Какое запоминающее устройство называется оперативным. Статические озу. Устройство микросхемы статической памяти

03.02.2019

Запоминающие устройства (ЗУ) служат для хранения информации и обмена ею с другими устройствами. Микросхемы и системы памяти постоянно совершенствуются как в области схемотехнологии, так и в области развития новых архитектур.

Важнейшие параметры ЗУ находятся в противоречии. Так, например, большая информационная ёмкость не сочетается с высоким быстродействием, а быстродействие в свою очередь не сочетается с низкой стоимостью. Поэтому в ЗУ используется многоступенчатая иерархическая структура.

В попытке устранить проблему мы удалили столько же неиспользуемого материала, сколько могли, с жесткого диска, но это, казалось, не помогло. Так что давайте сначала спустим их с места: бит - это наименьшая единица информации, например, свет, который может быть описан только как «включено» или «выключен». Так как мы часто имеем дело с информацией, которая содержит много байтов большого размера - например, музыку или видеофайлы - мы используем сокращенные префиксы, такие как кило, мега - и гигабайты, для тысяч, миллионов и миллиардов байтов, соответственно.

В наиболее развитой иерархии памяти ЭВМ можно выделить следующие уровни.

Регистровые ЗУ - находятся внутри процессора. Благодаря им уменьшается число обращений к другим уровням памяти, находящимся вне процессора и требующим большего времени для операции обмена.

Кэш-память - быстродействующая память, которая может находиться внутри или вне процессора. Она предназначена для хранения копий информации, находящейся в более медленной основной памяти.

Логическая организация памяти

К сожалению, память вашего компьютера является конечной. Одна вещь стоит повторить, что память - это временное хранилище. По самой своей природе, как только вы выключаете компьютер, все в памяти мгновенно исчезает. Для хранения информации, которую мы хотим сохранить, у нас есть жесткие диски.

Правильный термин здесь, технические типы скажут вам, это жесткий диск. Пригодная метафора - это проигрыватель: диск относится к одной или нескольким круглым пластинам, которые похожи на виниловые пластинки, но постоянно установлены на шпинделе. Однако вместо винила они изготовлены из металла или стекла и покрыты магнитным материалом. Остальное устройство - это привод, который, как и сам проигрыватель: имеет двигатель, который поворачивает диски на шпинделя и головки для чтения и записи для каждого пластинчатого типа, которые похожи на иглу проигрывателя, за исключением того, что они используют магнетизм для доступа - «читать» - и изменять - «записывать» - данные, хранящиеся на диске.

Оперативная память (RAM - Read Access Memory) или оперативное запоминающее устройство (ОЗУ) - часть основной памяти ЭВМ, предназначенной для хранения быстро изменяемой информации. В ОЗУ хранятся программы пользователей промежуточные результаты вычислений.

Постоянная память (ROM - Read Only Memory - память только для чтения) или постоянное запоминающее устройство (ПЗУ) - это вторая часть основной памяти ЭВМ, предназначенной для хранения редко меняемой информации, например, кодов команд, тестовых программ.

Истинная скорость работы

Привод также содержит электронику, которая управляет этими деталями и позволяет ей разговаривать с остальной частью компьютера. Один жесткий диск можно разделить на одно или несколько разделов произвольного размера, называемых разделами. Разделы иногда, смутно, также называются дисками. Раздел можно разделить на разные папки, также называемые каталогами. Память вашего компьютера и его жесткий диск - две разные вещи. Но есть одно место, где они перекрываются: виртуальная память. Современные вычисления не будут одинаковыми без виртуальной памяти, но это не так хорошо, как реальная память.

Специализированные виды памяти , например, видеопамять, предназначенная для хранения информации, отображаемой на экране дисплея и др.

Внешняя память - магнитные и оптические диски, FLASH-память, предназначенные для хранения больших объёмов информации.

6.2 Структурные схемы ЗУ

ЗУ адресного типа состоят из трёх основных блоков:

Хорошей новостью является то, что из-за виртуальной памяти вы часто не замечаете ошибки «из памяти» на современных компьютерах. Плохая новость в том, что чем больше ваш компьютер должен использовать виртуальную память, тем медленнее она будет работать.

Наконец, у вас есть только «пространство подкачки» для виртуальной памяти, так как у вас есть свободное место на жестком диске. Это означает, что если ваш жесткий диск почти заполнен, программы могут не иметь столько памяти, сколько им нужно, и все будет замедляться, и вы даже можете получить ошибки. По этой причине лучше всего не полностью заполнять жесткий диск - пара гигабайт локтевой комнаты поможет обеспечить бесперебойную работу.

Массив элементов памяти,

Блок адресной выборки,

Блок управления.

Многочисленные варианты ЗУ имеют много общего с точки зрения структурных схем. Общность структур особенно проявляется для статических ОЗУ и памяти ROM; для них характерны структуры 2D, 3D и 2DM.

Структура 2D

В ЗУ, с информационной ёмкостью M, запоминающие элементы организованы в матрицу размерностью k ·m :

Работа оперативной памяти

В общем, есть две основные категории памяти произвольного доступа. Память произвольного доступа состоит из сотен тысяч небольших конденсаторов, которые хранят нагрузки. При загрузке логическое состояние конденсатора равно 1; в противном случае он равен 0, что означает, что каждый конденсатор представляет собой бит памяти.

Принимая во внимание, что они загружаются, тренеры должны постоянно загружаться с регулярными интервалами, что называется циклом обновления. Каждый конденсатор соединен с транзистором, что позволяет «восстановить» или изменить состояние конденсатора. Эти транзисторы расположены в виде таблицы, так что к ящике памяти обращается линия и столбец.

M = k·m ,

где k - количество хранимых слов,

m - их разрядность.

Дешифратор адресного кода имеет k выходов и активизирует одну из выходных линий, разрешая одновременный доступ ко всем элементам выбранной строки, хранящей слово.

Элементы каждого из столбцов соединены вертикальными разрядными линиями и хранят одноимённые биты всех слов.

Структурные схемы ЗУ

Таким образом, каждая точка памяти характеризуется адресом, который, в свою очередь, соответствует номеру строки и номеру столбца. Этот доступ не мгновенен; период времени, который требуется, называется временем ожидания. Следовательно, время, необходимое для доступа к информации в памяти, равно времени цикла и времени ожидания.

Следовательно, на компьютере с высокой частотой, который использует память с гораздо более длительным временем доступа, чем время цикла процессора, должны быть созданы состояния ожидания, чтобы обеспечить доступ к памяти. Производительность компьютера уменьшается по мере увеличения количества состояний ожидания, поэтому рекомендуется использовать более быструю память.

Таким образом, при наличии разрешающего сигнала CS, выбранная дешифратором ячейка памяти подключается к разрядным шинам, по которым производится запись или считывание адресованного слова.

Структура 3D

Структура типа 2D применяется лишь в ЗУ с малой информационной ёмкостью, т.к. при росте ёмкости усложняется дешифратор адреса. Например, при коде разрядностью n=8 дешифратор должен иметь 2 n =256 выходов.

Страничный режим, расслоение банков

Существуют различные типы памяти с произвольным доступом. Они представлены в виде модулей памяти, которые могут быть подключены к материнской плате. В настоящее время память обычно предоставляется в виде модулей, то есть карт, которые помещаются в разъемы, предназначенные для этой цели.



Эти модули имеют две позиции, чтобы избежать риска путаницы с предыдущими модулями. Это память, транзисторы которой расположены в виде матрицы в виде строк и столбцов. Транзистор, соединенный с конденсатором, предоставляет информацию в виде бит. Время доступа к этим запоминающим устройствам составляет 60 нс. Кроме того, доступ к памяти в целом связан с информацией, хранящейся последовательно в памяти. Таким образом, пакетный режим позволяет получить доступ к трем частям информации, которые следуют за первой частью, без дополнительного времени ожидания.

В структуре типа 3D выборка элемента памяти из массива производится по двум координатам. Код адреса разрядностью n делится на две половины и используются два дешифратора: по строкам и по столбцам. При этом число выходов двух дешифраторов равно 2 n/2 +2 n/2 =2 n/2+1 . Если n=8, то число выходов дешифраторов равно 2 4 +2 4 =32, а количество элементов памяти равно 2 n/2 ·2 n/2 =2 n =256. В структуре 2D-типа, как уже было отмечено выше, потребовался бы более сложный дешифратор на 256 выходов.

Техника, используемая в этом типе памяти, включает в себя обращение к следующему столбцу, а параллельная информация считывается из предыдущего столбца. Таким образом создается наложенный доступ, который экономит время в каждом цикле. Информация считывается или вводится в память точно так же, как часы.

В следующей таблице показана эквивалентность между частотой материнской платы, частотой памяти и ее скоростью. Четыре цифры соответствуют, по порядку, следующим значениям. Память произвольного доступа Память произвольного доступа - это память, из которой процессор получает инструкции и сохраняет результаты. Он используется в качестве рабочей памяти для операционной системы, программ и большинства программ. Здесь загружаются все инструкции, которые запускают процессор и другие вычислительные устройства. Они называются «случайным доступом» или «прямым доступом», потому что вы можете читать или записывать в ячейке памяти с равным временем ожидания для любой позиции, не будучи необходимым, чтобы следовать порядку доступа к информации самым быстрым способом возможно. Память только для чтения Память только для чтения - это вид носителя данных, используемый в компьютерах и других электронных устройствах. Не было другой разумной альтернативы, поскольку дисковые накопители обычно были необязательными. Еще более важно, вы не можете прочитать программу, которая необходима для запуска диска с самого диска. Есть много кешей, но в этом уроке мы сосредоточимся на кэше процессоров. По сути, кэш-память процессора является типом энергозависимой памяти, но с большой скоростью. Кроме того, они предлагают такие характеристики, как большая устойчивость к ударам, низкое потребление и очень тихий, поскольку он не содержит ни механических приводов, ни мобильных частей. Его небольшой размер также является определяющим фактором при выборе портативного устройства, а также его легкости и универсальности для всех видов использования, к которым он ориентирован. Тем не менее, все типы флэш-памяти допускают ограниченное количество операций записи и удаления, обычно от 000 до миллиона, в зависимости от ячейки, точности производственного процесса и напряжения, необходимого для его удаления. Еще одной характерной чертой недавнего появления было тепловое сопротивление некоторых инкапсуладосов карт памяти, ориентированных на цифровые камеры высокого диапазона. Они содержат информацию о том, что арифметико-логические единицы должны переноситься в инструкцию при выполнении. Технически, они являются самыми быстрыми из хранилищ компьютера, переключая транзисторы, встроенные в кремниевую микросхему микропроцессора, которые функционируют как электронные «шлепанцы». Некоторая информация в основной памяти дублируется в кеше. По сравнению с регистрами, кеш немного медленнее, но с большей емкостью. Тем не менее, он быстрее, хотя и намного меньше, чем основная память. Также широко используется многоуровневая кэш-память - «первичный кеш», который меньше, быстрее и ближе к обрабатывающему устройству; «вторичный кеш», который больше и медленнее, но быстрее и намного меньше основной памяти. Основная память содержит исполняемые программы и данные, с которыми они работают. Арифметико-логический блок может очень быстро передавать информацию между микропроцессорной записью и основными ячейками памяти, также известными как «адреса памяти». Шина памяти также называется передней шиной или шиной, и обе шины являются высокоскоростными цифровыми «супермагистралями». «Методы доступа» и «скорость» - две основные технические различия между запоминающими и запоминающими устройствами. Соответственно.

Таким образом, с помощью двух дешифраторов, имеющих небольшое число выходов, осуществляется доступ ко всем элементам памяти микросхемы.

Структура 3D может применяться и в ЗУ с многоразрядной организацией, принимая при этом «трёхмерный» характер. В этом случае несколько матриц управляются от двух дешифраторов, относительно которых матрицы включены параллельно.

Для цикла передачи генерируются 11 состояний ожидания. на компьютере с высокой частотой. Производительность компьютера уменьшается по мере увеличения количества состояний ожидания. Эти модули имеют две позиции. предназначен для ноутбуков. эти модули имеют вторую метку, что позволяет избежать путаницы. Существуют также более мелкие модули.

Время доступа к этим записям составляет 60 нс. Транзистор время ожидания, вызванное. Так как октет содержит 8 бит. повторение номера столбца между показаниями на строку. 648 бит = или 268 Мо. Модуль 256 Мо имеет возможность, известную как пейджинг. Таким образом позволяет считывать информацию, синхронизированную с шиной материнской платы.

Структура 2DM (Рисунок 67)

состоит из дешифратора, который выбирает целую строку. Однако, в отличие от структуры 2D , длина строки многократно превышает разрядность хранимых слов. При этом число строк уменьшается и, следовательно, уменьшается число выводов дешифратора.

Выбор строк матрицы памяти производится с помощью старших разрядов адреса A n -1 …A k . Остальные k разрядов используются для выбора необходимого m-разрядного слова из множества слов, содержащихся в строке.

Это память, транзисторы которой расположены в виде матрицы. Как организована память? Прежде чем мы начнем обсуждение тимминга, нам нужно понять, как он организован и как осуществляется доступ к памяти. Поскольку 2 поднято до 22 = Первое. так как это число циклов, необходимое для нахождения правильной позиции данных, которые мы ищем в памяти. Представьте, что у вас есть 16-мегабитный чип в вашей памяти. например, компьютерные игры. Первые 11 бит будут относиться к столбцу и последним 11 битам 22 к строке.

Эта настройка - это количество тактовых циклов. Этот метод позволяет контроллеру памяти обращаться к каждой позиции однозначно и однозначно. Поэтому, когда мы говорим о «расслаблении» тем, что мы действительно делаем, это дает больше времени для подготовки системы к любому действию, которое должно выполняться в памяти. Это объяснение может показаться немного сложным, но это необходимо при объяснении и понимании таймингов памяти. Другими словами, «закрытие» времени. Он имеет 2 возможных значения. между сигналами строки и столбца, используемыми при записи памяти.

Рисунок 66 Структура ЗУ типа 2DM для ROM


Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды A k -1 …A 0 . Длина строки равна m ·2 k , где m - разрядность слов.

Из каждого отрезка строки, длиной 2 k , мультиплексор выбирает один бит. На выходах m мультиплексоров формируется выходное m -разрядное слово. По разрешению сигнала CS, поступающего на входы OE управляемых буферов с тремя выходными состояниями, выходное слово передаётся на внешнюю шину.

6.3 Оперативные запоминающие устройства

6.3.1 Типы оперативных запоминающих устройств

В зависимости от способа хранения информации оперативные запоминающие устройства (ОЗУ) подразделяются на статические и динамические. В статических ОЗУ (Static RAM - SRAM) запоминающими элементами являются триггеры, сохраняющие своё состояние, пока схема находится под питанием и нет новой записи данных.

В динамических ОЗУ (Dynamic RAM - DRAM) данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур. Саморазряд конденсаторов ведёт к разрушению данных, поэтому они должны периодически (каждые несколько миллисекунд) регенерироваться. В то же время плотность упаковки динамических элементов памяти в несколько раз превышает плотность упаковки достижимую в статических RAM.

Регенерация данных в статических ЗУ осуществляется с помощью специальных контроллеров. Разработаны также ЗУ с динамическими запоминающими элементами, имеющие внутреннюю встроенную систему регенерации, у которых внешнее поведение относительно управляющих сигналов становится аналогичным поведению статических ЗУ. Такие ЗУ называются квазистатическими.

В целом динамические ЗУ характеризуются наибольшей информационной ёмкостью и невысокой стоимостью, поэтому именно они используются как основная память ЭВМ.

Статические ОЗУ делятся на асинхронные и тактируемые.

В асинхронных ЗУ сигналы управления могут задаваться как импульсами, так и уровнями. Например, сигнал разрешения работы может оставаться неизменным и разрешающим на протяжении многих циклов обращения к памяти.

В тактируемых ЗУ некоторые сигналы обязательно должны быть импульсными. Например, сигнал разрешения работы в каждом цикле обращения должен переходить из пассивного состояния в активное, то есть должен формироваться фронт этого сигнала в каждом цикле. Асинхронные ЗУ могут использоваться в качестве тактируемых.

Статические ЗУ в 4…5 раз дороже динамических и приблизительно во столько же раз меньше по информационной ёмкости. Их достоинством является высокое быстродействие. Область применения относительно дорогостоящих статических ОЗУ в системах обработки информации определяется именно их высоким быстродействием. Типичной областью применения статических ОЗУ в ЭВМ являются схемы КЭШ-памяти.

Запоминающими элементами статических ОЗУ служат триггеры с цепями установки и сброса. Триггеры можно реализовать по любой схемотехнологии (ТТЛШ, И²Л, n-МОП, КМОП и др.), в соответствии с которой разработаны разнообразные схемы ЗУ с различными параметрами.

6.3.2 Основные параметры ЗУ

Важнейшими параметрами ЗУ являются информационная ёмкость и быстродействие.

Информационная ёмкость - максимально возможный объём хранимой информации. Выражается в битах или словах (в частности, в байтах). Бит хранится запоминающим элементом (ЗЭ), а слово - запоминающей ячейкой (ЗЯ), т.е. группой ЗЭ, к которой возможно лишь одновременное обращение.

Быстродействие (производительность) ЗУ оценивают временами записи, считывания и длительностями циклов записи/чтения.

Время записи - интервал после появления сигнала записи и установлением ЗЯ в состояние, задаваемое входным словом.

Время считывания - интервал между моментами появления сигнала чтения и слова на выходе ЗУ. Циклы записи и чтения - это время между двумя последовательностями записи или чтения. Длительности циклов могут превышать времена записи и чтения, так как после этих операций может потребоваться время для восстановления начального состояния ЗУ.

Кроме основных (эксплуатационных или измеряемых) параметров, ЗУ характеризуются рядом режимных параметров, обеспечение которых необходимо для нормального функционирования ЗУ. Поскольку ЗУ имеют несколько управляющих сигналов, то для них задаются не только длительности, но и взаимное положение во времени.

6.3.3 Внешняя организация и временные диаграммы статических ОЗУ

В номенклатуре статических ЗУ представлены микросхемы с одноразрядной и словарной организацией. Внешняя организация статического ЗУ ёмкостью 64 Кбита (8К×8) показана на рисунке 68.

Один из возможных наборов сигналов ЗУ.

Рисунок 68 Пример внешней организации статического ЗУ


A - адрес. Разрядность n определяется числом ячеек ЗУ, т.е. максимально возможным числом хранимых в ЗУ слов N=2 n , а n =log 2 N . Например, ЗУ с ёмкостью 8К слов имеет 13-разрядные адреса, выражаемые словами A=a 12 a 11 a 10 …a 0 , а с ёмкостью 64К слов - 16-разрядные адреса: A=a 15 a 14 a 13 …a 0 .

DI и DO - шины входных и выходных данных; m - их разрядность. В рассматриваемом примере DI и DO объединены в общую шину DIO.

CS - выбор кристалла разрешает или запрещает работу данной микросхемы.

R/W - чтение или запись. R/W=1 - «Чтение», R/W=0 - «Запись».

CE - Chip Enable - разрешение по выходу, пассивное состояние которого переводит выходы в третье состояние. Работа ЗУ отображается таблицей (таблица 9).


Таблица 9 Задание режимов работы микросхемы ЗУ

R/W A DIO Режим
1 X X X Z Хранение
0 X 0 A DI Запись
0 0 1 A DO Чтение


Рисунок 69 Временные диаграммы процессов

записи а) и чтения б) в статическом ЗУ


Функционирование ЗУ во времени регламентируется временными диаграммами, устанавливаемые изготовителями. В основу кладутся определённые требования. Например, чтобы исключить возможность обращения к другой ячейке, рекомендуется подавать адрес раньше, чем другие сигналы, с опережением на время его декодирования. Адрес должен держаться в течение всего цикла обращения к памяти.

Затем следует подать сигналы, определяющие направление передачи данных и, если предполагается запись, то записываемые данные, а также сигнал выборки кристалла. Среди этих сигналов будет и стробирующий, т.е. выделяющий временной интервал непосредственного выполнения действия. Таким сигналом для разных ЗУ может служить как сигнал R/W, так и сигнал .

Если задана операция чтения, то дополнительно подаётся сигнал разрешения выхода. После подачи указанных выше сигналов ЗУ готовит данные для чтения, что требует определённого времени. По заднему фронту сигнала R, положение которого должно обеспечивать установление правильных данных на выходе ЗУ, данные считываются из ЗУ.


Требования к взаимному расположению двух сигналов (например, A и B) задаётся временами предустановки, доступа, удержания и сохранения.

Время предустановки сигнала A относительно сигнала B: t SU (A–B ) - это интервал между началами обоих сигналов.

На рисунке 69 а, б обозначено t SU (A–CS ) и t SU (A–WR ) . Это времена предустановки сигналов CS и WR относительно адреса.

Время доступа обозначается символом A (от слова Access) - интервал времени от появления того или иного управляющего сигнала до появления информационного сигнала на выходе. Время доступа относительно адреса t A (A ) часто обозначается просто t A . Аналогично этому, время доступа относительно сигнала CS, т.е. t A (CS ) обозначают t CS .

Время удержания - интервал между началом сигнала A и концом сигнала B t H (A–B ) . На рисунке 69,б время t H (A–DI ) удержания адреса относительно снятия входных данных представляет собой «цикл чтения», а t H (DI–CS ) - время подготовки входных данных.

Время сохранения t V (A–B ) - интервал между окончанием сигнала A и окончанием сигнала B. На рисунке 69,б интервал t V (RD–CS ) означает время сохранения данных относительно сигнала «Выбор кристалла» (или сигнала чтения). Этот интервал необходимо обеспечить для уменьшения вероятности появления ошибки при чтении «неустановившейся» информации. Длительность сигнала обозначается t W (индекс от слова Width - ширина).

6.3.4 Микросхемы ОЗУ

В последнее время наиболее интенсивно развиваются статические ОЗУ выполненные по технологии КМОП, которые по мере уменьшения топологических норм технологического процесса приобретают всё более высокое быстродействие при сохранении своих традиционных преимуществ.


МС К155РУ2 - представляет собой ОЗУ со структурой 2D и с организацией 16×4=64 (Рисунок 70,а). МС изготовлена по технологии ТТЛ.

Массив ЭП представляет собой матрицу, состоящую из 16 строк и 4 столбцов. Элементы каждого из столбцов соединены внутренней разрядной линией данных и хранят одноимённые биты всех слов.

Ячейка памяти состоит из 4-х триггеров, управляемых общим сигналом.

При CS=0 одна из ячеек, соответствующая выставленному адресу, переходит в рабочее состояние, её сигналы поступают на входы элементов И (7…10) .

При CS=1 на всех выходах дешифратора низкие уровни и, следовательно, все триггеры отключены от входных шин накопителя.

При CS=0 и W=0 на выбранную ячейку поступают информационные сигналы с входов D1…D4 и элементом И 1 вырабатывается сигнал «Запись». Входная информация со входов D1…D4 записывается в ячейку.

При CS=0 и W=1 формируется сигнал «Чтение» и информация из выбранной ячейки читается с выходов Q1…Q4.



Рисунок 70 МС К155РУ2: а) Структурная схема, б) Условное обозначение


Микросхемы К176РУ2, К561РУ2 с организацией 256×1 изготовлены по технологии КМОП и представляют собой ЗУ со структурой 3D (Рисунок 71,а).



Рисунок 71 Микросхема К176РУ2: а) Структурная схема; б) Элемент памяти.


Структурная схема МС К176РУ2 приведена на рисунке 71,а. Схема содержит два дешифратора: DC столбцов и DC строк. Дешифраторы имеют по 4 входа, на которые подаётся по 4 разряда из общего 8-разрядного адреса, и по 16 выходов. Каждая ячейка памяти находится на пересечении строки и столбца, поэтому два дешифратора обеспечивают обращение к 16×16=256 элементам памяти.

Каждый элемент памяти представляет собой статический RS-триггер (рисунок 71,б). Триггер имеет два парафазных входа/выхода. С разрядными шинами РШ0 и РШ1 триггер соединён через ключи VT5 и VT6. По разрядным шинам к триггеру подводится при записи и отводится при считывании информация в парафазной форме представления по РШ1 своим прямым значением, а по РШ0 - инверсным.

В режимах «Запись» и «Чтение» при возбуждении строки сигналом выборки X i =1, снимаемым с дешифратора адреса строк, ключи VT5 и VT6 открываются и подключают триггер к разрядным шинам.

При X i =0 ключи закрыты и триггер отключён (изолирован) шин, а информация в них хранится.

При считывании информации ключи подключают элемент памяти к разрядным шинам, они принимают потенциалы выходов триггера и через устройство ввода/вывода передают их на выход микросхемы.

РШ охватывают все элементы одного столбца, а переходит в активное состояние только один ЭП, соответствующий выбранной строке. Из него и считывается информация.

Среди отечественных серий микросхем хорошо развитыми являются серии К537 технологии КМОП с информационной ёмкостью от 1024×1 (К537РУ1) до 8192×8 (К537РУ17) и К132 технологии n-МОП с информационной ёмкостью от 1024×1 (К132РУ2) до 65536×1 (К132РУ10).

Ориентировочные значения основных параметров ОЗУ различных технологий приведены в таблице 10.


Таблица 10 Значения основных параметров ОЗУ

Запоминающее устройство - носитель информации , предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:

· постоянные ЗУ (ПЗУ ), содержание которых не может быть изменено конечным пользователем (например, DVD - ROM ). ПЗУ в рабочем режиме допускает только считывание информации.

· записываемые ЗУ, в которые конечный пользователь может записать информацию только один раз (например, D VD -R).

· многократно перезаписываемые ЗУ (например, DVD -RW).

· оперативные ЗУ (ОЗУ ) обеспечивает режим записи, хранения и считывания информации в процессе её обработки.

По типу доступа ЗУ делятся на:

· устройства с последовательным доступом (например, магнитные ленты).

· устройства с произвольным доступом (RAM) (например, оперативная память).

· устройства с прямым доступом (например, жесткие магнитные диски).

· устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД)

По геометрическому исполнению:

· дисковые (магнитные диски , оптические, магнитооптические);

· ленточные (магнитные ленты , перфоленты);

· барабанные (магнитные барабаны );

· карточные (магнитные карты , перфокарты, флэш-карты, и др.)

· печатные платы (карты DRAM ).

По физическому принципу:

· перфорационные (перфокарта ; перфолента );

· с магнитной записью (ферритовые сердечники, магнитные диски, магнитные ленты , магнитные карты);

· оптические (CD , DVD , HD-DVD , Blu-ray Disc );

· использующие эффекты в полупроводниках (флэш-память ) и другие.

По форме записанной информации выделяют аналоговые и цифровые запоминающие устройства.

Постоянное запоминающее устройство

ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.

В ПЗУ находятся:

· программа управления работой процессора;

· программа запуска и останова компьютера;

· программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;

· программы управления дисплеем, клавиатурой, принтером, внешней памятью;

· информация о том, где на диске находится операционная система.

ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.

Оперативное запоминающее устройство

Оперативная память (также оперативное запоминающее устройство , ОЗУ) - предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций (рисунок 19). Оперативная память передаёт процессору данные непосредственно, либо через кэш-память . Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера .

Рисунок 19 - Внешний вид оперативной памяти

На сегодня наибольшее распространение имеют два вида ОЗУ: SRAM (Static RAM) и DRAM (Dynamic RAM).

SRAM - ОЗУ, собранное на триггерах , называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях , а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов , входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.

DRAM - более экономичный вид памяти. Для хранения разряда (бита или трита ) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени - для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.

Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.

Жесткий магнитный диск

Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive), жёсткий диск - устройство хранения информации , основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров .

Информация в НЖМД (рисунок 20) записывается на жёсткие (алюминиевые , керамические или стеклянные) пластины , покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома . В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров , а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.



Рисунок 20 - Устройство НЖМД

Основные характеристики жестких дисков:

Интерфейс (англ. interface) - совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA , SCSI , SAS , FireWire , USB , SDIO и Fibre Channel .

Ёмкость (англ. capacity) - количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб (2 Тб). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ .

Физический размер (форм-фактор ) (англ. dimension). Почти все современные накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма . Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс .

Скорость вращения шпинделя (англ. spindle speed) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability) - определяется как среднее время наработки на отказ (MTBF).

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./с при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах . Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G-shock rating) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

Внутренняя зона диска: от 44,2 до 74,5 Мб/с;

Внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя .

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа , марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с бо́льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор - постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используются гидродинамические подшипники.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов , а также катушки на подвижном блоке головок. Вопреки расхожему мнению, внутри гермозоны нет вакуума . Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом ; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля , который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров ) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала .

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления , принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа « звуковая катушка », коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр , используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память ). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

С целью адресации пространства поверхности пластин диска делятся на дорожки - концентрические кольцевые области (рисунок 21). Каждая дорожка делится на равные отрезки - секторы.

Цилиндр - совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора - конкретный сектор на дорожке.

Рисунок 21 - Геометрия магнитного диска

При способе адресации CHS сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра, номером головки и номером сектора

При способе адресации LBA адрес блоков данных на носителе задаётся с помощью логического линейного адреса.

Оптические диски

Оптический диск (англ. optical disc) - собирательное название для носителей информации , выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения . Диск обычно плоский, его основа сделана из поликарбоната , на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера , который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками (питами, от англ. pit - ямка, углубление, рисунок 22) на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация. Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5 мкм . Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1,6 мкм.

Рисунок 22 - CD под электронным микроскопом

Существует несколько видов оптических дисков: CD, DVD, Blu-Ray и др. (рисунок 23).

CD-ROM (англ. compact disc read-only memory) - разновидность компакт-дисков с записанными на них данными, доступными только для чтения. Изначально диск был разработан для хранения аудиозаписей, но впоследствии был доработан для хранения и других цифровых данных . В дальнейшем на базе CD-ROM были разработаны диски как с однократной, так и с многократной перезаписью ( CD-R и CD-RW ).



Рисунок 23 – Дисковод для чтения оптических дисков

Диски CD-ROM - популярное и самое дешёвое средство для распространения программного обеспечения , компьютерных игр , мультимедиа и данных. CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации между компьютерами .

Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм, покрытого тончайшим слоем металла (алюминий , золото , серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15,7 гр. Вес диска в обычной коробке приблизительно равен 74 гр.

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года , всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных.

Различают диски только для чтения («алюминиевые»), CD-R - для однократной записи, CD-RW - для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.

Дальнейшим развитием CD-ROM-дисков стали диски DVD-ROM .

DVD (англ. Digital Versatile Disc) - цифровой многоцелевой диск - носитель информации , выполненный в виде диска, внешне схожий с компакт-диском , однако имеющий возможность хранить бо́льший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт-дисков.

Blu-ray Disc, BD (англ. blue ray disk ) - формат оптического носителя , используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA .

Blu-ray (буквально «синий-луч») получил своё название от использования для записи и чтения коротковолнового (405 нм ) «синего» (технически сине-фиолетового) лазера . Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 Гб , двухслойный диск может вместить 46,6/50/54 или 66 Гб.

Твердотельный накопитель

Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) - энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей. Следует различать твердотельные накопители, основанные на использовании энергозависимой (RAM SSD) и энергонезависимой ( NAND или Flash SSD) памяти.

Накопители RAM SSD, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Накопители NAND SSD, построенные на использовании энергонезависимой памяти появились относительно недавно, но в связи с гораздо более низкой стоимостью начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью оперативной памяти). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, сопоставимой с традиционными, и разработаны модели, существенно их превосходящие. Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.

Преимущества по сравнению с жёсткими дисками :

· меньше время загрузки системы;

· отсутствие движущихся частей;

· производительность: скорость чтения и записи до 270 МБ/с;

· низкая потребляемая мощность;

· полное отсутствие шума от движущихся частей и охлаждающих вентиляторов;

· высокая механическая стойкость;

· широкий диапазон рабочих температур;

· практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;

· малый размер и вес.

Флеш-память

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW .

Не содержит подвижных частей, так что, в отличие от жёстких дисков , более надёжна и компактна.

Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах (рисунок 24).

Рисунок 24 – Разновидности флеш-накопителей

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором , называемых ячейками. В традиционных устройствах с одноуровневыми ячейками, каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

В основе типа флеш-памяти NOR лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора : управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект . Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость , что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Существуют несколько типов карт памяти, используемых в портативных устройствах:

Compact Flash - карты памяти CF являются старейшим стандартом карт флеш-памяти. Первая CF карта была произведена корпорацией SanDisk в 1994 году. Чаще всего в наши дни он применяется в профессиональном фото и видео оборудовании, так как ввиду своих размеров (43×36×3,3 мм) слот расширения для Compact Flash-карт физически проблематично разместить в мобильных телефонах или MP3-плеерах.

Multimedia Card . Карта в формате MMC имеет небольшой размер - 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

MMCmicro - миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32×24×2,1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи.

SDHC (SD High Capacity): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) (SD High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 Гб для SD и 32 Гб для SD High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SD, то есть SD-карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физических размеров (стандартный, mini и micro).

M iniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.

M icroSD (Micro Secure Digital Card): являются на настоящий момент самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры.

Memory Stick Duo : данный стандарт памяти разрабатывался и поддерживается компанией Sony . Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20×31×1,6 мм).

Memory Stick Micro (M2): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card : используются в цифровых фотоаппаратах фирм Olympus , Fujifilm и некоторых других.