Фазовая манипуляция. Квадратурная фазовая манипуляция

14.04.2019
АМн · ФМн · КАМ · ЧМн · GMSK
OFDM · COFDM · TCM АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ FHSS · DSSS · CSS

Фа́зовая манипуля́ция (ФМн, англ. phase-shift keying (PSK) ) - один из видов фазовой модуляции , при которой фаза несущего колебания меняется скачкообразно в зависимости от информационного сообщения.

Описание

Фазоманипулированный сигнал имеет следующий вид:

s_m(t)=g(t)\cos,

где g(t) определяет огибающую сигнала; \varphi_m(t) является модулирующим сигналом. \varphi_m(t) может принимать M дискретных значений. f_c - частота несущей ; t - время.

Если M=2, то фазовая манипуляция называется двоичной фазовой манипуляцией (BPSK, B-Binary - 1 бит на 1 смену фазы), если M=4 - квадратурной фазовой манипуляцией (QPSK, Q-Quadro - 2 бита на 1 смену фазы), M=8 (8-PSK - 3 бита на 1 смену фазы) и т. д. Таким образом, количество бит n, передаваемых одним перескоком фазы, является степенью, в которую возводится двойка при определении числа фаз, требующихся для передачи n-порядкового двоичного числа.

Фазоманипулированный сигнал s_i(t) можно рассматривать как линейную комбинацию двух ортонормированных сигналов y_1 и y_2 :

S_m(t)=S_1 Y_1+S_2 Y_2,

Y_1(t)=\sqrt{\frac{2}{E_g}}S_1(t)\cos, Y_2(t)=-\sqrt{\frac{2}{E_g}}S_2(t)\sin.

Таким образом, сигнал S_m(t) можно считать двухмерным вектором . Если значения S_1(m,\;M) отложить по горизонтальной оси, а значения S_2(m,\;M) - по вертикальной, то точки с координатами S_1(m,\;M) и S_2(m,\;M) будут образовывать пространственные диаграммы, показанные на рисунках.

    BPSK Gray Coded.svg

    Двоичная фазовая манипуляция (BPSK)

    QPSK Gray Coded.svg

    Квадратурная фазовая манипуляция (QPSK)

    8PSK Gray Coded.svg

    Восьмеричная фазовая манипуляция (8-PSK)

Двоичная фазовая манипуляция

Когерентное детектирование

Вероятность ошибки на бит (англ. BER - Bit Error Rate ) при бинарной ФМн в канале с аддитивным белым гауссовским шумом (АБГШ) может быть вычислена по формуле:

P_b=Q\left(\sqrt{\frac{2E_b}{N_0}}\right),

Q(x)=\frac{1}{\sqrt{2\pi}}\int\limits_x^\infty e^{-\frac{t^2}{2}}\,dt.

Так как на символ приходится 1 бит, то по этой же формуле вычисляется и вероятность ошибки на символ.

В присутствии произвольного изменения фазы, введенного каналом связи, демодулятор не способен определить, какая точка созвездия соответствует 1 и 0. В результате данные часто дифференциально кодируются до модуляции.

Некогерентное детектирование

В случае некогерентного детектирования используется дифференциальная двоичная фазовая манипуляция.

Реализация

Двоичные данные часто передаются со следующими сигналами:

s_0(t)=\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) для двоичного «0»; s_1(t)=\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t+\pi)=-\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) для двоичной «1»,

где f_c - частота несущего колебания.

Квадратурная фазовая манипуляция

π/4-QPSK

Здесь изображены два отдельных созвездия использующие кодирование Грея, которые повёрнуты на 45° относительно друг друга. Обычно, чётные и нечётные биты используются для определения точек соответствующего созвездия. Это приводит к уменьшению максимального скачка фазы с 180° до 135°.

С другой стороны, использование π/4-QPSK приводит к простой демодуляции и вследствие этого она используется в системах сотовой связи с временным разделением каналов.

ФМн более высоких порядков

ФМн с порядком больше 8 используют редко.

Дифференциальная ФМн

При реализации PSK может возникнуть проблема поворота созвездия, например, в непрерывной передаче без синхронизации. Для решения подобной проблемы может быть использовано кодирование, основанное не на положении фазы, а на её изменении.

Например для DBPSK фаза изменяется на 180° для передачи «1» и остается неизменной для передачи «0».

См. также

Напишите отзыв о статье "Фазовая манипуляция"

Примечания

Литература

  • Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. - М .: Радио и связь, 2000. - 800 с. - ISBN 5-256-01434-X .
  • Скляр, Бернард. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. - 2 изд. - М .: «Вильямс» , 2007. - С. 1104. - ISBN 0-13-084788-7 .
  • Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. - М .: Радио и связь, 2000. - 552 с. - ISBN 5-256-01444-7 .

Ссылки

Отрывок, характеризующий Фазовая манипуляция

– Как тебе сказать, – отвечала Наташа, – я была влюблена в Бориса, в учителя, в Денисова, но это совсем не то. Мне покойно, твердо. Я знаю, что лучше его не бывает людей, и мне так спокойно, хорошо теперь. Совсем не так, как прежде…
Николай выразил Наташе свое неудовольствие о том, что свадьба была отложена на год; но Наташа с ожесточением напустилась на брата, доказывая ему, что это не могло быть иначе, что дурно бы было вступить в семью против воли отца, что она сама этого хотела.
– Ты совсем, совсем не понимаешь, – говорила она. Николай замолчал и согласился с нею.
Брат часто удивлялся глядя на нее. Совсем не было похоже, чтобы она была влюбленная невеста в разлуке с своим женихом. Она была ровна, спокойна, весела совершенно по прежнему. Николая это удивляло и даже заставляло недоверчиво смотреть на сватовство Болконского. Он не верил в то, что ее судьба уже решена, тем более, что он не видал с нею князя Андрея. Ему всё казалось, что что нибудь не то, в этом предполагаемом браке.
«Зачем отсрочка? Зачем не обручились?» думал он. Разговорившись раз с матерью о сестре, он, к удивлению своему и отчасти к удовольствию, нашел, что мать точно так же в глубине души иногда недоверчиво смотрела на этот брак.
– Вот пишет, – говорила она, показывая сыну письмо князя Андрея с тем затаенным чувством недоброжелательства, которое всегда есть у матери против будущего супружеского счастия дочери, – пишет, что не приедет раньше декабря. Какое же это дело может задержать его? Верно болезнь! Здоровье слабое очень. Ты не говори Наташе. Ты не смотри, что она весела: это уж последнее девичье время доживает, а я знаю, что с ней делается всякий раз, как письма его получаем. А впрочем Бог даст, всё и хорошо будет, – заключала она всякий раз: – он отличный человек.

Первое время своего приезда Николай был серьезен и даже скучен. Его мучила предстоящая необходимость вмешаться в эти глупые дела хозяйства, для которых мать вызвала его. Чтобы скорее свалить с плеч эту обузу, на третий день своего приезда он сердито, не отвечая на вопрос, куда он идет, пошел с нахмуренными бровями во флигель к Митеньке и потребовал у него счеты всего. Что такое были эти счеты всего, Николай знал еще менее, чем пришедший в страх и недоумение Митенька. Разговор и учет Митеньки продолжался недолго. Староста, выборный и земский, дожидавшиеся в передней флигеля, со страхом и удовольствием слышали сначала, как загудел и затрещал как будто всё возвышавшийся голос молодого графа, слышали ругательные и страшные слова, сыпавшиеся одно за другим.
– Разбойник! Неблагодарная тварь!… изрублю собаку… не с папенькой… обворовал… – и т. д.
Потом эти люди с неменьшим удовольствием и страхом видели, как молодой граф, весь красный, с налитой кровью в глазах, за шиворот вытащил Митеньку, ногой и коленкой с большой ловкостью в удобное время между своих слов толкнул его под зад и закричал: «Вон! чтобы духу твоего, мерзавец, здесь не было!»
Митенька стремглав слетел с шести ступеней и убежал в клумбу. (Клумба эта была известная местность спасения преступников в Отрадном. Сам Митенька, приезжая пьяный из города, прятался в эту клумбу, и многие жители Отрадного, прятавшиеся от Митеньки, знали спасительную силу этой клумбы.)
Жена Митеньки и свояченицы с испуганными лицами высунулись в сени из дверей комнаты, где кипел чистый самовар и возвышалась приказчицкая высокая постель под стеганным одеялом, сшитым из коротких кусочков.
Молодой граф, задыхаясь, не обращая на них внимания, решительными шагами прошел мимо них и пошел в дом.
Графиня узнавшая тотчас через девушек о том, что произошло во флигеле, с одной стороны успокоилась в том отношении, что теперь состояние их должно поправиться, с другой стороны она беспокоилась о том, как перенесет это ее сын. Она подходила несколько раз на цыпочках к его двери, слушая, как он курил трубку за трубкой.
На другой день старый граф отозвал в сторону сына и с робкой улыбкой сказал ему:
– А знаешь ли, ты, моя душа, напрасно погорячился! Мне Митенька рассказал все.
«Я знал, подумал Николай, что никогда ничего не пойму здесь, в этом дурацком мире».
– Ты рассердился, что он не вписал эти 700 рублей. Ведь они у него написаны транспортом, а другую страницу ты не посмотрел.
– Папенька, он мерзавец и вор, я знаю. И что сделал, то сделал. А ежели вы не хотите, я ничего не буду говорить ему.
– Нет, моя душа (граф был смущен тоже. Он чувствовал, что он был дурным распорядителем имения своей жены и виноват был перед своими детьми но не знал, как поправить это) – Нет, я прошу тебя заняться делами, я стар, я…
– Нет, папенька, вы простите меня, ежели я сделал вам неприятное; я меньше вашего умею.
«Чорт с ними, с этими мужиками и деньгами, и транспортами по странице, думал он. Еще от угла на шесть кушей я понимал когда то, но по странице транспорт – ничего не понимаю», сказал он сам себе и с тех пор более не вступался в дела. Только однажды графиня позвала к себе сына, сообщила ему о том, что у нее есть вексель Анны Михайловны на две тысячи и спросила у Николая, как он думает поступить с ним.
– А вот как, – отвечал Николай. – Вы мне сказали, что это от меня зависит; я не люблю Анну Михайловну и не люблю Бориса, но они были дружны с нами и бедны. Так вот как! – и он разорвал вексель, и этим поступком слезами радости заставил рыдать старую графиню. После этого молодой Ростов, уже не вступаясь более ни в какие дела, с страстным увлечением занялся еще новыми для него делами псовой охоты, которая в больших размерах была заведена у старого графа.

Уже были зазимки, утренние морозы заковывали смоченную осенними дождями землю, уже зелень уклочилась и ярко зелено отделялась от полос буреющего, выбитого скотом, озимого и светло желтого ярового жнивья с красными полосами гречихи. Вершины и леса, в конце августа еще бывшие зелеными островами между черными полями озимей и жнивами, стали золотистыми и ярко красными островами посреди ярко зеленых озимей. Русак уже до половины затерся (перелинял), лисьи выводки начинали разбредаться, и молодые волки были больше собаки. Было лучшее охотничье время. Собаки горячего, молодого охотника Ростова уже не только вошли в охотничье тело, но и подбились так, что в общем совете охотников решено было три дня дать отдохнуть собакам и 16 сентября итти в отъезд, начиная с дубравы, где был нетронутый волчий выводок.
В таком положении были дела 14 го сентября.
Весь этот день охота была дома; было морозно и колко, но с вечера стало замолаживать и оттеплело. 15 сентября, когда молодой Ростов утром в халате выглянул в окно, он увидал такое утро, лучше которого ничего не могло быть для охоты: как будто небо таяло и без ветра спускалось на землю. Единственное движенье, которое было в воздухе, было тихое движенье сверху вниз спускающихся микроскопических капель мги или тумана. На оголившихся ветвях сада висели прозрачные капли и падали на только что свалившиеся листья. Земля на огороде, как мак, глянцевито мокро чернела, и в недалеком расстоянии сливалась с тусклым и влажным покровом тумана. Николай вышел на мокрое с натасканной грязью крыльцо: пахло вянущим лесом и собаками. Чернопегая, широкозадая сука Милка с большими черными на выкате глазами, увидав хозяина, встала, потянулась назад и легла по русачьи, потом неожиданно вскочила и лизнула его прямо в нос и усы. Другая борзая собака, увидав хозяина с цветной дорожки, выгибая спину, стремительно бросилась к крыльцу и подняв правило (хвост), стала тереться о ноги Николая.
– О гой! – послышался в это время тот неподражаемый охотничий подклик, который соединяет в себе и самый глубокий бас, и самый тонкий тенор; и из за угла вышел доезжачий и ловчий Данило, по украински в скобку обстриженный, седой, морщинистый охотник с гнутым арапником в руке и с тем выражением самостоятельности и презрения ко всему в мире, которое бывает только у охотников. Он снял свою черкесскую шапку перед барином, и презрительно посмотрел на него. Презрение это не было оскорбительно для барина: Николай знал, что этот всё презирающий и превыше всего стоящий Данило всё таки был его человек и охотник.

Фазовая манипуляция

При фазовой манипуляции (фазовом телеграфировании) используется колебание одной частоты, но границы телеграфных посылок отмечаются изменением его фазы на 180º (рисунок 3.8, а).

Рисунок 3.8 Эпюры напряжений (а) и схема формирователя ФМн сигналов (б).

Наиболее просто получить колебания, манипулированные по фазе, с помощью соответствующего количества фазовращающих цепей и управляющего коммутатора. На рис. 3.8, б) показана схема простейшего фазового манипулятора. В роли фазовращателя здесь выступает колебательный контур двухтактного ГВВ, а в коммутаторе используются диоды V1 и V2, работающие в ключевом режиме. Посылка, соответствующая нажатию, имеет положительную полярность и преодолевает напряжение запирания Есм диода V1 . На выход проходят колебания с верхнего плеча ГВВ. В момент паузы приходит посылка противоположной полярности, открывающая диод V2, и на выход манипулятора поступают колебания с нижнего плеча, фаза которых сдвинута на 180º.

Общие вопросы формирования радиосигналов в передатчиках цифровой связи

Важнейшей характеристикой цифрового сигнала является скорость передачи В, определяемая в битах в секунду (бит/с) числом посылок (нулей или единиц) в секунду.

При низких скоростях передачи: телеметрии, кодовых команд и других команд со скоростью В<2…3 тыс. бит/с цифровой сигнал (ЦС) может быть передан по телефонному радиоканалу путём манипуляции цифровым сигналом набора тональных несущих. При этом на входе передатчика ВЧ или ОВЧ радиосвязи устанавливается специальная приставка для уплотнения телефонного канала цифровым потоком.

Мощность передатчиков цифровых радиорелейных линий связи зависит от протяжённости трассы, рабочего диапазона частот, числа передаваемых каналов и вида модуляции. Она лежит в пределах от 0,1 Вт до единиц ватт, в отдельных случаях достигая 10 Вт. Мощность наземных РПДУ космической радиосвязи составляет единицы и десятки киловатт, мощность ретрансляционных станций на спутниках и космических станциях- десятки и сотни ватт и даже единицы киловатт. Для получения мощностей на уровне долей ватта и единиц ватт, в СВЧ диапазоне используют генераторы на диодах Ганна, ЛПД, СВЧ транзисторные усилители. Для усиления СВЧ сигналов до уровня мощности в десятки и сотни ватт применяют ЛБВ, более 1 кВт – ЛБВ и пролётные клистроны.

Ширина полосы радиосигнала зависит от скорости передачи информации и вида манипуляции. При цифровой передаче аналогового сигнала S(t) его подвергают дискретизации, заменяя множеством отсчётов, следующих через определённые интервалы Т:

V(t)=S(t) σ(t-кT) для t≥0, (3.5)

где к – последовательность целых чисел: к=0,1,2,3,…;

σ(t-кT) – дельта функция, равная единице в моменты t=КТ и нулю в остальное время.

Частота дискретизации fТ=1/Т выбирается в соответствии с теоремой Котельникова: fТ≥2 Fmax , где Fmax – максимальная частота спектра непрерывного сигнала S(t).

Далее дискретный сигнал V(t) (3.5) кодируется, для чего используются различные методы импульсно-кодовой модуляции (ИКМ). Каждому отсчёту V(кT) ставится в соответствие n – разрядное двоичное число. Число разрядов n определяется требованиями к точности воспроизведения в приёмнике исходного сообщения, зависит от выбранного кода и особенности построения кодирующих и декодирующих устройств (кодеков). При передаче одного стандартного ТФ (телефонного) канала полосой 300-3400 Гц частота дискретизации fТ=8 кГц, а ИКМ сигнал представляется восьмиразрядным двоичным кодом (n=8). Скорость передачи одного цифрового ТФ канала В=nfТ =64000 бит/с, или 64 кбит/с.

Системы цифровой связи широко используют для передачи многоканальных ТФ сообщений. Существует общепринятая иерархия многоканальных систем.

Первичную группу образуют 32 (30) ТЛФ канала. В скобках: обычно два ТЛФ канала занимает передача служебной информации. Скорость передачи В=32·64=2048 кбит/с =2.048 Мбит/с. В полосе, занимаемой 32 ТЛФ каналами, можно передавать шесть каналов высококачественного цифрового радиовещания.

Группы высшего уровня составляют:

128 (120) ТЛФ каналов, В=8,448 Мбит/с,

512(480) ТЛФ каналов, В=34,368 Мбит/с,

2048(1920) ТЛФ каналов, В=139,264 Мбит/с.

Достигнуты скорости передачи 400 Мбит/с, что эквивалентно передаче 5760 ТЛФ каналов.

Скорость передачи определяет полосу частот модулирующего ИКМ сигнала, а следовательно, и полосу радиоканала. Цифровой информационный сигнал (ЦИС) представляет случайный процесс. Его энергетический спектр состоит из непрерывной части, приближённо отображаемой функцией спектральной плотности G(F)=G(O) sin²(πF/B)², внутри которой размещены отдельные дискретные составляющие, обусловленные передачей сигналов синхронизации, контроля и т.п. Минимальная частота, которой может быть ограничен спектр группового модулирующего сигнала, связана со скоростью передачи ЦИС соотношением:

Fm(МГц)≥В/2 (Мбит/с). (3.6)

Поступающий на передатчик ЦИС VЦИС представляет собой последовательность логических единиц (коротких импульсов) и логических нулей, следующих с тактовой частотой fТ=1/T. Для манипуляции в передатчике формируется управляющий (модулирующий) сигнал Vу по следующему закону: приходу “1” ЦИС соответствует управляющий импульс с амплитудой +1, длительностью Т, который далее будем условно обозначать как “1”, поступлению “0” ЦИС соответствует управляющий импульс с амплитудой –1 длительностью Т, который далее будем обозначать как “0”. Сигнал Vу относится к классу сигналов, которые не обращаются в нуль (БВН – без возвращения к нулю).

Простейшим методом манипуляции является, как мы уже говорили, амплитудная манипуляция (АМн), при которой “1” напряжения Vу соответствует излучению ВЧ колебаний, а “0” Vу – пауза. Радиосигнал АМн описывается законом:

uАМн=U(1+ Vу(t)) sin ω0t. (3.7)

Спектр АМн сигнал состоит из несущей частоты Usin ω0t и двух боковых полос, каждая шириной Fm. При скорости передачи В минимальная полоса АМн сигнала составляет ПАМн≥В. Так, при В=34 Мбит/с

ПАМн≥34 МГц, при В=140 Мбит/с ПАМн≥140 МГц и т.д.

В чистом виде АМн при цифровой радиосвязи применяется редко из-за низкой помехоустойчивости.

Основным видом манипуляции в цифровых системах являются фазовая манипуляция (ФМн) и квадратурная амплитудная манипуляция (КАМ). При простой ФМн “1” и “0” сигнала Vу соответствуют строго определённые значения фазы ВЧ колебаний φ, например φ=π при Vу= “0” и φ=0 при Vу= “1” (см. рис. 3.8, а).



Неудобство ФМ состоит в том, что в приёмнике необходимо различать абсолютные значения фазы принимаемых сигналов. Приёмник как бы должен заранее “знать”, какое значение φ соответствует определённому значению VЦИС. Для этого требуется вводить в ЦИС специальные вставки для передачи опорного сигнала и усложнять обработку сигнала в приёмнике.

При цифровой фазовой манипуляции фаза переносчика S(t ) отличается от текущей фазы немодулированного несущего колебания на конечное число значений в соответствии с символами передаваемого сообщения С(t ) :

Существует два типа фазовой манипуляции – двоичная (бинарная) фазовая манипуляция (ДФМП) и квадратурная фазовая манипуляция(КФМП).

4.2.1 Двоичная фазовая манипуляция. Различают абсолютную (двухуровневую) (АФМП) и относительную (дифференциальную) (ОФМП) фазовые манипуляции. При АФМП (рисунок 4.7,в) фаза несущей изменяется при каждом фронте передаваемых сигналов. Получающийся сигнал имеет следующий вид (для одного периода передачи бита):

Двоичная 1

Двоичный 0

(4.19)

Сигнальное созвездие ДФМП сигнала, соответствующее выражению (4.19) приведено на рисунке (4.8).

Рисунок. 4.7 – Абсолютная и относительная фазовая манипуляция

Рисунок. 4.8 – Сигнальное созвездие ДФМП сигнала

Следует отметить, что ДФМП является одной из самых простых форм цифровой манипуляции и широко используется в телеметрии при формировании широкополосных сигналов. Основной недостаток ДФМП заключается в том, что при манипуляции прямоугольным сигналом получают очень резкие переходы, и в результате, сигнал занимает очень широкий спектр. Большинство ДФМП-модуляторов применяет определенные типы фильтрации, которые делают переходы фазы менее резкими, тем самым сужается спектр сигнала. Операция фильтрации практически всегда выполняется над модулирующим сигналом до манипуляции (рисунок 4.9).

Рисунок 4.9 – Функциональная схема формирования ДФМП радиосигнала

Такой фильтр, как правило, называют фильтром основной частоты. Онако при уменьшении полосы частот, занимаемой радиосигналом, путем фильтрации приходится учитывать возникающую при этом проблему межсимвольной интерференции.

Здесь после модулятора добавлены усилитель мощности радиосигнала и узкополосный высокочастотный фильтр. Основное назначение фильтра состоит в том, чтобы ослабить излучение передатчика на частотах, кратных основной частоте несущего колебания; опасность таких излучений обусловлена нелинейными эффектами в усилителе мощности, которые, как правило, имеют место и усиливаются при попытке увеличения эффективности этого усилителя. Часто данный фильтр используется одновременно и для приемника – он подавляет сильные сторонние сигналы вне полосы частот полезных радиосигналов до преобразования частоты «вниз».

4.2.2 Квадратурная фазовая манипуляция (КФМП). При ДФМП один канальный символ переносит один передаваемый бит. Однако, как уже отмечалось выше, один канальный символ может переносить большее число информационных бит. Например, пара следующих друг за другом битов может принимать четыре значения: {0, 0}{0, 1}{1, 0}{1, 1}.

Если для передачи каждой пары использовать один канальный символ, то потребуется четыре канальных символа, скажем {s 1 (t ), s 2 (t ), s 3 (t ), s 4 (t )}, так что М =4. При этом скорость передачи символов в канале связи оказывается в два раза ниже, чем скорость поступления информационных битов на вход модулятора и, следовательно, каждый канальный символ теперь может занимать временной интервал длительностью T с = 2Т б. При М-ичной фазовой манипуляции радиосигнал может быть записан в следующем виде:

Здесь (t) может принимать значения из множества:

где – произвольная начальная фаза.

В дальнейшем вместо четырех канальных символов или четырех радиосигналов будем говорить о единственном радиосигнале, комплексная амплитуда которого может принимать четыре указанных значения, представленных на рисунке 4.10 в виде сигнального созвездия.

Каждая группа из двух битов представляется соответствующим фазовым углом, все фазовые углы отстоят друг от друга на 90°. Можно отметить, что каждая сигнальная точка отстоит от действительной или мнимой оси на =45°.

Сформировать сигналы КФМП-4 можно с помощью устройства, функциональная схема которого приведена на рисунке 4.11, а временные диаграммы его работы – на рисунке 4.12.

Рисунок 4.10 – Сигнальное созвездие КФМП-4 радиосигнала

Последовательность передаваемых битов 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0,… разбивается на две подпоследовательности нечетных 1, 1, 0, 1, 0, 1, … и четных 0, 1, 0, 0, 1, 0,… битов с помощью демультиплексора DD1 .

Биты с одинаковыми номерами в этих подпоследовательностях образуют пары, которые удобно рассматривать как комплексные биты; действительная часть комплексного бита есть бит нечетной подпоследовательности I , а мнимая часть Q – бит четной подпоследовательности. При этом биты нечетной последовательности в синфазной ветви задерживаются на время T б устройством DD2 . Далее длительность каждой последовательности уменьшается до значения 2T б расширителями DD3 и DD4.

Полученные таким способом комплексные биты преобразуются в комплексную последовательность прямоугольных электрических импульсов длительностью 2Т б со значениями +1 или -1 их действительной и мнимой частей, которые используются для модуляции несущего колебания exp{
}. В результате получается КФМП-4 радиосигнал.

Рисунок. 4.11 – Функциональная схема устройства формирования КФМП-4

радиосигнала

Рисунок 4.12 – Временные диаграммы при формировании КФМП-4

радиосигнала

Диаграмма фазовых переходов для КФМП-4 представлена на рисунке 4.13.

Рисунок 4.13 – Диаграмма фазовых переходов для КФМП-4 радиосигнала

На этой диаграмме сигнальная точка с координатами (+1, +1) расположена на линии, образующей угол +45° с осями координат, и соответствует передаче символов +1 и +1 в квадратурных каналах модулятора. Если следующей парой символов будет (- 1, +1), которой соответствует угол +135°, то из точки (+1, +1) к точке (- 1,+1) можно провести стрелку, характеризующую переход фазы радиосигнала от значения +45 к значению +135°. Полезность этой диаграммы можно проиллюстрировать на следующем примере. Из рисунка 4.13 следует, что четыре фазовые траектории проходят через начало координат. Например, переход из точки сигнального созвездия (+1, +1) в точку (-1, -1) означает изменение мгновенной фазы высокочастотного несущего колебания на 180°. Поскольку на выходе модулятора обычно устанавливают узкополосный высокочастотный фильтр (см. рисунок 4.9), то такое изменение фазы сигнала сопровождается существенным изменением значений огибающей сигнала на выходе этого фильтра и, следовательно, во всей линии передачи. Непостоянство значений огибающей радиосигнала по многим причинам является нежелательным в цифровых системах передачи. От этого недостатка свободна КФМП со смещением.

4.2.3 Квадратурная фазовая манипуляция со смещением. Этот способ формирования сигнала практически полностью аналогичен квадратурному способу формирования КФМП-4 сигнала, однако с той лишь разницей, что подпоследовательность в квадратурной ветви сдвигается во времени (задерживается) на время Т б или, что эквивалентно, на половину длительности канального символа. Для реализации этого способа необходимо удалить элемент задержки на время Т б DD2 в синфазной ветви. При таком изменении квадратурная подпоследовательность канальных символов окажется задержанной на время Т с относительно синфазной подпоследовательности (рисунок 4.14).

Рисунок 4.14 – Временные диаграммы при формировании КФМП-4

радиосигнала со смещением

В результате на диаграмме фазовых переходов (рисунок 4.15) для данного метода манипуляции отсутствуют траектории, проходящие через начало координат. Это означает, что мгновенная фаза радиосигнала не имеет скачков на +180° и, следовательно, огибающая этого сигнала не имеет глубоких провалов, как это имело место при квадратурной КФМП-4 (рисунок 4.11).

Рисунок 4.15 – Диаграмма фазовых переходов КФМП-4 радиосигнала

со смещением

4.2.4 КФМП-8 сигналы. Поток информационных битов, поступающих на вход модулятора, можно разбивать на группы по 3, 4 бита и т.д., формируя затем КФМП-8, КФМП-16 сигналы и т.д. На рисунке 4.16 изображено сигнальное созвездие для КФМП-8 радиосигнала.

Рисунок 4.16 – Сигнальное созвездие для КФМП-8 радиосигнала

Для этого способа модуляции необходимо иметь восемь канальных символов, начальные фазы которых отличаются от мгновенной фазы немодулированного несущего колебания на угол, кратный 45°. Если амплитуды всех канальных символов одинаковы, то сигнальные точки располагаются на окружности. Возможные значения вещественных и мнимых частей комплексных амплитуд этих символов при этом пропорциональны коэффициентам I и Q, принимающим значения из множества

. (4.23)

Не совсем простым является вопрос об установлении соответствий между точками сигнального созвездия и тройками информационных битов. Этот процесс обычно называют сигнальным кодированием . В таблице 4.1 приведён пример такого соответствия, который является возможным, но не наилучшим, поскольку для установления наилучшего соответствия необходимо сначала определить способ демодуляции такого сигнала в присутствии помехи, а затем вычислить вероятность ошибки при приеме либо одного канального символа, либо одного информационного бита. Наилучшим можно назвать тот способ сигнального кодирования, при котором вероятность ошибки оказывается наименьшей.

Таблица 4.1 – Соответствие между точками сигнального созвездия и тройками _ информационных битов

Значения начальной фазы при КФМП-8

Значения коэффициентов

Группы из трех информационных символов (битов)

I

-

-

-

-

На рисунке 4.17 приведена функциональная схема устройства формирования КФМП-8 радиосигнала.

Работа формирователя сводится к следующему: демультиплексор DD 1 распределяет входной поток информационных битов длительностью Т б на три подпоследовательности, элементы задержек DD2 и DD3 выравнивают во времени эти подпоследовательности, расширители DD 4- DD 6 увеличивают длительность каждого символа до значения длительности канального символа Т с = 3Т б. Сигнальное кодирование в этом случае сводится к вычислению значений синфазной и квадратурной компонент комплексной огибающей КФМП-8 радиосигнала. Эта операция выполняется сигнальным кодером, в состав которого входит транскодер DD 7 , имеющий два цифровых выхода с 3- битовыми словами, которые в цифро-аналоговых преобразователях (ЦАП) DD 1 и DD 2 преобразуются в аналоговые величины с требуемыми значениями (4.23).

Рисунок 4.17 – Функциональная схема устройства формирования

КФМП-8 радиосигнала

4.2. 5 π/4 - квадратурная относительная фазовая манипуляция. При КФМП-4 и КФМП-4 со смещением максимальное изменение мгновенной фазы радиосигнала равно 180° и 90° соответственно. В настоящее время достаточно широко используетсяπ/4-квадратурная относительная фазовая манипуляция , при которой максимальный скачок фазы равен 135°, а все возможные значения мгновенной фазы радиосигнала кратны значению π/4. Ни одна траектория фазовых переходов для этого способа модуляции не проходит через начало координат. В результате огибающая радиосигнала имеет меньшие провалы по сравнению с квадратурной фазовой манипуляцией. Функциональная схема устройства формирования такого радиосигнала представлена на рисунке 4.18.

Рисунок 4.18 – Функциональная схема устройства формирования

радиосигнала с π/4-квадратурной относительной

фазовой манипуляции

Последовательность информационных битов {n i ,i= 1,2,…} разбивается на две подпоследовательности: нечётных {n 2 i -1 ,i= 1,2,…} и чётных {n 2 i ,i= 1, 2,...} битов, из которых биты выбираются парами. Каждая новая пара таких битов определяетприращение фазы несущего колебания на величину
в соответствии с таблицей 4.2

Таблица 4.2–Приращение фазы несущего колебания от значений битов

Значения информационных битов

Приращение фазы несущего колебания (
)

n 2 i -1

n 2 i

Если ввести обозначение для отклонения фазы радиосигнала от фазы немодулированного несущего колебания на предыдущем интервале, то новые значения отклонения фазы этого сигнала и комплексной амплитуды на текущем интервале определятся равенствами:

В результате значения вещественной и мнимой частей комплексной огибающей этого сигнала на текущем интервале времени длительностью 2T б оказываются равными:

(4.24)

(4.25)

Из равенств (4.24), (4.25) следует, что возможные значения фазы на интервале с номером i зависят от значения фазы радиосигнала на интервале с номером (i - 1). В соответствии с таблицей 4.2 новые значения кратны π/2.

На рисунке 4.19, а изображено созвездие возможных сигнальных точек для интервала с номером i , если
; аналогичное созвездие для случая, когда, представлено на рисунке 4.19, б. Общее созвездие сигнальных точек для данного способа модуляции изображено на рисунке 4.19, в и получается путем наложения рисунок 4.19, а, б друг на друга. На рисунке 4.19, в не указаны стрелками направления переходов, поскольку для каждого перехода возможны направления в обе стороны.

Рисунок 4.19 – Сигнальные созвездия радиосигнала с π/4-квадратурной

относительной манипуляцией

Важно также подчеркнуть, что при данном способе модуляции каждая новая пара информационных битов определяет не полную фазу несущего колебания, а лишь приращение этой фазы для интервала с номером i относительно полной фазы комплексной огибающей на интервале с номером (i - 1). Такие методы модуляции называютсяотносительными .

4.2. 6 Спектр сигнала с ФМП. Обозначив модулирующий сигнал черезС(t) , запишем модулированный сигнал в следующем виде:

Такой сигнал изменяет во время модуляции свою начальную фазу от -  /2 до+  /2 и обратно при изменении модулирующего сигналаC(t) от0 до1 и обратно.

Величину

, (4.27)

характеризующую максимальное отклонение фазы от среднего значения, называют индексом фазовой манипуляции. После тригонометрических преобразований выражение (4.26) можно записать в следующем виде:

Для нахождения спектра ФМП-сигнала достаточно найти спектры функции cos( C(t)) иsin( C(t)) . Этот метод пригоден для любых случаев. В данном случае, т.е. для прямоугольных модулирующих импульсов, можно воспользоваться для расчета более простым наглядным методом.

Рисунок 4.7, б-г показывает, что сигнал с манипуляцией на 180 можно рассматривать как сумму АМП-сигнала с вдвое большей амплитудой немодулированного колебания, фаза которого противоположна фазе несущей АМП-сигнала. Эту закономерность можно обобщить на случай любой величины фазового скачка( <> 180 ) . Следовательно, ФМП на угол можно рассматривать как сумму АМП-сигнала и немодулированной несущей. Отсюда можно сделать вывод, что спектр сигнала, манипулированного по фазе, совпадает по форме со спектром АМП-сигнала (за исключением несущей).

Если воспользоваться любой из двух рассмотренных выше методик, выражения для спектра ФМП имеет вид

Из выражения (4.29) видно, что амплитуды всех спектральных составляющих зависят от величины фазового скачка  и скважности импульсной последовательности.

Для ФМП на  = 180 получаются более простые выражения:


. (4.30)

Примеры спектров, рассчитанных по выражениям (4.29) и (4.30), приведены на рисунке 4.20.

Рисунок 4.20 – Спектры ФМП-сигналов

Как видно из приведенных спектров, необходимая полоса частот в два раза шире, чем для видеоимпульсов, т.е.

ω=2/ илиF=2/, (4.31)

а при ФМП на  = 180и Q= 2 несущая в спектре отсутствует.

Как мы убедились при передаче дискретных сообщений используется не только двухпозиционная ФМП. Все шире применяются методы квадратурной четырехпозиционной и восьмипозиционной ФМП. Величины скачка фазы сигнала в этих случаях могут принять соответственно 4 и 8 значений. Для таких случаев также применимы полученные выше результаты. Спектр боковых полос, сохраняя одну и ту же форму, при изменении величины скачка будет изменять свою амплитуду.

Для более сложных случаев, когда чередуются скачки фазы разной величины, приведенные формулы несправедливы. Спектр может изменяться значительно.

Двоичная фазовая манипуляция.

В цифровых системах мобильной связи чаше всего используется двоичная или М-ичная фазовая манипуляция. Простейшая из них ВРБК

(Bipolar Phase Shift Keying) двоичная фазовая манипуляция, реализуемая при М=2, когда модулированный сигнал принимает всего два значения xi(t) или X 2 (t)

Выражения (10.32), описывающие оба состояния можно представить в виде

где u m (t) - случайный двоичный сигнал с уровнями 1 или -1 в основной полосе с битовой скоростью fb = 1/Ть, a (p(t) принимает значения 0 или к.

Выражения (10.33) можно трактовать как результат перемножения b(t) с гармоническим сигналом, что эквивалентно обычной амплитудной модуляции с подавленной несущей (BPSK АМ-ПН).

Очевидно, что детектирование BPSK возможно лишь с применением когерентного фазового детектора, представляющего собой перемножитель напряжения входного сигнала с напряжением от опорного генератора, обладающего частотой и фазой, равной частоте и фаза входного воздействия, соответственно.

Фазовый портрет несущей при двоичной фазовой манипуляции имеет вид (рис. 10.24)

Рис. 10.24


Рис. 10.25

Двоичная фазовая манипуляция относится к антиподной модуляции, когда две временные зависимости совпадают друг с другом при условии, что закон присвоения фазы (10.33) противоположен.

Формирование ВРЭК сигнала, применяя в качестве модулирующего воздействия последовательность прямоугольных импульсов БВН, приводит к скачкообразному изменению фазы на ± я при изменении состояния цифровой последовательности 0*->1 при бесконечно широкой полосе цифрового тракта (рис. 10.25). Включаемые на входе модулятора ФНЧ Найквиста или Гаусса уменьшают ширину полосы основного тракта (ВВ), как и конечность ширины полосы радиотракта передатчика, что приводит к затягиванию переходных процессов. Их влияние вызывает не только задержку момента переключения фазы на выходе модулятора, но и изменение амплитуды огибающей, вследствие действия механизма амплитудно-фазовой конверсии (рис. 10.26).


Рис. 10.26

В момент времени Тъ цифровая последовательность {Ь к } на входе модулятора принимает значение логического нуля. Сигнал на выходе модулятора должен изменить мгновенно фазу, но вследствие узкополосности тракта действовавший сигнал постепенно убывает, а сигнал с новой фазой в момент г = Ть начнет медленно нарастать. Поскольку их фазы противоположны, а частоты одинаковы, то они вычитаются, и в некоторый момент времени I - Ть+т 3 сравняются, огибающая результирующего процесса (жирная штриховая линия) достигнет нуля и начнет постепенно нарастать. Таким образом, в процессе формирования ВР8К сигнала, как и ОРБК, изменение амплитуды на выходе модулятора достигает 100%, что резко уменьшает помехоустойчивость сигнала.

Для когерентного детектирования принятого сигнала необходимо обладать на приемной стороне точно известным значением начальной фазы, что не всегда возможно. Одновременно, в процессе передачи фаза сигнала может случайным образом принимать противоположные значения под воздействием помех, что приводит к ошибке при приеме на интервале времени до очередного сбоя фазы.

Конфигурация когерентного демодулятора сигнала двоичной фазовой манипуляции (ВРБК) приведена на рис. 10.27

Принятый сигнал г$) отличается от сигнала х(1 ), сформированного в балансном модуляторе, что обусловлено действием помех в радиоканале и радиотракте. При когерентной демодуляции п(1 ) смешивается с сигналом опорного генератора, обладающего такой же частотой и фазой. Схема, которая обеспечивает такие параметры сигналу опорного генератора, называется схемой восстановления несущей (СВН).

На входе демодулятора действует модулированный сигнал

где II - амплитуда принимаемого сигнала, а ср,(7) - фаза передаваемого сигнала, принимающая значения 0° или 180°. Перемножая напряжение опорного генератора (совсоо?) в простейшем случае с единичной амплитудой (гетеродина) и нулевой фазой, а так же принятого сигнала, получаем

несущего колебания и выделяет постоянную составляющую

значение которой, определяется фазой принятого сигнала (точнее разностью фаз принятого сигнала и опорного генератора). При #>, (7) = 0°, б, (1) = +1, что соответствует двоичной единице, а при (7) =180°, б,- (7) = - 1 (двоичный нуль). Так демодулятор восстанавливает исходную двоичную последовательность без возвращения к нулю. Решающее устройство следит за величиной постоянной составляющей принятого сигнала, сравнивая его с пороговым значением двоичного АЦП, точно в середине (рис. 10.3) длительности посылки, обеспечивая тем самым наилучшее значение отношения сигнал/шум и, соответственно, минимальное значение вероятности ошибки.



Основными требованиями к выбору типа модуляции является миниминизация ширины спектра сигнала и выбор последовательности элементарных сигналов различных информационных последовательностей с максимальным различием друг от друга (для выбранного формата меры) с возможностью простого детектирования. На рис. 10.28 приведены нормированные спектральные плотности мощности сигналов для различных типов модуляции. Характеристики приведены только для верхней боковой полосы при модуляции нефильтрованным сигналом.

Ширина главного лепестка модулированного М8К сигнала составляет ±3/4 7)„ а для ВР8К сигнала составляет ± Ть. Однако ширина полосы М8К сигнала даже при оптимальном значении индекса модуляции ?3 =1/2 оказывается большей, чем у сигналов с ОРБК модуляцией (рис. 10.28). Спектр нефильтрованого МБК сигнала на 1/3 уже спектра ВРБК и спадает быстрее (пропорционально f " 4), сигнала с двоичной фазовой манипуляцией f" 2 .

Поведение спектра вне основного лепестка очень важно при использовании нелинейного режима работы усилителя мощности (УМ) передатчика, близкого к режиму насыщения. Так спектр сигнала с GMSK модуляцией сосредоточен вблизи несущей с интенсивным спадом мощности при расстройке. Это позволяет при формировании радиосигнала с GMSK модуляцией на выходе УМ передатчика не включать фильтр радиочастотный фильтр.

Для BPSK сигнала величина первого следующего максимума спектральной плотности меньше значения, соответствующего частоте несущего колебания. Хорошо известное эмпирическое правило для указанного вида манипуляции: 99% передаваемой мощности находится в полосе равной скорости передачи данных. Применение фильтрации цифровой последовательности может значительно снизить полосу передаваемого сигнала. Тем не менее, уровень несущей следует выбирать такой, чтобы избежать межсимвольной интерференции и возникновения обогащения спектра. Теоретически спектральная эффективность BPSK - модуляции составляет один (бит/с)/Гц, на практике значение 1,4 (бит/с)/Гц может быть достигнуто лишь применением предварительной фильтрации Найквиста.

Когерентное детектирование сигналов с фазовой манипуляцией требует формирования опорного сигнала, для чего часто используется схемы восстановления несущей на основе удвоения или учетверения принимаемого сигнал. Это приводит к фазовой неоднозначности восстановленной несущей. В сигналах с BPSK модуляцией отсутствие сведений о начальной фазе сигнала приводит к возникновению «обратной работы» демодулятора, когда демодулированный сигнал является инверсным переданному, что приводит к появлению 100% ошибок.

Модуляция — процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.
В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.
В качестве несущей могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.
Существуют следующие типы манипуляций:
Частотная манипуляция
Фазовая манипуляция
Амплитудная манипуляция
Квадратурная амплитудная манипуляция
Частотная манипуляция (ЧТ), используется для передачи по радиоканалу телеграфных сигналов, которые представляют собой последовательность прямоугольных элементарных токовых (положительных) и бестоковых (отрицательных) посылок. В отличие от радиосигналов амплитудной манипуляции, когда передатчик излучает электромагнитные колебания только при токовых посылках при ЧТ излучение радиосигнала происходит непрерывно и при токовой и при бестоковой посылках. Поэтому такой способ манипуляции иногда называю работой с активной паузой.


Рис.1 Цифровая модуляция (манипуляция)
При переходе от токовой посылки к бестоковой и наоборот амплитуд высокочастотного колебания остается постоянной, а изменяется лишь его частота на некоторую постоянную величину fc, которая называется частотным сдвигом.
В настоящее время наиболее широко используются системы частотного телеграфирования с частотными сдвигами 125 (ЧТ-125), 250 (ЧТ-250) 500 (ЧТ-500), 1000 (ЧТ-1000), 1500 (ЧТ-1500) Гц. При этом девиация частоты fм возбудителя относительно номинальной (средней) частоты колебаний передатчика составляет соответственно + 62,5 Гц; + 125 Гц; + 500 Гц; +750 Гц.
Средняя частота fo называется несущей (номинально частотой. Следует заметить, что термин «несущая частота» при частотно телеграфировании вводится весьма условно, поскольку при ЧТ передачи никогда не работает на частоте fo. Целесообразность введения этот термина обусловлена лишь тем, что несущая частота численно равна средней частоте спектра частот на выходе передатчика и, следовательно, является номинальной рабочей частотой передатчика.
Спектр сигналов ЧТ зависит не только от скорости телеграфирования (от основной частоты телеграфирования), но и от величины частотно сдвига и способа формирования ЧТ сигналов. Различают два основных способа формирования ЧТ сигналов: с разрывом фазы высокочастотного колебания и без разрыва ее.
В первом случае сигнал ЧТ формируется путем поочередного подключения к усилительному тракту передатчика двух независимых источник высокочастотных колебаний. Один из источников генерирует колебания некоторой частотой и подключается при бестоковых (отрицательных) посылках первичного сигнала. Второй — генерирует колебания с частотой, которая отличается от первой частоты (сдвинута относительно частоты) величину fc. Подключение этого источника производится при токовых (положительных) посылках первичного сигнала.
Поскольку оба источника высокочастотных колебаний являются независимыми, то во время переключения фаза колебаний принимает произвольное значение, т.е. происходит разрыв фазы.
При втором способе формирования сигналов используется один источник высокочастотных колебаний, который при бестоковых (отрицательных) посылках первичного сигнала генерирует колебания с частотой fа, а при токовых (положительных) — колебания с частотой fв. Поскольку используется один источник, то изменение частоты колебаний происходит непрерывно, без разрыва фазы высокочастотного колебания. Сигнал ЧТ такого вида можно рассматривать как частный случай частотно модуляции высокочастотного колебания дискретным сигналом
Используя методы частотного телеграфирования, можно осуществить передачу по радиоканалу двух различных телеграфных сообщений. Такой метод передачи называется двойным частотным телеграфированием (ДЧТ) и соответствует классу излучения F.
Амплитудная манипуляция - изменение сигнала, при котором скачкообразно меняется амплитуда несущего колебания. АМн можно рассматривать частный случай квадратурной манипуляции
Телеграфные сигналы - азбуку Морзе - чаще всего передают при помощи амплитудной манипуляции. В передатчике этот метод реализуется наиболее просто по сравнению с другими видами манипуляции. Приёмник для приёма телеграфных сигналов на слух, напротив, несколько усложняется: в нем должен присутствовать гетеродин, работающий на частоте, близкой к частоте принимаемого сигнала, чтобы на выходе приёмника можно было выделить разностную звуковую частоту. Пригодны приёмники прямого преобразования, регенеративные в режиме генерации и супергетеродинные с дополнительным «телеграфным» гетеродином.
Амплитуда высокочастотного сигнала на выходе радиопередатчика принимает только два значения: включено и выключено. Соответственно, включение или выключение («ключевание») выполняется оператором с помощью телеграфного ключа или с помощью автоматического формирователя телеграфных посылок (датчика кода Морзе, компьютера). Огибающая радиоимпульса (элементарной посылки - точки и тире) на практике, естественно, не прямоугольная (как это показано схематично на рисунке), а имеет плавные передний и задний фронты. В противном случае частотный спектр сигнала может стать недопустимо широким, а при приёме сигнала на слух ощущаются неприятные щелчки.

Фазоманипулированный сигнал имеет следующий вид:

где g (t ) определяет огибающую сигнала; является модулирующим сигналом. может принимать M дискретных значений.

Если M = 2, то фазовая манипуляция называется двоичной фазовой манипуляцией (1 бит на 1 смену фазы), если M = 4 - квадратурной фазовой манипуляцией (2 бита на 1 смену фазы), M = 8 (3 бита на 1 смену фазы) и т. д.

Таким образом, количество бит n , передаваемых одним перескоком фазы, является степенью, в которую возводится двойка при определении числа фаз, требующихся для передачи n -порядкового двоичного числа.

Фазоманипулированный сигнал s i (t ) можно рассматривать как линейную комбинацию двух ортонормированных сигналов y 1 и y 2.