «земле».
Если прошивка началась, но зависла - посмотрите в закладке Log, у меня почему-то конкретно этот чип отказался прошиваться на FT232RL, но зато без проблем прошился на PL2303HX на скорости 576000. PL2303HX в указанном варианте не имеет переключения на 3.3В, чтобы им воспользоваться нужно открыть пластиковый корпус и перепаять провод с 5V на 3.3V, есть варианты с пятью выходами : 3.3, 5, TX, RX, Gnd.


Обратите внимание: STA MAC поменялся. Подозреваю, что flasher его неправильно показывал, но требуется проверка.

Для экономии сил и нервов можно взять готовый или полуготовый вариант.

Есть одноразовые адаптеры с удобной разводкой.
Есть

Передавать прошивки, обновления и прочие данные путём паяльника и проводов – не лучшее решение для Ардуино. Однако микроконтроллеры для arduino wi-fi стоят недёшево, да и нужда в них есть далеко не всегда, отчего пользователи предпочитают их не использовать в своих проектах без надобности.

Но вот очередной китайский продукт захватил рынок, wi-fi jammer esp8266 своими руками можно присоединить к плате Ардуино или другой системе, и вы получите стабильное соединение с рядом других преимуществ. Так давайте разберёмся с arduino uno wi-fi, и стоит ли покупать данный модуль, а также, что вообще собой представляет подобный микроконтроллер на wi-fi ардуино.

Сейчас большая часть пользователей ардуино уже не беспокоится о цене подобных девайсов, хотя ещё 3 года назад arduino wi-fi модуль считался роскошью. Всё это благодаря wi-fi jammer esp8266, производители которого ввели на рынок совершенно новый продукт, поражающей своей функциональностью и, одновременно с тем, являющийся достаточно дешёвым, что внесло весомую лепту и создало конкуренцию в этом направлении.

Таким образом, arduino wi-fi esp8266 сейчас считается самым доступным модулем на рынке, как и все его собратья. Так, цена на зарубежных площадках стартует от 2-х долларов, что позволяет пачками закупать данные модули и не перепрошивать их тысячу раз, перепаивая контакты, чтобы сохранить работоспособность.

Сначала данный wi-fi модуль ардуино использовался, в основном, как arduino wi-fi shield, так как являлся наиболее дешёвым вариантом и ничем не уступал оригинальному. Устройство действительно практически легендарное, ведь весомых минусов за его стоимость не найти. Имеется множество библиотек, в том числе и пользовательских, а также поддерживает работу через Serial шины и простейшие АТ и АТ+ команды. Благодаря этому никакой семантики пресловутого С99, как это часто бывает с другими сторонними микроконтроллерами, изучать не нужно.

Соответственно, даже новичок разберётся за секунды, а профессионал сможет применить уже заготовленные библиотеки. Среди других достоинств отмечается:

  1. Процессор на 160 МГц, однако он 32-битный, что накладывает определённый отпечаток на производительность. Но стоит помнить, что модуль всё же применяется в связке с платами Ардуино, которые сами по себе режут высокие частоты и съедают большую часть ресурсов неизвестно для чего.
  2. Производитель, выпустивший wi-fi модуль esp8266, интересные проекты на этом не закончил, и сейчас имеется целая линейка микроконтроллеров проверенного качества.
  3. Современные стандарты защиты сети. Конечно, WPA и WPA2 уже давно не столь безопасны, как хотелось бы, но их наличие не может не радовать в таком дешёвом контроллере.
  4. 16 портов вывода, в том числе 10-битный, позволяющий поэкспериментировать с платой.

Что ещё важнее, с коробки вас ждёт постоянная память до 4 мегабайт, в зависимости от типа платы, а это в разы упрощает работу с большими библиотеками и даже некоторыми медиа-файлами. Ведь на большинстве плат ардуино и 1 мегабайт считается непозволительной роскошью.

Характеристики esp8266 wi-fi безусловно радуют, особенно в сравнении с его более дорогими конкурентами, но у пользователя, не имевшего ранее опыта с данными платами, возникнет вопрос о том, как же его подключить. Дело в том, что модуль имеет гораздо больше пинов, чем привыкли видеть новички, а, соответственно, у тех начинается паника. Однако, если разобраться в ситуации, то на деле в этом нет ничего сложного. Достаточно запастись припоем и паяльником и просто почитать инструкцию.

Как подключить Wi-Fi модуль к Arduino

Давайте же рассмотрим подключение esp8266 esp 12e и что такое esp8266 мост wi-fi uart. Ведь именно подключение и настройка модуля вызывают больше всего вопросов.


В первую очередь определитесь, какая версия микроконтроллера у вас на руках. В первой встраиваются светодиоды около пинов, а на второй, которую стали выпускать совсем недавно, сигнальные огни находятся около антенны.

Перед подключением стоит подгрузить последнюю прошивку, позволяющую увеличивать скорость обмена пакетами до 9600 единиц информации в секунду. А проверять соединение мы будем через кабель usb-ttl и соответствующий терминал от CoolTerm.


Пины для подключения вышеописанного кабеля стандартные, а вот питание идёт через 3.3 вольтовый пин с Ардуино. Важно помнить, что максимальную силу тока, которую подаёт плата, невозможно поставить выше 150 мА, а esp8266 esp 07 и esp8266 witty cloud wi-fi модуль для arduino требуют 240 Ма.

Однако, если другого источника тока нет, можете использовать и стандартный вариант от Ардуино, но мощность платы пострадает. Хотя, при не сильной загрузке, достаточно и 70 мА, будьте готовы к внезапным перезагрузкам микроконтроллера в пиковые моменты нагрузки и пишите софт соответственно, чтобы он фильтровал и разбивал файлы, не перегружая плату.


Еще один вариант подключения ниже. Важно - контакты RX-TX соединяются перекрестием. Так как уровни сигналов модуля ESP8266 3.3В, а Arduino 5В, нам нужно использовать резистивный делитель напряжения для преобразования уровня сигнала.

Прописываем Wi-Fi модуль в Arduino

Как известно, при должном опыте можно и шилд esp8266 ex 12e сопрячь со смартфоном, но у новичков и прописка esp8266 esp 12 в системе Ардуино вызывает трудности. На деле достаточно подключить модуль и проверить его работоспособность, скинув несколько штатных команд АТ через меню отладки.

Например, можно добавить мигание штатным светодиодом (для схемы подключения выше):

#define TXD 1 // GPIO1/TXD01 void setup() { pinMode(TXD, OUTPUT); } void loop() { digitalWrite(TXD, HIGH); delay(1000); digitalWrite(TXD, LOW); delay(1000); }

Как только плата подтвердит, что видит микроконтроллер в системе, можно начинать полноценную работу с ним. Однако стоит отметить, что если сама плата ардуино используется в проекте лишь для подключения данного контроллера – это иррационально.

Достаточно USB-UART преобразователя, так как esp8266 не использует «мозги» ардуино, а своей флеш-памяти ему вполне хватит для хранения пары базовых библиотек и прошивок. Соответственно, тратиться лишний раз на вспомогательную плату нет никакого смысла, если вы можете просто подпаять его к преобразователю и дальше использовать в проекте. При этом, подключив вспомогательный источник питания и не беспокоясь, что данные перестанут передаваться в самый ответственный момент из-за недостатка мощности системы.

Важное замечание! Для последней схемы скетч загружаем в Arduino как обычно, но так как модуль ESP8266 подключен к контактам 0 и 1, программирование становится невозможным. Компилятор будет показывать ошибку. Отсоедините провода идущие к ESP8266 от контактов 0 и 1, произведите программирование, а после верните контакты на место и нажмите кнопку сброса в Arduino.

С модулем Wi-Fi.

На Arduino Uno WiFi предусмотрено всё для удобной работы с микроконтроллером: 14 цифровых входов/выходов (6 из них могут использоваться в качестве ШИМ-выходов), 6 аналоговых входов, разъём USB, разъём питания, разъём для внутрисхемного программирования (ICSP) и кнопка сброса микроконтроллера.

Изюминка платы - модуль WiFi ESP8266, который позволяет Arduino обмениваться информацией с другими модулями по беспроводным сетям стандартов 802.11 b/g/n.

ESP8266 позволяет прошивать плату Arduino без использование USB-шнура в режиме OTA (Firmware Over The Air - «микропрограммы по воздуху»).

Видеообзор платы

Подключение и настройка

Для начало работы с платой Arduino Uno WiFi в операционной системе Windows скачайте и установите на компьютер интегрированную среду разработки Arduino - Arduino IDE.

Что-то пошло не так?

Настройка модуля WiFi

Прошивка Arduino по WiFi

Arduino Uno WiFi имеет в своём запасе ещё один приятный бонус - возможность загружать скетчи без использование USB-шнура в режиме OTA (Firmware Over The Air). Рассмотрим подробнее как это сделать.


Для этого необходимо войти в меню: Инструменты Порт и выбирать нужный порт.

Так как мы прошиваем Arduino по WiFi, плата определиться как удалённое устройство с IP-адресом

Среда настроена, плата подключена. Можно переходить к загрузке скетча. Arduino IDE содержит большой список готовых примеров, в которых можно подсмотреть решение какой-либо задачи. Выберем среди примеров мигание светодиодом - скетч «Blink».
Прошейте плату нажав на иконку загрузки программы.
После загрузки светодиод начнёт мигать раз в секунду. Это значит, что всё получилось.

Теперь можно переходить к примерам использования .

Примеры использования

Web-сервер

Поднимем простой web-сервер, который будет отображать страницу с текущими значениями аналоговых входов.

web-server.ino /* Пример простого web-сервера, работающего на Arduino Uno WiFi. Сервер показывает значения на аналоговых входах и обновляет информацию каждые две секунды. Обратитесь к серверу по адресу http:///arduino/webserver/ Обратите внимание: пример работает только с Arduino Uno WiFi Developer Edition. */ #include #include void setup() { Wifi.begin () ; Wifi.println ("Web Server is up" ) ; // Выводим сообщение о старте сервера в wifi-консоль } void loop() { while (Wifi.available () ) { process(Wifi) ; } delay(50 ) ; } void process(WifiData client) { String command = client.readStringUntil ("/" ) ; if (command == "webserver" ) { WebServer(client) ; } } void WebServer(WifiData client) { client.println ("HTTP/1.1 200 OK" ) ; client.println ("Content-Type: text/html" ) ; client.println ("Connection: close" ) ; client.println ("Refresh: 2" ) ; // Заголовок, который задаёт период обновления страницы в секундах client.println () ; client.println ("" ) ; // Формируем страницу client.println (" UNO WIFI Web-server " ) ; client.print ("

Пример вывода значений с аналоговых пинов

"
) ; client.print ("
    " ) ; for (int analogChannel = 0 ; analogChannel < 4 ; analogChannel++ ) { int sensorReading = analogRead(analogChannel) ; client.print ("
  • на аналоговом входе " ) ; client.print (analogChannel) ; client.print (": " ) ; client.print (sensorReading) ; client.print ("
  • " ) ; } client.println ("
" ) ; client.print (DELIMITER) ; // Не забудьте закрыть соединение! }

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Uno WiFi является 8-битный микроконтроллер семейства AVR - ATmega328P.

Микроконтроллер ATmega16U2

Микроконтроллер ATmega16U2 обеспечивает связь микроконтроллера ATmega328P с USB-портом компьютера. При подключении к ПК Arduino Uno WiFi определяется как виртуальный COM-порт. Прошивка микросхемы 16U2 использует стандартные драйвера USB-COM, поэтому установка внешних драйверов не требуется.

Пины питания

    VIN: Напряжение от внешнего источника питания (не связано с 5 В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, если к устройству подключён внешний адаптер.

    5V: На вывод поступает напряжение 5 В от стабилизатора платы. Данный стабилизатор обеспечивает питание микроконтроллера ATmega328. Запитывать устройство через вывод 5V не рекомендуется - в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.

    3.3V: 3,3 В от стабилизатора платы. Максимальный ток вывода - 1 А.

    GND: Выводы земли.

    IOREF: Вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера. В зависимости от напряжения, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5 В, так и с 3,3 В устройствами.

Порты ввода/вывода

    Цифровые входы/выходы: пины 0 – 13
    Логический уровень единицы - 5 В, нуля - 0 В. Максимальный ток выхода - 40 мА. К контактам подключены подтягивающие резисторы, которые по умолчанию выключены, но могут быть включены программно.

    ШИМ: пины 3 , 5 , 6 , 9 , 10 и 11
    Позволяют выводить 8-битные аналоговые значения в виде ШИМ-сигнала.

    АЦП: пины A0 – A5
    6 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 значений). Разрядность АЦП - 10 бит.

    TWI/I²C: пины SDA и SCL
    Для общения с периферией по синхронному протоколу, через 2 провода. Для работы - используйте библиотеку Wire .

    SPI: пины 10(SS) , 11(MOSI) , 12(MISO) , 13(SCK) .
    Через эти пины осуществляется связь по интерфейсу SPI. Для работы - используйте библиотеку SPI .

    UART: пины 0(RX) и 1(TX)
    Эти выводы соединены с соответствующими выводами микроконтроллера ATmega16U2, выполняющей роль преобразователя USB-UART. Используется для коммуникации платы Arduino с компьютером или другими устройствами через класс Serial .

Светодиодная индикация

Разъём USB Type-B

Разъём USB Type-B предназначен для прошивки платформы Arduino Uno WiFi с помощью компьютера.

Разъём для внешнего питания

Разъём для подключения внешнего питания от 7 В до 12 В.

Регулятор напряжения 5 В

Когда плата подключена к внешнему источнику питания, напряжение проходит через стабилизатор MPM3610 . Выход стабилизатора соединён с пином 5V . Максимальный выходной ток составляет 1 А.

Регулятор напряжения 3,3 В

Стабилизатор MPM3810GQB-33 с выходом 3,3 вольта. Обеспечивает питание модуля WiFi ESP8266 и выведен на пин 3,3V . Максимальный выходной ток составляет 1 А.

ICSP-разъём для ATmega328P

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega328P. С использованием библиотеки SPI данные выводы могут осуществлять связь с платами расширения по интерфейсу SPI. Линии SPI выведены на 6-контактный разъём, а также продублированы на цифровых пинах 10(SS) , 11(MOSI) , 12(MISO) и 13(SCK) .

ICSP-разъём для ATmega16U2

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega16U2.