Защищенный обмен файлами по каналам Internet. Программные продукты и системы

02.08.2019

В работе любой организации зачастую возникает потребность в обмене конфиденциальной информацией между двумя или более лицами. Самое простое решение - передавать ее устно либо лично в бумажном виде. Однако, если такой возможности нет, а также при необходимости передачи информации именно в электронном виде обычно используются криптографические преобразования. Несмотря на широкое применение, криптография имеет свои недостатки - факт передачи не скрывается и при недостаточной стойкости алгоритма шифрования появляется возможность восстановления информации нарушителем. Кроме того, ввиду сложности криптографических преобразований накладывается ограничение на скорость передачи данных, что может быть критичным при трансляции по открытому каналу больших объемов документарной или мультимедийной информации (видео или звук), например, в режиме телеконференции.

На взгляд авторов, альтернативой криптографическим преобразованиям в этом случае может стать комплексный подход к организации обмена конфиденциальной информацией, включающий стеганографические преобразования (предполагающие сокрытие самого факта передачи конфиденциальных сведений) и применение различных методов аутентификации и балансировки нагрузки сети.

Целью данного исследования являются разработка методики скрытой передачи информации в видеопотоке и реализация ее в виде программного комплекса. В основе методики лежит приоритизация трафика одних пользователей по отношению к другим. В ходе работы был создан собственный алгоритм управления трафиком, который применяется в данной методике для организации защищенного обмена информацией.

Возможные области применения алгоритма - балансировка нагрузки сети, привилегированный доступ к ресурсам, организация скрытого канала передачи сообщений.

К программной реализации алгоритма предъявляются следующие требования:

Прозрачность для пользователя;

Отказоустойчивость;

- надежное хранение секретных ключей и системных данных ограниченного доступа;

Целесообразность применения, то есть выигрыш в скорости, качестве обслуживания или защищенности;

Совместимость с различным сетевым оборудованием.

Рассмотрим алгоритм «Метка привилегий» подробнее. В обычном режиме пакеты передаются непосредственно от источника адресату, минуя сервер. Это обычная локальная сеть организации. Перед предполагаемым началом специального режима администратор запускает службу на сервере. Сеть переходит в режим ожидания.

Принимается пакет, проверяется, есть ли метка начала специального режима, если она есть, осуществляется переход к специальному режиму, иначе пакет доставляется адресату и принимается новый. Структура пакета показана на рисунке 1.

Специальный режим. Проверяется аутентификационная информация отправителя пакета. Наглядно работа сервера показана в виде блок-схемы на рисунке 2.

На рисунке 3 представлена схема отправки пакетов адресату. Все пакеты проходят через сервер, где выполняется чтение метки, соответствующей адресу получателя. При удачной аутентификации пакет направляется адресату.

Клиент запускает службу на своем компьютере. Служба проверяет, запущен ли сервер. Если сервер не запущен, в журнале программы фиксируется запись о возникшей ошибке и происходит переключение в режим источник-адресат. Если сервер запущен, проверяется, есть ли аппаратный ключ. Если аппаратного ключа нет, фиксируется ошибка и происходит возврат в режим источник-адресат. Если аппаратный ключ есть, осуществляется переход в режимы источник-сервер и сервер-адресат.

В режимах источник-сервер и сервер-адресат отправка сообщений происходит следующим образом. В пакет добавляются информация о пользователе, метка привилегии и скрытые данные. Пакет отсылается. Прием сообщений выполняется так: принятое сообщение записывается в буфер; согласно таблице стеганографических преобразований выделяются пакеты со скрытой информацией; происходит сбор конфиденциальной информации (рис. 4).

Методика организации защищенного канала

Защищенный канал передачи информации решает задачи защиты от несанкционированного доступа узлов сети, между которыми происходит передача информации, и самой информации в процессе передачи по открытым каналам связи.

На основании алгоритма «Метка привилегий» была разработана методика организации защищенного канала передачи информации с управлением трафиком при передаче.

Рассмотрим этапы, которые включает данный способ обмена конфиденциальной информацией для пользователя.

1. Предъявляется аутентификатор (электронный ключ).

2. При удачной аутентификации в программу вводится необходимая конфиденциальная информация.

3. Начинается видеоконференция (а во время нее - отправка конфиденциальной информации).

4. В ходе видеоконференции также принимается и распознается информация от другого участника обмена данными.

5. Конференция завершается.

Таким образом, для организации защищенного канала пользователю необходимо иметь установленную программу «Метка привилегий», электронный ключ с аутентификационными данными, веб-камеру и доступ в сеть для организации связи.

Аутентификация

В данной методике процедура аутентификации используется для авторизации пользователя-опе-ратора перед началом работы с клиентским программным модулем и подтверждения подлинности сообщения с меткой привилегий, пришедшего от клиента на сервер системы.

Таким образом, требуется применить одношаговую схему аутентификации по аппаратному ключу и по полю данных в заголовке пакета TCP. Наиболее простым и эффективным способом решения этой задачи будет применение алгоритма вычисления имитовставки по ГОСТу 28147-89, поскольку он обеспечивает высокую криптостойкость, позволяет варьировать длину аутентификационного поля в пакете и эффективно реализуется на современных аппаратных платформах ПЭВМ общего назначения. При этом для решения обеих задач может применяться один и тот же ключ, хранимый на предъявляемом оператором ключевом носителе. При аутентификации пользователя для входа в систему (при запуске клиентского приложения) на сервер отправляется тестовое сообщение, зашифрованное на ключе с предъявленного ключевого носителя. Если серверу удалось расшифровать его ключом, соответствующим легальному пользователю данного узла сети, аутентификация считается пройденной и сервер сообщает об этом клиентскому приложению.

Аутентификация передаваемых TCP-пакетов осуществляется по стандартной схеме, когда информационное поле пакета зашифровывается в режиме вычисления имитовставки и добавляется в поле аутентификации, а сервер проверяет корректность вычисленной имитовставки, используя сохраненный в своей БД ключ шифрования.

Следует отметить, что для обеспечения надежности такой схемы при высокой загрузке сети ключи шифрования для всех пользователей необходимо менять не реже одного раза в месяц, что в случае использования системы при работе в локальной сети организации несложно и решается организационно-распорядительными методами.

Стеганография

При стеганографическом преобразовании добавление контейнеров должно происходить в реальном времени, кроме того, необходимо обеспечить стойкость ключа.

Наиболее часто для модификации видеотрафика и встраивания стегоконтейнеров применяют метод наименее значащих битов. Этот метод неустойчив к искажению передаваемой в стегоконтейнерах информации, например, можно обнулять все последние биты, что уничтожит всю конфиденциальную информацию. Также можно восстанавливать скрытую информацию, используя статистические закономерности.

Особенностями применения стеганографии в разрабатываемой методике для видеоконференций являются следующие:

Стегоконтейнеры встраиваются в реальном времени;

Открытая передаваемая информация имеет большой размер - увеличивается нагрузка на канал;

В стегоконтейнерах необходимо передавать аутентификационные метки;

Добавление контейнеров должно проходить в прозрачном для пользователя режиме;

Аутентификация должна быть простой для пользователя и выполняться в автоматическом режиме;

Передача аутентификационных меток должна проводиться постоянно.

Информацию о номерах пакетов можно передавать различными способами. Суть первого способа передачи: в первый пакет включается смещение до следующего пакета с конфиденциальной информацией и т.д., то есть каждый пакет со стегоконтейнером в начале поля данных будет содержать информацию о номере следующего пакета со стегоконтейнером. Важно, что задается смещение, а не номер пакета, так как в общем случае на кодирование смещения потребуется меньшее количество бит.

В настройках программы необходимо определить, какое количество бит в начале пакета будет выделено под адрес следующего пакета. Например, если расстояние между пакетами не превышает 100, на кодирование смещения необходимо выделить 7 бит. Каждый выделенный под смещение бит позволяет существенно увеличить расстояние между пакетами и тем самым сгладить статистические характеристики видеопотока.

Недостаток метода в том, что, перехватывая первый пакет, злоумышленник узнает номер следующего пакета и таким образом постепенно может восстановить всю последовательность.

Второй способ передачи - запись таблицы, содержащей номера пакетов с конфиденциальной информацией, на аппаратные ключи до начала видеоконференции. Все преобразования трафика происходят на клиентских машинах, тем самым обеспечивается дополнительная безопасность, так как информация в открытом виде не перемещается по сети.

Недостаток данного метода в том, что получение злоумышленником аппаратного ключа позволяет ему восстановить переданную конфиденциальную информацию.

Третьим способом передачи таблицы является передача ее на материальном носителе, например в бумажном виде. Недостатки этого метода: ввод таблицы клиентом в программу вручную и возможность перехвата ключевой информации нарушителем.

Программная реализация

Рассмотрим работу программы, реализующей данный алгоритм. Необходимо отметить, что она состоит из клиентской и серверной частей.

Клиентская часть запускается в фоновом режиме, предоставляя минимальный набор возможностей:

Участвовать в видеоконференции;

Отправить конфиденциальную информацию адресату;

Принять и распознать конфиденциальную информацию.

Причем пользователь не должен задумываться о выборе из видеопотока необходимой скрытой информации - сборка данных из разрозненных пакетов происходит автоматизированно клиентской частью приложения. Данный процесс выполняется на клиентской машине для того, чтобы информация не курсировала в сети в открытом виде, так как, если восстанавливать ее на сервере и затем передавать, участок от адресата до сервера будет потенциально опасным.

Серверная часть предназначена для админи- стратора. При первом запуске администратор вручную добавляет IP-адреса своей сети, затем переходит к назначению меток. Напротив привилегированного адреса ставится отметка. Администратор также задает размер смещения (количество бит, выделенных в начале пакета), так как, если задавать его клиентской частью приложения, могут возникнуть коллизии, когда размеры смещений у разных пользователей не совпадают.

Таким образом, администратор вручную выполняет следующие действия:

Ввод IP-адреса пользователей видеоконференции;

Выбор размера смещения под адрес;

Ввод пользовательских ключей для осуществления аутентификации.

Служебная информация, необходимая для функционирования программы, конфиденциальная информация и непосредственно ключи хранятся как на сервере, так и на клиентских рабочих местах.

На сервере хранится информация об аппаратных ключах пользователей, о паролях пользователей, о размерах смещений под адрес, IP-адреса пользователей, а также метка начала специального режима.

На клиентском рабочем месте хранятся аппаратный ключ, пароль, конфиденциальная информация, информация об IP-адресах других участников информационного обмена.

Необходимо отметить, что интерфейс данной программы не подразумевает множества тонких настроек. Программа предназначена для того, чтобы обеспечить администратору простое представление назначения меток. Все преобразования она будет производить на уровне пакетов самостоятельно.

Программа предполагает наличие двух видов пользователей - клиент и администратор.

Клиент при помощи клиентской части приложения и аутентификатора авторизуется в системе и получает доступ к видеоконференции, в ходе которой передает и получает конфиденциальную информацию. Он не имеет доступа к настройкам сети, знает ключ, с помощью которого можно выделить стегоконтейнеры и собрать конфиденциальную информацию в ее исходное состояние.

Администратор управляет настройками сети с помощью серверной части приложения. Он добавляет и удаляет пользователей, разрешенные IP-адреса, не имеет доступа к конфиденциальной информации как таковой и не знает ключа, с помощью которого можно выделить стегоконтейнеры из общего потока.

Программа должна поддерживать операционные системы семейств Windows и Linux. Важно, чтобы система была кроссплатформенной, так как сеть может быть гетерогенной, особенно для удаленных пользователей.

Для реализации алгоритма «Метки привилегий» необходимо модифицировать заголовки TCP-пакетов. Вначале была изучена спецификация RFC 793 (описывающая структуру пакета TCP) и подобраны инструменты - библиотеки PCAP и libnet. Обе библиотеки являются кроссплатформенными. С их помощью можно создать собственную программу, реализующую функции обработки TCP-заголовков.

В качестве прототипа была создана собственная реализация программы, позволяющей создать сокет либо в состоянии сервера (ожидает подключение клиента), либо в состоянии клиента (пытается подключиться к серверу). Были учтены результаты предыдущих разработок в университете по смежной тематике .

Созданная TCP-программа обеспечивает устойчивое соединение, самостоятельно формируются пакеты. В результате имеется возможность добавлять в поле опций TCP-заголовка собственную информацию. Для создания основной программы осталось сформировать на данном прототипе сервер и клиента, добавить пользовательский интерфейс, учесть требования стандартов и нормативных актов .

Задача сервера - перенаправлять пакеты клиентам. Необходимо задать список IP-адресов, с которых можно подключаться к серверу. Кроме того, администратор должен конфигурировать конференции и указывать клиентов, участвующих в них. Конфигурация сервера задается в текстовом файле, а сам сервер запускается как консольное приложение.

В заключение можно сделать следующие выводы. Цель работы - разработка методики организации защищенного канала передачи конфиденциальной информации путем встраивания стегоконтейнеров в видеопоток - была достигнута. Разработан алгоритм организации логического канала на основе меток привилегий, выбраны способы аутентификации. Были определены требования к программной реализации. Создан механизм стеганографических преобразований. В целом работа представляет собой алгоритм приоритизации трафика «Метка привилегий», перечень необходимых компонентов для организации защищенного канала, методику встраивания стегоконтейнеров, описание требований к программной реализации, первоначальную версию программного продукта. Планируются дальнейшее совершенствование алгоритма, добавление новых функций и более удобного для пользователя интерфейса, а также реализация всего вышеперечисленного в виде полноценного программного комплекса.

Литература

1. Литвиненко В.А., Ховансков С.А. Распределенные вычисления в сети методом коллективного принятия решения // Изв. ЮФУ. Технич. науки: тематич. вып.: Безопасность телекоммуникационных систем. Таганрог: Изд-во ТТИ ЮФУ, 2008. № 3 (80). С. 110-113.

2. Свентусов С.В. Методы снижения загрузки серверов аудиоконференций // Изв. СПбГЭУ (ЛЭТИ), 2008. Вып. 2. С. 25-30.

3. Шейда В.В. Использование протоколов TCP И UDP для защищенной передачи информации по SSL-VPN-туннелям: докл. ТГУСУР, 2010. С. 225-229.

4. Самуйлов К.Е. Метод решения задачи разделения ресурсов мультисервисной сети между виртуальными частными сетями с одноадресными и многоадресными соединениями // Вестн. РУДН. Сер.: Математика, информатика, физика. 2010. № 2 (1). С. 42-53.

5. Антамошкин А.Н., Золотарев В.В. Алгоритм расчета прогнозируемого трафика при проектировании распределенных систем обработки и хранения информации // Вестн. СибГАУ, Красноярск, 2006. № 1. С. 5-10.

6. Бондарь И.В., Золотарев В.В., Попов А.М. Методика оценки защищенности информационной системы по требованиям стандартов информационной безопасности // Информатика и системы управления. 2010. Вып. 4 (26). С. 3-12.

14.09.2006 Марк Джозеф Эдвардс

Какой метод оптимален для ваших условий? Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи.

Какой метод оптимален для ваших условий?

Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи. Выбор методов передачи и шифрования зависит от общих потребностей отправителя. В одних случаях достаточно просто обеспечить безопасность файлов в процессе передачи. В других важнее зашифровать файлы таким образом, чтобы они оставались защищенными и после доставки адресату. Давайте подробно рассмотрим способы безопасной передачи файлов.

В пути и по прибытии

Если ваши намерения ограничиваются защитой файлов в процессе их передачи по каналам Internet, вам необходима технология безопасной транспортировки. Один из вариантов состоит в использовании Web-узла, способного принимать пересылаемые на него файлы и обеспечивающего возможность безопасной загрузки таких файлов. Для организации защищенной транспортировки файлов на Web-узел можно создать Web-страницу, оснащенную средствами Secure Sockets Layer (SSL), на которой размещается элемент управления ActiveX или сценарий Javascript. К примеру, можно воспользоваться элементом управления AspUpload от компании Persitis Software; разработчики утверждают, что это «самое современное из имеющихся на рынке средств управления транспортировкой файлов на центральные узлы». Еще один вариант - использовать сценарий Free ASP Upload, который не требует применения бинарного компонента. Для обеспечения дополнительной защиты можно даже защитить паролями как Web-страницу, так и ассоциированный с ней каталог для размещения поступивших на узел материалов. Что же касается загрузки файлов с Web-узла, то достаточно позаботиться о том, чтобы соответствующий Web-сервер обеспечивал соединение с применением средств SSL, по крайней мере для URL, который используется для загрузки файлов.

Альтернативный вариант - использование сервера FTP, обеспечивающего передачу данных по протоколу FTP Secure. В сущности, FTPS - это протокол FTP, выполняемый по защищенному соединению SSL. Возможность использования протокола FTPS предусмотрена во многих популярных клиентах FTP, но, к сожалению, она не реализована в службе FTP Service корпорации Microsoft. Поэтому вам придется задействовать обеспечивающее такую возможность приложение сервера FTP (например, популярный продукт WFTPD). Не путайте FTPS с протоколом SSH File Transfer Protocol. SFTP - это протокол для передачи файлов, выполняемый поверх оболочки Secure Shell (SSH); кроме того, его можно использовать для передачи файлов. Впрочем, нужно иметь в виду, что SFTP несовместим с традиционным протоколом FTP, так что наряду с защищенным сервером оболочки (скажем, с сервером, предоставляемым SSH Communications Security), понадобится специальный клиент SFTP (это может быть клиент, входящий в пакет PuTTY Telnet/Secure Shell или WinSCP с графическим интерфейсом).

Кроме того, безопасную передачу файлов можно организовать на базе виртуальных частных сетей VPN. Платформы Windows Server обеспечивают совместимость с технологией VPN посредством RRAS. Однако это не гарантирует совместимости с VPN-решениями ваших партнеров. Если такой совместимости нет, можно воспользоваться одним из широко распространенных решений, например средством Open-VPN с открытым исходным кодом. Оно распространяется бесплатно и выполняется на целом ряде платформ, включая Windows, Linux, BSD и Macintosh OS X. Дополнительные сведения об интеграции OpenVPN можно найти в статье «Работаем с OpenVPN» ( ).

Установив VPN-соединение, вы сможете выделять каталоги и передавать файлы в обоих направлениях. При любом варианте использования VPN трафик шифруется, поэтому необходимости в дополнительном шифровании файлов не возникает - кроме тех случаев, когда требуется, чтобы файлы оставались защищенными и в системе, на которую они передаются. Этот принцип применим ко всем методам передачи, о которых я упоминал до сих пор.

Если этап передачи не вызывает у вас опасений и ваша главная забота состоит в том, чтобы исключить доступ к содержимому файлов со стороны не уполномоченных на то пользователей, целесообразно просто зашифровывать файлы до их транспортировки. В этом случае электронная почта, вероятно, будет эффективным каналом передачи файлов. Приложения для обработки электронной почты установлены почти на каждой настольной системе, так что, если вы передаете файлы по электронной почте, у вас не возникает необходимости применять дополнительные технологии, кроме средств шифрования данных. Метод передачи файлов по электронной почте эффективен потому, что сообщения и прикрепляемые файлы обычно поступают непосредственно в почтовый ящик получателя, хотя в процессе передачи сообщение может проходить через несколько серверов.

Если же вам тем не менее требуются дополнительные средства защиты данных в процессе их передачи по каналам электронной почты, рассмотрите возможность использования протоколов SMTP Secure (SMTPS) и POP3 Secure (POP3S). В сущности, SMTPS и POP3S - это обычные протоколы SMTP и POP3, выполняемые с использованием защищенного соединения SSL. Microsoft Exchange Server, как и большинство почтовых клиентов, включая Microsoft Outlook, обеспечивает возможность использования протоколов SMTPS и POP3S. Нужно иметь в виду, что даже в тех случаях, когда для обмена файлами между почтовым клиентом и почтовым сервером используется протокол SMTPS, сохраняется возможность того, что почтовый сервер будет доставлять почту конечному адресату через обычное незащищенное соединение SMTP.

Поскольку средства для обработки электронной почты получили столь широкое распространение, далее в этой статье мы будем обсуждать прежде всего вопросы безопасной передачи файлов по каналам электронной почты. При этом мы будем исходить из того, что отправителю необходимо шифровать данные, чтобы защитить их как на этапе передачи, так и после доставки. Итак, рассмотрим наиболее популярные на сегодня технологии шифрования сообщений электронной почты.

Средства сжатия файлов

Существует множество средств сжатия файлов в единый архивный файл, и многие из предлагаемых решений предусматривают применение той или иной формы шифрования для защиты содержимого архива. Обычно в процессе сжатия устанавливается пароль, и всякий, кто хочет открыть архив, может сделать это только с помощью данного пароля.

Один из наиболее популярных методов создания архивов сжатых файлов - метод zip-компрессии; его поддерживают практически все архиваторы. И одно из самых распространенных на сегодня средств zip-компрессии - приложение WinZip. Его можно использовать как автономную программу, встроить в Windows Explorer для облегчения доступа, а также с помощью модуля WinZip Companion for Outlook интегрировать этот продукт с клиентом Outlook. WinZip, как и многие другие оснащенные средствами zip архиваторы, обеспечивает возможность шифрования по методу Zip 2.0 Encryption. Но надо сказать, что защита файлов с помощью этого метода недостаточно надежна. Более приемлемый вариант шифрования реализован в продукте WinZip 9.0. Как показано на экране 1, ныне WinZip поддерживает спецификацию Advanced Encryption Standard (AES), где используются 128-разрядные или 256-разрядные ключи шифрования. AES - относительно новая технология, но ее уже считают промышленным стандартом.

Экран 1. WinZip поддерживает спецификацию AES

Я не могу сказать точно, какое количество архиваторов обеспечивает применение стойких алгоритмов шифрования средствами AES, и ограничусь упоминанием одного такого приложения; это разработанное компанией BAxBEx Software изделие bxAutoZip. Оно способно взаимодействовать с программой шифрования CryptoMite фирмы BAxBEx и может встраиваться в Outlook. Если WinZip позволяет шифровать данные только средствами Zip 2.0 и AES, CryptoMite обеспечивает возможность использования ряда других средств шифрования, включая популярные алгоритмы Twofish и Blowfish, Cast 256, Gost, Mars и SCOP.

Средствами распаковки zip-файлов оснащены уже практически все компьютерные системы, однако не все zip-приложения обеспечивают совместимость с различными алгоритмами шифрования. Поэтому, перед тем как отправлять зашифрованные файлы, надо убедиться в том, что zip-приложение получателя «понимает» избранный алгоритм.

При шифровании файлов с помощью zip-приложений используются защитные пароли. Для дешифрации архивного файла его получатель тоже должен воспользоваться соответствующим паролем. Необходимо проявлять осторожность при выборе метода доставки пароля. Вероятно, самые безопасные методы доставки пароля - по телефону, по факсу или через курьера. Можно выбрать любой из них, но ни в коем случае не следует передавать пароль по электронной почте в виде обычного текста; в этом случае резко возрастает опасность того, что доступ к зашифрованному файлу получит не имеющий на то полномочий пользователь.

Не забывайте о том, что оснащенные средствами шифрования архиваторы обеспечивают передачу файлов не только по каналам электронной почты. Их можно эффективно использовать для транспортировки данных и с помощью других упомянутых выше методов.

Pretty Good Privacy

Еще один чрезвычайно популярный метод шифрования можно реализовать с помощью программы Pretty Good Privacy. PGP произвела настоящий фурор, когда Фил Циммерман впервые бесплатно опубликовал ее в Internet в 1991 г. В 1996 г. PGP стала коммерческим продуктом, а затем в 1997 г. права на нее были куплены фирмой Network Associates (NAI). В 2002 г. эту технологию приобрела у NAI молодая компания PGP Corporation.

После этого PGP Corporation продала коммерческую версию PGP, которая функционирует в средах Windows и Mac OS X. Текущая версия PGP 9.0, в которой реализованы средства шифрования отдельных файлов и шифрования всего содержимого диска, может быть встроена в AOL Instant Messenger (AIM). Кроме того, PGP 9.0 интегрируется с такими изделиями, как Outlook, Microsoft Entourage, Lotus Notes, Qualcomm Eudora, Mozilla Thunderbird и Apple Mail.

В PGP применяется система шифрования с открытым ключом, предусматривающая генерирование пары ключей шифрования - открытого ключа и секретного ключа. Эти два ключа математически взаимосвязаны таким образом, что зашифрованные с помощью открытого ключа данные могут быть дешифрованы только с помощью секретного ключа. Пользователь PGP генерирует пару «открытый ключ - секретный ключ», после чего публикует открытый ключ в общедоступном каталоге ключей или на Web-узле. Секретный ключ, разумеется, нигде не публикуется и хранится в секрете; им пользуется только его владелец. При расшифровке данных с помощью секретного ключа требуется пароль, но при шифровании данных с помощью открытого ключа это не предусмотрено, поскольку открытыми ключами могут пользоваться все желающие.

Для простоты применения системы PGP ее разработчики реализовали функцию автоматического опроса общедоступных каталогов ключей. Эта функция позволяет, введя в строку поиска почтовый адрес того или иного пользователя, находить его открытый ключ. PGP предоставляет возможность автоматического считывания открытых ключей, которые можно для простоты доступа хранить локально на своей системе в специальной «связке ключей» (keyring) на базе файлов. Опрашивая каталог открытых ключей, PGP позволяет всегда держать в «связке» их самые последние версии. Если пользователь изменяет свой открытый ключ, вы можете получить доступ к обновленному ключу в любой момент, когда он вам потребуется.

Для обеспечения более надежных гарантий аутентичности открытых ключей можно использовать цифровые подписи с помощью ключей других пользователей. Подпись ключа другим пользователем служит дополнительным подтверждением того, что ключ действительно принадлежит человеку, называющему себя его владельцем. Чтобы подтвердить достоверность ключа с помощью цифровой подписи, PGP выполняет некую математическую операцию и добавляет к ключу ее уникальный результат. Затем подпись можно проверить, сравнив ее с подписывающим ключом, который применялся для создания подписи. Этот процесс напоминает процесс подтверждения одним человеком идентичности другого.

Системе PGP доверяют многие, поскольку она давно уже завоевала в отрасли репутацию надежной технологии для защиты информации. Но как бы то ни было, если вы решили использовать PGP или другой метод шифрования данных с помощью открытых ключей, помните, что получатели ваших файлов тоже должны располагать совместимой системой шифрования. Одно из преимуществ системы PGP при использовании электронной почты в качестве канала передачи данных состоит в том, что она поддерживает собственную модель шифрования, а также технологии X.509 и S/MIME, о которых я расскажу далее.

Кроме того, следует отметить еще один момент. Вне зависимости от того, планируется ли использовать PGP, WinZip или другую систему шифрования, если вы хотите в дополнение к шифрованию присоединенных файлов зашифровать содержимое собственно сообщения, потребуется записать сообщение в отдельный файл и тоже зашифровать его. По желанию этот файл с сообщением можно разместить в архиве вместе с другими файлами или присоединить его в качестве файла-вложения.

PKI

Инфраструктура открытых ключей (Public Key Infrastructure, PKI) уникальна, однако принцип ее действия в чем-то напоминает принцип действия PGP. PKI предполагает использование пары ключей - открытого и секретного. Для зашифровки данных, направляемых получателю, отправители применяют его открытый ключ; после того как данные доставляются получателю, он расшифровывает их с помощью своего секретного ключа.

Экран 2. Просмотр содержимого сертификата

Одно существенное отличие состоит в том, что в PKI открытый ключ обычно хранится в формате данных, известном как сертификат. Сертификаты могут содержать намного больше информации, нежели обычные ключи. К примеру, сертификаты обычно содержат дату истечения срока действия, так что мы знаем, когда сертификат и ассоциированный с ним ключ уже не будут действительны. Кроме того, сертификат может включать имя, адрес, номер телефона владельца ключа и другие данные. На экране 2 представлено содержимое сертификата в том виде, в каком оно отображается в окне программы Microsoft Internet Explorer (IE) или Outlook. В определенной степени содержимое сертификата зависит от того, какие именно данные желает разместить в нем владелец.

Как и PGP, PKI позволяет формировать «цепочки доверия», в которых сертификаты могут быть подписаны с помощью сертификатов других пользователей. Более того, появились удостоверяющие центры Certificate Authorities (CA). Это облеченные доверием независимые организации, которые не только выдают собственные сертификаты, но и подписывают другие сертификаты, гарантируя тем самым их подлинность. Как и в случае с PGP и связанными с этой системой серверами ключей, сертификаты могут публиковаться на общедоступных или частных серверах сертификатов либо на серверах LDAP, пересылаться по электронной почте и даже размещаться на Web-узлах или на файловом сервере.

Для обеспечения автоматической проверки подлинности сертификата разработчики клиентов электронной почты и Web-браузеров обычно оснащают свои программы средствами взаимодействия с серверами центров сертификации. В ходе этого процесса вы также сможете получить информацию об отзыве сертификата по тем или иным причинам и, соответственно, сделать заключение о том, что данному сертификату нельзя больше доверять. Разумеется, за услуги центров сертификации по предоставлению и заверению сертификатов иногда приходится платить; цены могут быть разными в зависимости от выбранного центра сертификации. Одни организации предоставляют клиентам бесплатные персональные сертификаты по электронной почте, другие берут за это значительное вознаграждение.

В основе PKI лежит спецификация X.509 (являющаяся производной от спецификации LDAP X). Поэтому сертификаты, выданные одним центром (включая сертификаты, которые вы генерируете для себя), обычно можно использовать на целом ряде платформ. Нужно только, чтобы эти платформы были совместимы со стандартом X.509. Вы можете и сами генерировать сертификаты с помощью любого из имеющихся инструментальных средств, таких как OpenSSL.

Если ваша организация использует службу Microsoft Certificate Services, вы можете запросить сертификат через эту службу. В средах Windows Server 2003 и Windows 2000 Server данный процесс должен протекать примерно одинаково. Следует открыть Web-страницу сервера сертификатов (как правило, она располагается по адресу http://servername/CertSrv ), затем выбрать пункт Request a Certificate. На следующей странице нужно выбрать элемент User certificate request и следовать указаниям Web-мастера до завершения процесса. Если служба сертификатов настроена таким образом, что для выдачи сертификата требуется санкция администратора, система известит вас об этом специальным сообщением, и вам придется дожидаться решения администратора. В иных случаях вы в итоге увидите гиперссылку, которая позволит установить сертификат.

Некоторые независимые центры сертификации, такие как Thwate и InstantSSL компании Comodo Group, предлагают пользователям бесплатные персональные почтовые сертификаты; это простой способ получения сертификатов. Кроме того, такие сертификаты уже будут подписаны выдавшей их инстанцией, что облегчит проверку их подлинности.

Когда дело доходит до использования PKI с целью отправки зашифрованных данных с помощью программы обработки электронной почты, в дело вступает спецификация Secure MIME (S/MIME). Outlook, Mozilla Thunderbird и Apple Mail - вот лишь несколько примеров почтовых приложений, позволяющих задействовать этот протокол. Чтобы отправить адресату зашифрованное почтовое сообщение (включающее или не включающее присоединенные файлы), необходимо иметь доступ к открытому ключу адресата.

Для получения открытого ключа другого пользователя можно просмотреть данные о ключах на сервере LDAP (если только ключ публикуется с использованием протокола LDAP). Другой вариант: можно попросить этого человека направить вам сообщение с цифровой подписью; как правило, при доставке адресату подписанного сообщения оснащенные средствами S/MIME почтовые клиенты присоединяют копию открытого ключа. А можно просто попросить интересующее вас лицо прислать вам сообщение с присоединенным к нему открытым ключом. Впоследствии можно будет хранить этот открытый ключ в интерфейсе управления ключами, который входит в состав вашего почтового клиента. Программа Outlook интегрируется со встроенным в Windows хранилищем сертификатов Certificate Store. При необходимости воспользоваться открытым ключом он всегда будет под рукой.

Шифрование на основе данных об отправителе

Фирма Voltage Security разработала новую технологию - шифрование на основе данных об отправителе (identity-based encryption, IBE). В целом она аналогична технологии PKI, но имеет любопытную особенность. Для дешифации сообщений в IBE используется секретный ключ, но в процессе шифрования обычный открытый ключ не применяется. В качестве такого ключа IBE предусматривает использование почтового адреса отправителя. Таким образом, при отправке получателю зашифрованного сообщения проблемы получения его открытого ключа не возникает. Достаточно иметь адрес электронной почты этого человека.

Технология IBE предполагает хранение секретного ключа получателя на сервере ключей. Получатель подтверждает свои права доступа к серверу ключей и получает секретный ключ, с помощью которого осуществляет дешифрацию содержимого сообщения. Технологию IBE могут применять пользователи Outlook, Outlook Express, Lotus Notes, Pocket PC, а также Research in Motion (RIM) BlackBerry. По словам представителей Voltage Security, IBE выполняется также на любых почтовых системах на базе браузеров под управлением практически любой операционной системы. Вполне вероятно, что такие универсальные решения Voltage Security - именно то, что вам нужно.

Примечательно, что технология IBE применяется в продуктах компании FrontBridge Technologies как средство, облегчающее безопасный обмен зашифрованными почтовыми сообщениями. Вам, наверное, уже известно, что в июле 2005 г. компания FrontBridge была приобретена корпорацией Microsoft, которая планирует интегрировать решения FrontBridge с Exchange; возможно, уже довольно скоро комбинация этих технологий будет предложена потребителям в виде управляемой службы. Если системы обработки электронной почты в вашей организации и у ваших партнеров базируются на Exchange, следите за развитием событий на этом участке.

С учетом всех обстоятельств

Существует множество способов безопасной передачи файлов по каналам Internet, и, несомненно, самый простой и эффективный из них обеспечивается средствами электронной почты. Разумеется, те, кому приходится обмениваться большим количеством файлов, составляющих большие объемы данных, могут рассмотреть возможность использования других методов.

Следует тщательно взвесить, какое количество файлов вы будете передавать, насколько велики они по объему, как часто вам придется передавать эти файлы, кто должен иметь доступ к ним и как они будут храниться по месту получения. С учетом этих факторов вы сможете подобрать оптимальный способ передачи файлов.

Если вы придете к заключению, что лучший вариант для вас - электронная почта, имейте в виду, что по прибытии почты на многих почтовых серверах и почтовых клиентах можно запускать сценарии или выполнять определенные действия на базе правил. С помощью этих функций можно автоматизировать движение файлов как по пути следования на почтовых серверах, так и при поступлении файлов в почтовый ящик.

Марк Джозеф Эдвардс - старший редактор Windows IT Pro и автор еженедельного почтового бюллетеня Security UPDATE (http://www.windowsitpro.com/email ). [email protected]



В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

Удаленный доступ к информационным ресурсам. Защита информации, передаваемой по каналам связи

При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь рассматривается несанкционированное подключение к каналам связи и осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).

В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола http.

Второй вариант предполагает установку специальных средств, осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый IP-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью совместимы с любыми прикладными подсистемами, работающими в корпоративной информационной системе (являются «прозрачными» для приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо учитывать, что если средства криптографической защиты информации планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.

Посетитель нашего сайта обратился с просьбой о консультации по защите информации клиентов:

Я пишу дипломную работу на тему: Защита персональных данных пациента в сети поликлиник. Предположим есть такая программа для регистрации пациентов в нескольких поликлиниках, и они связаны с друг другом по сети(как обычно это бывает). Мне нужно обеспечить безопасность информации о пациентах. Пожалуйста помогите мне раскрыть этот вопрос… Как выполняется взлом, или же кража информации (по сети, внешне и т.д.); каким образом защитить информацию; пути решения этой проблемы и т.д. Оочень прошу помогите…Ais

Что ж, эта задача для многих актуальна во все времена. Информационная безопасность — это отдельное направление в IT.

Как похищают информацию и взламывают информационные системы?

Действительно, для того чтобы защититься от утечки информации прежде всего нужно понимать отчего такие утечки случаются. Как происходит взлом иформационных систем?

Большинство проблем с безопасностью — изнутри

Возможно для опытных специалистов по безопасности это и звучит банально, но для многих людей это будет откровением: большая часть проблем с информационной безопасностью происходит по вине самих пользователей информационных систем. Я ткну пальцем в небо и моя цифра взята «с потолка», но по моему мнению и опыту 98% всех хищений и взломов происходят либо по халатности пользователей, либо умышленно, но опять же изнутри. Поэтому, бОльшую часть усилий стоит направить именно на внутреннюю безопасность. Самое интересное, что я читал по этому поводу, это одно из суждений учителя Инь Фу Во :

Другими словами, мотивы для утечки информации и способы её устроить, рождаются именно изнутри, и чаще всего в таком деле фигурируют те люди, которые уже и так имеют доступ к этой информации.

Сюда же можно отнести и всевозможные вирусы, трояны, зловредные расширения для браузеров. Поскольку эти вещи проникают в компьютеры пользователей просто по незнанию. И если пользователь с зараженного компьютера будет работать с важной информацией — то соответственно с помощью этих вещей можно похитить и её. Сюда же относим и плохие пароли, социальную инженерию, фейковые сайты и письма — со всем этим легко справляться, нужно просто быть внимательным.

Атаки MITM

Этот пункт будет следующим в списке, поскольку это самый очевидный способ для хищения информации. Речь идёт о перехвате. Аббревиатура означает Man In The Middle — человек на середине. То есть, для кражи информации происходит как бы вклинивание злоумышленника в канал передачи данных — он изобретает и использует какой то способ, для того чтобы перехватить данные на пути их следования.

Как происходит перехват информации

В свою очередь, способов организовать MITM тоже много. Это и всевозможные фейки сайтов и сервисов, различные снифферы и прокси. Но суть всегда одна — злоумышленник заставляет «думать» какую-либо из сторон, что он — это другая сторона и при обмене все данные проходят через него.

Как защититься от перехвата информации?

Способы тоже очевидны. И сводятся к двум:

  1. Не допустить, чтобы злоумышленник мог вклиниться в процесс обмена данными
  2. Даже если исключить это невозможно и каким-то образом произошло — не допустить чтобы злоумышленник смог читать и использовать перехваченную информацию.

Варианты организации этого тоже не отличаются многообразием, по крайней мере в своей сути. Реализаций конечно же достаточно. Давайте рассмотрим именно суть этих методов защиты.

Использовать туннелирование и виртуальные приватные сети

VPN — Virtual Privat Network. Наверняка слышал о нём каждый. Это первый, и часто единственный, способ, который позволяет организовать безопасное информационное пространство для обмена нескольких учреждений. Суть его — построение сети туннелей поверх глобальной незащищенной сети (Интернет). Именно такой способ я и рекомендую как первый к внедрению в подобной системе офисов. VPN позволит офисам работать как-бы в единой локальной сети. Но связь между офисами будет происходить по интернету. Для этого между офисами организовываются VPN-туннели.

Примерно таким образом это работает. VPN-туннель, это как бы «труба» в интернете, внутри которой проложена ваша локальная сеть. Технически, такой тунель можно организовать множеством способом. Самих VPN — есть несколько реализаций — это и pptp, и l2tp, ipsec. позволяет — получается такой «VPN на коленке». Это конечно не исключает возможности для MITM — данные можно перехватить, «подключиться к трубе». Но здесь мы и переходим ко второму пункту защиты — шифрованию.

Шифрование данных в сети

Для того чтобы атака MITM не могла быть успешной, достаточно зашифровать все передаваемые данные. Я не буду вдаваться в подробности, но суть такова, что вы превращаете передаваемый между вами трафик в нечитабельную субстанцию, которую невозможно прочитать и использовать — шифруете. При этом, расшифровать эти данные может только адресат. И наоборот.

Соответственно, даже если злоумышленник сумеет организовать MITM-атаку — он перехватит передаваемые вами данные. Но он не сможет их расшифровать, а значит никакого вреда не нанесёт. Да и не будет он организовывать такую атаку, зная что вы передаете шифрованные данные. Так вот, та самая «труба» из предыдушего пункта, это именно шифрование.

В принципе, вся современная информационная безопасность сводится именно к этим двум вещам — туннелированию и шифрованию. Тот же https — это только шифрование, данные передаются открыто, в глобальной сети, любой желающий может организовать атаку и перехватить их. Но пока у него нет ssl-сертификатов и ключей для расшировки этих данных — ничем это и никому не грозит.

Защита путем обучения пользователей

Это те самые пресловутые 98%. Даже если вы построите сверхшифрованные двойные туннели с двухфакторной аутентификацией — это ничем вам не поможет, пока пользователи могут подхватить троян или использовать слабые пароли.

Поэтому, самым важным в защите является именно забота об обучении пользователей. Я давно этим стараюсь заниматься и на сайте уже есть некоторые материалы, которые в этом могут помочь:

  1. Суть антивирусной защиты — . Здесь я постарался подробно раскрыть вопросы о том, что такое вредоносное ПО и вирусы и как жить не находясь в постоянном страхе чем-то «заразить» свой компьютер, даже без антивируса.
  2. — описывал свой, довольно простой метод генерации сильных паролей «из головы».

Я думаю, после прочтения данной статьи и этих мануалов вы будете знать об информационной безопасности больше, чем 90% людей:) По крайней мере, вы сможете задавать уже более конкретные вопросы и находить чёткую информацию.

А тем временем, у меня есть новость, друзья. Мы идём в SMM! И я рад представить вам нашу группу на Facebook —

Протокол Kerberos

Протоколы аутентификации:

3. Аутентификация с помощью открытого ключа

Описание DSA

p = простое число длинной L битов, где L принимает значение, кратное 64, в диапазоне от 512 до 1024.

q= 160-битовой простое число - множитель p-1

g = , где h - любое число, меньшее p-1, для которого больше 1

x = число, меньшее q

Используется однонаправленная хэш-функция: Н(m).

Первые три параметра, p, q, g, открыты и могут быть общими для пользователей сети. Закрытым ключом является х, а открытым - у. Чтобы подписать сообщение, m:

1. А генерирует случайное число k, меньше q

2. А генерирует

Его подписью служат параметры r и s, он посылает их В

3. В проверяет подпись, вычисляя

Если v=r, то подпись правильна.

Резюме

Система стандартов IPSec вобрала в себя прогрессивные методики и достижения в области сетевой безопасности. Система IPSec прочно занимает лидирующие позиции в наборе стандартов для создания VPN. Этому способствует ее открытое построение, способное включать все новые достижения в области криптографии. IPsec позволяет защитить сеть от большинства сетевых атак, «сбрасывая» чужие пакеты еще до того, как они достигнут уровня IP на принимающем компьютере. В защищаемый компьютер или сеть могут войти только пакеты от зарегистрированных партнеров по взаимодействию.

IPsec обеспечивает:

  • аутентификацию - доказательство отправки пакетов вашим партнером по взаимодействию, то есть обладателем разделяемого секрета;
  • целостность - невозможность изменения данных в пакете;
  • конфиденциальность - невозможность раскрытия передаваемых данных;
  • надежное управление ключами - протокол IKE вычисляет разделяемый секрет, известный только получателю и отправителю пакета;
  • туннелирование - полную маскировку топологии локальной сети предприятия

Работа в рамках стандартов IPSec обеспечивает полную защиту информационного потока данных от отправителя до получателя, закрывая трафик для наблюдателей на промежуточных узлах сети. VPN-решения на основе стека протоколов IPSec обеспечивают построение виртуальных защищенных сетей, их безопасную эксплуатацию и интеграцию с открытыми коммуникационными системами.

Защита на прикладном уровне

Протокол SSL

Протокол SSL (Secure Socket Layer - уровень защищенных сокетов), разработанный Netscape Communications при участии RSA Data Security, предназначен для реализации защищенного обмена информацией в клиент/серверных приложениях. На практике SSL широко реализуется только совместно с протоколом прикладного уровня HHTP.

Функции безопасности, предоставляемые протоколом SSL:

  • шифрование данных с целью предотвратить раскрытие конфиденциальных данных во время передачи;
  • подписывание данных с целью предотвратить раскрытие конфиденциальных данных во время передачи;
  • аутентификация клиента и сервера.

Протокол SSL использует криптографические методы защиты информации для обеспечения безопасности информационного обмена. Данный протокол выполняет взаимную аутентификацию, обеспечивает конфиденциальность и аутентичность передаваемых данных. Ядро протокола SSL - технология комплексного использования симметричных и асимметричных криптосистем. Взаимная аутентификация сторон выполняется при помощи обмена цифровыми сертификатами открытых ключей клиента и сервера, заверенными цифровой подписью специальных сертификационных центров. Конфиденциальность обеспечивается шифрованием передаваемых данных с использованием симметричных сессионных ключей, которыми стороны обмениваются при установлении соединения. Подлинность и целостность информации обеспечиваются за счет формирования и проверки цифровой подписи. В качестве алгоритмов асимметричного шифрования применяются алгоритм RSA и алгоритм Диффи-Хеллмана.

Рисунок 9 Криптозащищенные туннели, сформированные на основе протокола SSL

Согласно протоколу SSL криптозащищенные туннели создаются между конечными точками виртуальной сети. Клиент и сервер функционируют на компьютерах в конечных точках туннеля (рис. 9)

Протокол диалога SSL имеет два основных этапа формирования и поддержки защищаемого соединения:

  • установление SSL-сессии;
  • защищенное взаимодействие.

Первый этап отрабатывается перед непосредственной защитой информационного обмена и выполняется по протоколу начального приветствия (Handshake Protocol), входящему в состав протокола SSL. При установлении повторного соединения, возможно сформировать новые сеансовые ключи на основе старого общего секрета.

В процессе установления SSL - сессии решаются следующие задачи:

  • аутентификация сторон;
  • согласование криптографических алгоритмов и алгоритмов сжатия, которые будут использоваться при защищенном информационном обмене;
  • формирование общего секретного мастер-ключа;
  • генерация на основе сформированного мастер-ключа общих секретных сеансовых ключей для криптозащиты информационного обмена.

Рисунок 10 Процесс аутентификации клиента сервером

В протоколе SSL предусмотрено два типа аутентификации:

  • аутентификация сервера клиентом;
  • аутентификация клиента сервером.

Клиентское/серверное ПО, поддерживающее SSL, может с помощью стандартных приемов криптографии с открытым ключом проверить, что сертификат сервера/клиента и открытый ключ действительны и были выданы источником сертификатов из списка доверенных источников. Пример процесса аутентификации клиента сервером представлен на рисунке 10.

Схема применения протокола

До передачи сообщение по линии передачи данных, сообщение проходит следующие этапы обработки:

1.Сообщение фрагментируется на блоки, пригодные для обработки;

2.Данные сжимаются (опционально);

3.Генерируется MAC ключ ;

4.Данные зашифровываются с помощью ключа ;

1.Используя ключ , данные расшифровываются;

2.Проверяется MAC ключ ;

3.Происходит декомпрессия данных (если использовалось сжатие);

4.Сообщение собирается из блоков и получатель читает сообщение.

Аутентичное распределение ключей

A , Клиент CA Удостоверяющий центр B , Сервер
Генерация пары ключей цифровой подписи: . Передача в УЦ - симметричная схема шифрования; - схема открытого шифрования; - схема ЦП; - любые функции (лучше ОНФ) Генерация пары ключей схемы открытого шифрования: . Передача в УЦ
K - случайный сеансовый ключ.

Если , то K принимается как аутентичный общий секретный ключ

Рабочий этап

A B

Симметричная схема шифрования

. . . и т.д. . . .

Атаки на протокол SSL

Как и другие протоколы, SSL подвержен атакам, связанным с не доверенной программной средой, внедрение программ-закладок и др.:

  • Атака отклика. Заключается в записи злоумышленником успешной коммуникационной сессии между клиентом и сервером. Позднее, он устанавливает соединение с сервером, используя записанные сообщения клиента. Но при помощи уникального идентификатора соединения "nonce" SSL отбивает эту атаку. Коды этих идентификаторов имеют длину 128 бит, в связи с чем злоумышленнику необходимо записать 2^64 идентификаторов, чтобы вероятность угадывания была 50%. Количество необходимых записей и низкую вероятность угадывания делают эту атаку бессмысленной.
  • Атака протокола рукопожатия. Злоумышленник может попытаться повлиять на процесс обмена рукопожатиями для того, чтобы стороны выбрали разные алгоритмы шифрования. Из-за того, что многие реализации поддерживают экспортированное шифрование, а некоторые даже 0-шифрование или MAC-алгоритм, эти атаки представляют большой интерес. Для реализации такой атаки злоумышленнику необходимо подменить одно или более сообщений рукопожатия. Если это происходит, то клиент и сервер вычислят различные значения хэшей сообщения рукопожатия. В результате чего стороны не примут друг от друга сообщения "finished". Без знания секрета злоумышленник не сможет исправить сообщение "finished", поэтому атака может быть обнаружена.
  • Раскрытие шифров. SSL зависит от нескольких криптографических технологий. Шифрование с общедоступным ключом RSA используется для пересылки ключей сессии и аутентификации клиента/сервера. В качестве шифра сессии применяются различные криптографические алгоритмы. Если осуществлена успешная атака на эти алгоритмы, SSL не может уже считаться безопасным. Атаки против определенных коммуникационных сессий могут производиться путем записи сессии, и затем предпринимается попытка подобрать ключ сессии или ключ RSA. В случае успеха открывается возможность прочесть переданную информацию.
  • Злоумышленник посередине. Man-in-the-Middle атака предполагает наличие трех сторон: клиента, сервера и злоумышленника. Злоумышленник, находясь между ними, может перехватывать обмен сообщениями между клиентом и сервером. Атака является эффективной только если для обмена ключами применяется алгоритм Диффи-Хэлмана, так как целостность принимаемой информации и ее источник проверить невозможно. В случае SSL такая атака невозможна из-за использования сервером сертификатов, заверенных центром сертификации.

Протокол TLS

Цель создания и преимущества

Цель создания TLS - повышение защиты SSL и более точное и полное определение протокола:

  • Более надежный алгоритм MAC
  • Более детальные предупреждения
  • Более четкие определения спецификаций "серой области"

TLS предоставляет следующие усовершенствованные способы защиты:

  • Хэширование ключей для идентификации с помощью сообщений - TLS применяет в коде идентификации сообщения (HMAC) хэширование, предотвращающее от изменения записи при передаче по незащищенной сети, например в Internet. SSL версии 3.0 также поддерживает идентификацию сообщений с помощью ключей, но HMAC считается более надежным, чем функция MAC, применяемая в SSL версии 3.0.
  • Улучшенная псевдослучайная функция (PRF) С помощью PRF создаются данные ключа. В TLS функция PRF определена с помощью HMAC. PRF применяет два алгоритма хэширования, обеспечивающих ее защиту. Если один из алгоритмов будет взломан, данные будут защищены вторым алгоритмом.
  • Улучшенная проверка сообщения "Готово" - Протоколы TLS версии 1.0 и SSL версии 3.0 отправляют обеим конечным системам сообщение "Готово", означающее, что доставленное сообщение не было изменено. Однако в TLS эта проверка основана на значениях PRF и HMAC, что обеспечивает более высокий уровень защиты по сравнению с SSL версии 3.0.
  • Согласованная обработка сертификатов - В отличие от SSL версии 3.0, TLS пытается указать тип сертификата, который может применяться различными реализациями TLS.
  • Особые предупреждающие сообщения - TLS предоставляет более точные и полные предупреждения о неполадках, обнаруженных одной из конечных систем. TLS также содержит информацию о том, когда какие сообщения с предупреждениями следует отправлять.

Протокол SSH

Протокол SSH (Secure Shell-оболочка безопасности) - это набор протоколов аутентификации с открытым ключом, позволяющий пользователю на стороне клиента безопасно регистрироваться на удалённом сервере.

Главная идея протокола заключается в том, что пользователь на стороне клиента, должен загрузить с удаленного сервера открытый ключ и установить с его помощью защищённый канал, используя криптографический мандат. Криптографическим мандатом пользователя является его пароль: его можно зашифровать с помощью полученного открытого ключа и передать на сервер.

Все сообщения шифруются с помощью IDEA .

Архитектура протокола SSH

SSH выполняется между двумя ненадёжными компьютерами, работающими в незащищенной сети(клиент - сервер).

Набор протоколов SSH состоит из трех компонентов:

  • Протокол транспортного уровня SSH (SSH Transport Layer Protocol), обеспечивает аутентификацию сервера. Для этого используется открытый ключ. Исходной информацией для этого протокола как со стороны сервера, так и со стороны клиента, является пара открытых ключей - "ключи головного компьютера". Итогом протоколом является взаимно аутентифицированный защищённый канал, который гарантирует секретность и целостность данных.
  • Протокол аутентификации пользователя SSH (SSH User Authentication Protocol). Выполняется по каналу односторонней аутентификации, установленному протоколом транспортного уровня SSH. Для выполнения аутентификации от клиента к серверу, поддерживаются различные протоколы односторонней аутентификации. Эти протоколы могут применять либо открытый ключ, либо пароль. Например, они могут быть созданы на основе протокола аутентификации с помощью простого пароля. Результатом протокола является взаимно аутентифицированный защищённый канал между сервером и пользователем. Применяются следующие методы:

publickey - клиент высылается ЭЦП , сервер проверяет доверие открытому ключу клиента по имеющейся на сервере копии ключа, затем проверяет аутентичность клиента по Sc.

password - клиент подтверждает свою аутентичность паролем.

hostbased - аналогично publickey, только используется пара ключей для клиентского хоста; подтвердив аутентичность хоста, сервер доверяет имени пользователя.

  • Протокол связи SSH (SSH Connection Protocol) выполняется по взаимно аутентифицированному защищённому каналу, установленному предыдущими протоколами. Протокол обеспечивает работу защищённого канала при этом разделяя его на несколько защищённых логических каналов.

Протокол распределения ключами

Протокол включает в себя 3 этапа. Первый этап - "Hello" phase, где первый идентификатор это строка, I, отправляется, чтобы начать протокол, за которым следует список поддерживаемых алгоритмов - X.

На 2-й стадии стороны согласуют секретный ключ, s. Для этого применяется алгоритм Диффи-Хеллмана . Сервер подтверждает свою идентичность, отправляя клиенты свой открытый ключ, , верифицированный цифровой подписью, , и подпись дайджеста, h. В качестве идентификатора sid устанавливается значение h.

На стадии 3 секретный ключ, идентификатор сессии и дайджест используются для создании 6 "apllication keys", вычисленных с помощью .

Резюме

К преимуществам протокола относится:

  • возможность действий на сквозной основе (end - to - end) с осуществляющими стеками TCP/IP, существующими интерфейсами прикладного программирования;
  • повышенная эффективность по сравнению с медленными каналами;
  • отсутствие каких-либо проблем с фрагментацией, определением максимального объёма блоков, передаваемых по данному маршруту;
  • сочетание компрессии с шифрованием.