Модель взаимодействия открытых систем (OSI). Базовая эталонная модель взаимодействия открытых систем

02.08.2019

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Общие положения. Эталонная модель взаимодействия открытых систем (ЭМ ВОС, модель OSI Open Systems Interconnection) была разработана Международной орга­низацией по стандартизации (МОС, OSI) и принята в виде стандарта в 1983 г. Она поддержана Международным консультативным комитетом по телефонии и телеграфии (МККТТ), ныне Международным союзом электросвязи, секция Телекоммуникаций (МСЭ-Т, ITU-T) Рекомендаци­ей Х. 200. Эта модель является основополагающей при рассмотрении любых вопросов, связанных с проектированием, строительством и эксп­луатацией систем связи. Она следует принципам АОС и имеет уровневую структуру.

Количество уровней может быть, в общем случае, произвольным. Од­нако при малом их числе дискредитируется идея упрощения понимания действия системы, а при их большом числе возникает потребность в большом количестве правил стыковки отдельных подсистем.

Стандартом № 7498 предусмотрена семиуровневая организация от­крытых систем. Каждый уровень имеет свое название и номер от У1 до У7 , изменяющийся снизу вверх (рис. 1.13).

Рис. 1.13. Семиуровневая организация от­крытых систем

Международное и российскоенаи­менование уровней и принятые сокращения приведены в табл. 1.1.

Таблица 1.1

Классификация уровней открытых систем

Номер уровня

Международное наименование уровня

Сокращение

Российское

наименование уровня

Сокращение

Прикладной

Представительный

Сеансовый

Транспортный

Канальный

Физический

При взаимодействии прикладных процессов между собой с использо­ванием открытых систем работа происходит посредством обмена спе­циальными командами в определенной последовательности, составляющими основу соответствующих уровневых протоколов.

Каждую открытую систему можно структурировать по некоторым при­знакам (рис. 1.14). С одной стороны, условно все уровни можно разбить на две группы: уровни сети связи (У1 –У4) и уровни пользователя (У5 –У7) .Первой группой уровней обеспечивается передача сообщений средства­ми электрической связи по сети. Вторая группа уровней составляет ин­формационное обеспечение передачи (приема) сообщений с точки зре­ния их содержания, формы и моментов представления.

Рис. 1.14. Структурирование открытой системы

С другой стороны, на двух верхних уровнях (У7, У6) происходят процессы подготовки сообщений к передаче (информационные про­цедуры), на двух последующих (У5, У4) - формирование процес­са передачи и "вхождение" сообщения в сеть связи (транспортные процедуры), а на трех нижних (У3, У2, У1) - выбор маршрута передачи,преобразование сообщений в электрические сигналы и обратно, контроль правильности передачи (сетевые процедуры).

Стандартизация ЭМ ВОС предусматривает три основных шага: независимость существования и развития уровней; определение функций (процедур) каждого уровня, определение порядка взаимодействия уровней внутри ОС и между ВС. Каждый из этих шагов предусматривает некоторые базовые понятия и определения.

К первому шагу относятся следующие понятия:

– система – совокупность технических, алгоритмических и программных средств, обеспечи­вающая возможность взаимодействия пользователей между собой через сеть связи;

– подсистема – часть системы, выполняющая определенные функции в общей стратегии работы всей системы;

– уровень – логическое понятие, определяющее порядок следования подсистем в системе.

Эти понятия определяют архитектуру ЭМ ВОС, утверждая основ­ной ее принцип – раздельность и независимость уровней. Это яркий пример использования принципа декомпозиции для упрощения понимания работы сложных систем.

Каждому из уровней присущи специфические функции, определяющие потребительские свойства подсистемы и положенные в основу наименования уровней. В случае необходимости предусматривается организация подуровней внутри каждого уровня. Их количество не оговорено.

Уровневая организация дает возможность независимого развития и изменения каждого слоя, модульного построения аппаратуры упрощение понимания работы отдельных подсистем. Вместе с тем она несколько увеличивает накладные расходы из-за необходимости повторения системных функций на каждом из уровней и иногда приводит к дублированию некоторых потребительских функций.

Второй шаг стандартизации включает в себя следующие понятия:

– процессы (механизмы, функции) – набор определенных логических процедур, специфичных для данной подсистемы, выполняемых ее активными элементами;

– услуга – результат логически законченных действий, который необходим надуровню для выполнения его функций. Совокупность услуг составляет сервис N-уровня для (N + 1)-уровня.

Эти понятия определяют внутренние процедуры на каждом уровне, его задачи и результат работы в общей совокупности задач ОС.

И, наконец, третий шаг стандартизации содержит следующие понятия:

– протокол – регламентированный набор команд и ответов, определя­ющий взаимодействие одноименных уровней разных ОС в штатных и нештатных ситуациях;

– интерфейс – совокупность устройств и логических процедур на стыке смежных подсистем, определяющая механическое, электрическое, фун­кциональное и логическое взаимодействие разных подсистем в одной ОС.

В противовес понятиям "подсистема" и "уровень", являющимися раз­деляющими, понятия "протокол" и "интерфейс" объединяющие, интег­рируют работу отдельных подсистем разных ОС; позволяя им осуще­ствить взаимосвязь на логическом и физическом уровнях.

Потребительские функции уровней ЭМ ВОС. Каждый уровень ЭМ ВОС выполняет свои задачи в общей стратегии работы всей системы. Любой уровень (кроме физического) пользуется выполненными функ­циями других уровней и решает свою задачу. Таким образом, потреби­тельские функции специфичны для каждого уровня, они гарантируют потребителю исполнение одного из этапов сложного процесса взаимо­действия его через сеть связи с аналогичной ОС и через нее – с удален­ным пользователем. Потребительские функции ясны и понятны пользователю и от их сущности и произошли названия уровней.

Рассмотрим вкратце эти функции, определяя для каждого уровня их суть и называя услугу, выдаваемую данным уровнем надуровню.

Физический уровень – взаимодействие ОС с физической средой, формирование и контроль сигнала, синхронизация, организация физи­ческого канала на звене и контроль за его целостностью.

Услуга уровню У2 – наличие физического канала на звене сети, воз­можность передачи информационного сигнала по нему.

Канальный уровень – форматирование блока данных (фазирова­ние), управление каналом на звене, контроль качества передачи на звене (исправление ошибок).

Услуга уровню У3 – наличие качественного канала передачи данных на звене, гарантия обеспечения требуемой точности передачи.

Сетевой уровень – выбор оптимального маршрута передачи сооб­щения, управление потоком информации, организация обходных марш­рутов.

Услуга уровню У4 – предоставление возможности организации оп­тимального маршрута, обеспечение заданного качества обслуживания пользователей, возможность управления потоками и нагрузкой.

Транспортный уровень – контроль качества обмена информацией между ОС на выбранном маршруте, контроль за соблюдением параметров соединения (обязательств перед пользователем), контроль передачи «из конца в конец».

Услуга уровню У5 – гарантия надежной передачи данных по сети от одного пользователя к другому, возможность выбора параметров соединения (верность, время доставки, приоритет и др.).

Сеансовый уровень – организация сеансов связи (начало, конец), синхронизация диалога между прикладными процессами.

Услуга уровню У6 – выбор временного отрезка для организации об­мена, контроль за началом и окончанием сеанса, Представительный уровень - определяет способ превращения ин­формации, представленной в произвольном виде, в стандартный: пер­вичное кодирование информации.

Услуга уровню У7 – возможность представления информации в про­извольном виде.

Прикладной уровень – определяет способ взаимодействия с прикладным процессом, предоставление прикладному процессу набора служб сети.

Услуга пользователю (прикладному процессу) – возможность выбора той или иной службы сети и возможность пользоваться услугами си­стемы связи.

Лекция 3

Вопросы к лекции 2.

1.На какие подсистемы делится ТфОП?

2. Какие иерархические уровни имеет ТфОП?

3. Как связаны ТМгУС с ТМнУС?

4. Для чего служит индекс АВС в корпоративных сетях?

3. С помощью каких средств реализуется установление соединœения в системах с КК?

4. Каким является соединœение в сети с КК логическим или физическим?

5. Какие функции выполняет узел STP при сигнализации по ОКС №7?

6. Какой узел сети сигнализации устанавливается при обслуживании каналом ОКС №7 соединœения ЗУС- ТМгУС?

Для упорядочения принципов взаимодействия устройств в сетях международная организация стандартизации (Organization of Standardization - ISO) предложила семиуровневую эталонную коммуникационную модель ʼʼВзаимодействия Открытых Системʼʼ (ВОС) или (Open System Interconnection, OSI). Модель OSI стала основой для разработки стандартов на взаимодействие систем. Она определяет только схему выполнения необходимых задач, но не дает конкретного описания их выполнения. Это описывается конкретными протоколами или правилами, разработанными для определœенной технологии с учетом модели OSI. Уровни OSI могут реализовываться как аппаратно, так и программно.

Существует семь базовых уровней модели OSI (рис. 4.1). Οʜᴎ начинаются с физического уровня и заканчиваются прикладным. Каждый уровень предоставляет услуги для более высокого уровня. Седьмой уровень обслуживает непосредственно пользователœей.

Рис. 4.1 Модель OSI-ВОС.

Модель OSI послужила основой для стандартизации всœей сетевой индустрии. Вместе с тем, модель OSI является хорошей методологической основой для изучения сетевых технологий. Несмотря на то что были разработаны и другие модели большинство поставщиков сетевого оборудования определяет свои продукты в терминах эталонной модели OSI.

Эталонная модель OSI сводит передачу информации в сети к семи относительно простым подзадачам. Каждая из них соответствует своему строго определœенному уровню модели OSI. Тем не менее, в реальной жизни некоторые аппаратные и программные средства отвечают сразу за несколько уровней. Два самых низких уровня модели OSI реализуются как аппаратно, так и программно. Остальные пять уровней, в основном, программные.

Эталонная модель OSI определяет назначение каждого уровня и правила взаимодействия уровней (табл.).

Уровень Ключевое слово Данные Ответственность
Прикладной Разделœение Сообщение Предоставление сетевого сервиса
Представления Формирова-ние (сжатие) Пакет Трансляция файлов. Шифрова-ние данных. Сжатие данных
Сеансовый Диалог Пакет Управление сессией. Диалоᴦ. Контроль за ошибками. Обработка транзакций.
Транспортный Надежность Сегмент. Дейтаграм-ма. Пакет Надежность передачи. Гарантированная доставка.
Сетевой Маршрутиза-ция. Коммутация. Дейтаграм-ма. Ячейка. Пакет Маршрутизация логических адресов. Ведение таблиц марш-рутизации. Неориентированная на соединœение доставка.
Канальный Кадр Пакет Доставка по физическому адресу. Синхронизация кадров. Доступ к среде передачи.
Физический Биты Биты Синхронизация битов. Электрические спецификации.

Рис. Уровни модели ВОС и их основные свойства.

Модель OSI описывает путь информации через сетевую среду от одной прикладной программы на одном компьютере до другой программы на другом компьютере. При этом пересылаемая информация проходит вниз через всœе уровни системы. Уровни на разных системах не могут общаться между собой напрямую. Это умеет только физический уровень. По мере прохождения информации вниз внутри системы она преобразуется в вид, удобный для передачи по физическим каналам связи. Для указания адресата к этой преобразованной информации добавляется заголовок с адресом. После получения адресатом этой информации, она проходит через всœе уровни наверх. По мере прохождения информация преобразуется в первоначальный вид. Каждый уровень системы должен полагаться на услуги, предоставляемые ему смежными уровнями.

Основная идея модели OSI в том, что одни и те же уровни на разных системах, не имея возможности связываться непосредственно, должны работать абсолютно одинаково. Одинаковым должен быть и сервис между соответствующими уровнями различных систем. Нарушение этого принципа может привести к тому, что информация, посланная от одной системы к другой, после всœех преобразований будет не похожа на исходную. Проходящие через уровни данные имеют определœенный формат. Сообщение, как правило, делится на заголовок и информационную часть. Конкретный формат зависит от функционального назначения уровня, на котором информация находится в данное время. К примеру, на сетевом уровне информационный блок состоит из сетевого адреса и следующими за ним данными. Данные сетевого уровня, в свою очередь, могут содержать заголовки более высоких уровней - транспортного, сеансового, уровня представления и прикладного. И, наконец, не всœе уровни нуждаются в присоединœении заголовков. Некоторые уровни просто выполняют преобразование получаемых физических данных к формату, подходящему для смежных уровней.

Эталонная модель OSI не определяет реализацию сети. Она только описывает функции каждого уровня и общую схему передачи данных в сети. Она служит основой сетевой стратегии в целом.

Протоколы и интерфейсы

Чтобы упростить проектирование, анализ и реализацию обмена сообщениями между компьютерами, эту процедуру разбивают на несколько иерархически связанных между собой подзадач.

При передаче сообщений оба участника сетевого обмена должны следовать множеству соглашений. К примеру, они должны согласовать уровни и форму электрических сигналов, способ определœения длины сообщений, договориться о методах контроля и т. п. Соглашения должны быть едиными для всœех уровней, от самого низкого уровня передачи битов до самого высокого уровня, определяющего интерпретацию информации. Такие формализованные правила, определяющие последовательность и формат сообщений на одном уровне, называются протоколами. Иерархически организованная совокупность протоколов принято называть стеком коммуникационных протоколов.

Протоколы сосœедних уровней на одном узле взаимодействуют друг с другом также в соответствии с четко определœенными правилами, описывающими формат сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор услуг, которые нижелœежащий уровень предоставляет вышелœежащему.

Модель OSI описывает только системные средства взаимодействия, не касаясь пользовательских приложений. Приложения реализуют свои собственные схемы взаимодействия, обращаясь к системным средствам.

Приложение может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машинœе, но и для получения услуг того или иного сетевого сервиса, к примеру, доступа к удаленным файлам, передачу почты или печати на общем принтере.

Предположим, что приложение обращается с запросом к прикладному уровню, к примеру к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата͵ в ĸᴏᴛᴏᴩᴏᴇ помещает служебную информацию (заголовок) и необходимые данные. Далее это сообщение направляется уровню представления. Уровень представления добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который добавляет свой заголовок и т. д. Наконец, сообщение достигает самого низкого, физического уровня, который непосредственно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие функции и передает сообщение вышелœежащему уровню. Как правило, между взаимодействующими машинами оказываются промежуточные устройства различных типов.

В модели OSI различается два базовых типа протоколов. В протоколах с установлением соединœения (Connection-Oriented Network Service, CONS) перед обменом данными отправитель и получатель должны сначала установить соединœение и, возможно, выбрать протокол, который они будут использовать. После завершения диалога они должны разорвать соединœение.

Вторая группа протоколов - протоколы без предварительного установления соединœения (Connectionless Network Service, CLNS). Такие протоколы называются также дейтаграммными протоколами. Отправитель просто передает сообщение, когда оно готово. В сетях используются как те, так и другие протоколы.

Уровни модели OSI

Понятие и виды. Классификация и особенности категории "Модель Взаимодействия Открытых Систем." 2017, 2018.

  • - Эталонная модель взаимодействия открытых систем (OSI – Open Systems Interconnection)

    Модель взаимодействия открытых систем состоит из семи уровней. Уровень Прикладной Представительный Сеансовый Транспортный Сетевой Канальный Физический 7-й уровень - прикладной - обеспечивает поддержку прикладных... .


  • - Модель взаимодействия открытых систем. Характеристика уровней.

    Эталонная модель взаимодействия открытых систем состоит из семи уровней: 1. Физический уровень – базовый уровень в иерархии протоколов модели взаимодействия открытых систем. Назначение физического уровня состоит в обеспечении механических, электрических,... .


  • - Модель взаимодействия открытых систем

    Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационных ресурсов (программ и данных) по системе кодирования и формату... .


  • - Модель взаимодействия открытых систем

    Открытая система – система, доступная для взаимодействия с другими системами в соответствии с принятыми стандартами. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. В общем случае сеть должна иметь... .


  • - Тема 9. Модель взаимодействия открытых систем OSI

    Контрольные вопросы 1. Перечислите способы соединения компьютеров и виды сетей. 2. Что представляет собой временная (простейшая) компьютерная сеть? 3. Что такое нуль-модем? 4. Назначение выделенных каналов связи. Как они реализуются физически? 5. Что называется... .


  • - Эталонная модель взаимодействия открытых систем

    Обмен информацией в телекоммуникационных сетях осуществляться по определенным, заранее оговоренным правилам (стандартам). Эти правила разрабатываются рядом международных организаций. Взаимодействие в современных телекоммуникационных сетях организуется в... .





  • Разработана эта модель была в далеком 1984 году Международной организацией по стандартизации (International Standard Organization, ISO), и в оригинале называется Open Systems Interconnection, OSI.
    Модель взаимодействия открытых систем (по факту - модель сетевого взаимодействия) является стандартом для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей.
    Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.


    • Физический уровень (Physical layer) - определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
    • Канальный уровень (Data Link layer) - отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
    • Сетевой уровень (Network layer) - обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
    • Транспортный уровень (Transport layer) - реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
    • Сессионный (или сеансовый) уровень (Session layer) - позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
    • Уровень представления (Presentation layer) - осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
    • Прикладной уровень (Application layer) - предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

    Модель OSI простым языком


    Модель OSI – это аббревиатура от английского Open System Interconnection, то есть модель взаимодействия открытых систем. Под открытыми системами можно понимать сетевое оборудование (компьютеры с сетевыми картами, коммутаторы, маршрутизаторы).
    Сетевая модель OSI представляет собой схему работы (или план действий по обмену данными) для сетевых устройств. Также OSI играет роль в создании новых сетевых протоколов, так как служит эталоном взаимодействия.
    OSI состоит из 7 блоков (уровней). Каждый блок выполняет свою уникальную роль в сетевом взаимодействии различных сетевых устройств.
    7 уровней модели OSI: 1 - Физический, 2 - Канальный, 3 - Сетевой, 4 - Транспортный, 5 - Сеансовый, 6 - Представления, 7 - Приложений.
    На каждом уровне модели есть собственный набор сетевых протоколов (стандартов передачи данных), с помощью которых устройства в сети обмениваются данными.
    Запомните, чем сложнее сетевое устройство, тем больше возможностей оно предоставляет, но и больше уровней занимает, и как следствие – медленней работает.

    Сетевые модели. Часть 1. OSI.


    Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).
    Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.
    Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.
    Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.
    Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.
    Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

    Эталонная сетевая модель OSI


    OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.
    Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.
    Перечислим их:
    7. Прикладной уровень (application layer)
    6. Представительский уровень или уровень представления (presentation layer)
    5. Сеансовый уровень (session layer)
    4. Транспортный уровень (transport layer)
    3. Сетевой уровень (network layer)
    2. Канальный уровень (data link layer)
    1. Физический уровень (physical layer)

    Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

    Прикладной уровень


    Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

    Представительский уровень


    Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).
    Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.
    Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

    Сеансовый уровень


    Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.
    Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

    Транспортный уровень


    Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
    А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
    Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
    На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
    Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

    Сетевой уровень


    Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
    Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
    На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
    Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
    Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
    Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

    Канальный уровень


    Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
    IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
    LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
    MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
    Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
    Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
    Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

    Физический уровень


    Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.
    Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

    Заключение


    Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

    После недолгих размышлений решил поместить сюда статью с сайта Сетевых заморочек . Чтобы всё лежало в одном месте.

    И снова здравствуйте дорогие друзья, сегодня мы с вами разберемся в том, что же такое сетевая модель OSI, зачем она, собственно говоря, предназначена.

    Как вы уже наверное понимаете, современные сети устроены очень и очень сложно, в них протекает множество различных процессов, выполняются сотни действий. Для того чтобы упростить процесс описания данного многообразия функций сети (а что еще более важно упростить процесс дальнейшей разработки данных функций) были предприняты попытке их структурирования. В результате структурирования все функции, выполняемые компьютерной сетью, разделяются на несколько уровней, каждый из которых отвечает только за определенный, узкоспециализированый круг задач. Здесь сетевую модель можно сравнить со структурой компании. Компания разделена на отделы. Каждый отдел выполняет свои функции, но во время работы контактирует с другими отделами.


    Разделение функций с помощью сетевой модели


    Сетевая модель OSI разработана таким образом, чтобы вышестоящие уровни сетевой модели использовали нижестоящие уровни сетевой модели, для передачи своей информации. Правила, с помощью которых общаются уровни модели, называются сетевыми протоколами. Сетевой протокол определенного уровня модели может общаться либо с протоколами своего уровня, либо с протоколами соседних уровней. Здесь опять же можно провести аналогию с работой компании. В компании всегда есть четко установленная иерархия, хотя и не такая строгая как в сетевой модели. Работники одной ступени иерархии выполняют поручения, полученные от работников более высокого уровня иерархии.


    Взаимодействие между уровнями сетевой модели OSI


    Каждое устройство, работающее в сети, можно представить в виде системы работающей на соответствующих уровнях модели OSI. Причем данное устройство может использовать в своей работе, как все уровни модели OSI, так и только некоторые нижние ее уровни. Обычно когда говорят, что устройство работает на некотором уровне модели, то подразумевают, что оно работает на данном уровне сетевой модели и на всех лежащих ниже уровнях.


    Работа не некоторых уровнях сетевой модели OSI


    Когда два различных устройства сети общаются между собой, они используют протоколы одних и тех же уровней сетевой модели, при этом в процесс взаимодействия вовлекается как протоколы уровня на котором непосредственно происходит взаимодействие, так и необходимые протоколы всех нижележащих уровней, так как они используются для передачи данных, полученных от верхних уровней.


    Общение двух систем с позиции модели OSI


    При передачи информации от верхнего уровня сетевой модели к нижнему уровню сетевой модели, к данной полезной информации добавляется некоторая служебная информация, называемая заголовком (на 2 уровне добавляется не только заголовок, но еще и концевик). Данный процесс добавления служебной информации называется инкапсуляцией. При приеме (передачи информации от нижнего уровня к верхнему) происходит отделение данной служебной информации и получение исходных данных. Такой процесс называется деинкапсуляцией. По своей сути этот процесс очень похож на процесс отправки письма по почте. Представьте, что вы хотите отправить письмо своему другу. Вы пишите письмо – это полезная информация. Отправляя ее по почте, вы упаковываете ее в конверт, надписывая на нем адрес получателя, то есть добавляете к полезной информации некоторый заголовок. По сути это и есть инкапсуляция. Получая ваше письмо, ваш друг его деинкапсулирует – то есть разрывает конверт и достает из него полезную информацию – ваше письмо.


    Демонстрация принципа инкапсуляции


    Модель OSI подразделяет все функции, выполняемые при взаимодействии систем на 7 уровней: Физический(Physical) - 1, Канальный(Data link) -2, Сетевой(network) – 3, Транспортный(transport) – 4, Сеансовый(Session) -5, Представительский(Presentation) -6 и Прикладной (Application) - 7.


    Уровни модели взаимодействия открытых систем


    Кратенько рассмотрим назначение каждого из уровней модели взаимодействия открытых систем.

    Прикладной уровень является точкой, через которую приложения общаются с сетью (точка входа в модель OSI). С помощью данного уровня модели OSI выполняется следующие задачи: управление сетью, управление занятостью системы, управление передачей файлов, идентификация пользователей по их паролям. Примерами протоколов данного уровня являются: HTTP, SMTP, RDP и д.р. Очень часто протоколы прикладного уровня выполняют одновременно функции протоколов представительского и сеансового уровней.


    Данный уровень отвечает за формат представления данных. Грубо говоря, он преобразует данные полученные от уровня приложений к формату пригодному для передачи по сети (ну и соответственно выполняет обратную операцию преобразуя информацию, полученную из сети, к формату пригодному для обработки приложениями).


    На данном уровне происходит установление, поддержание и управление сеансом связи между двумя системами. Именно данный уровень отвечает за поддержание связи между системами на весь промежуток времени в течение которого происходит их взаимодействие.


    Протоколы данного уровня сетевой модели OSI отвечают за передачу данных от одной системы другой. На данном уровне большие блоки данных разделяются на более мелкие блоки, пригодные для обработки сетевым уровнем (очень мелкие блоки данных объединяются в более крупные), данные блоки соответствующим образом маркируются для их последующего восстановления на принимающей стороне. Так же при использовании соответствующих протоколов данный уровень способен обеспечить контроль доставки пакетов сетевого уровня. Блок данных, которым оперируют данный уровень обычно называется сегментом. Примерами протоколов данного уровня являются: TCP, UDP, SPX, ATP и д.р.


    Данный уровень отвечает за маршрутизацию (определение оптимальных маршрутов от одной системы до другой) блоков данных данного уровня. Блок данных этого уровня обычно называется пакетом. Так же данный уровень отвечает за логическую адресацию систем (те самые IP адреса), на основе которой как раз и происходит маршрутизация. К протоколам данного уровня можно отнести: IP, IPX и др, к устройствам работающим на данном уровне – маршрутизаторы.


    Данный уровень отвечает за физическую адресацию устройств сети (MAC адреса), управлением доступа к среде, а также коррекцией ошибок допущенных физическим уровнем. Блок данных, используемый на канальном уровне принято называть фреймом. К данному уровню относятся следующие устройства: коммутаторы (не все), мосты и д.р. Типичной технологией использующей данный уровень является Ethernet.


    Осуществляет передачу оптических или электрических импульсов по выбранной среде передачи. К устройствам данного уровня можно отнести всевозможные повторители и концентраторы.


    Модель OSI сама по себе не является практической реализацией, она лишь предполагает некоторый набор правил по взаимодействию компонентов системы. Практическим примером реализации стека сетевых протоколов является стек протоколов TCP/IP (а так же другие менее распространенные стеки протоколов).

    Управление процессом передачи и обработки данных в сети, требует стандартизации следующих процедур:

    · выделения и освобождения ресурсов компьютеров и системы телекоммуникации;

    · установления и разъединения соединений;

    · маршрутизации, согласования, преобразования и передачи данных;

    · контроля правильности передачи;

    · исправления ошибок и др.

    Указанные задачи решаются с помощью системы протоколов и стандартов, определяющих процедуры взаимодействия элементов сети при установлении связи и передаче данных. Протокол - это набор правил и методов взаимодействия объектов вычислитель­ной сети.
    Необходимость стандартизации протоколов важна для понимания сетями друг друга при их взаимодействии.
    Протоколы для сетей - то же самое, что язык для людей. Говоря на разных язы­ках, люди могут не понимать друг друга, - также и сети, использующие разные протоколы. От эффективности протоколов, их надежности, простоты зависит то, насколько эффективна и удобна вообще работа человека в сети.
    Международной организацией по стандартизации (ISO) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (OSI), часто называемая также эталонной семиуровневой логической моделью открытых систем.
    Открытая система - система, доступная для взаимодействия с другими система­ми в соответствии с принятыми стандартами.
    Эта система протоколов базируется на разделении всех процедур взаимодействия на отдельные мелкие уровни, для каждого из которых легче создать стандартные алгоритмы их по­строения.
    Модель OSI представляет собой самые общие рекомендации для построения стан­дартов совместимых сетевых программных продуктов, она же служит базой для производителей при разработке совместимого сетевого оборудования. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью.
    В общем случае сеть должна иметь 7 функциональных уровней

    Прикладной уровень (application) - управляет запуском программ пользователя, их выполнением, вводом-выводом данных, управлением терминалами, административным управ­лением сетью. На этом уровне обеспечивается предоставление пользователям раз­личных услуг, связанных с запуском его программ. На этом уровне функционируют технологии, являющиеся как бы надстройкой над передачей данных.
    Уровень представления (presentation) - интерпретация и преобразование пере­даваемых в сети данных к виду, удобному для прикладных процессов. На практике многие функции этого уровня задействованы на прикладном уровне, поэтому про­токолы уровня представлений не получили развития и во многих сетях практи­чески не используются.
    Сеансовый уровень (session) - организация и проведение сеансов связи между прикладными процессами (инициализация и поддержание сеанса между абонен­тами сети, управление очередностью и режимами передачи данных). Многие функции этого уровня в части установле­ния соединения и поддержания упорядоченного обмена данными на практике реализуются на транспортном уровне, поэтому протоколы сеансового уровня име­ют ограниченное применение.
    Транспортный уровень (transport) - управление сегментированием данных и транспорти­ровкой данных от источника к потребителю (т.е. обмен управляющей информацией и установление между абонентами логического канала, обеспечение качества пе­редачи данных). Протоколы транспортного уровня развиты очень широко и интенсивно используются на практике. Большое внимание на этом уровне уделено контролю достоверности передаваемой информации.
    Сетевой уровень (network) - управление логическим каналом передачи данных в сети (адресация и маршрутизация данных). Каждый пользователь сети обязательно использует протоколы этого уровня и имеет свой уникальный сетевой адрес, используемый протоколами сетевого уровня. На этом уровне выполняется структуризация данных - разбивка их на пакеты и присвое­ние пакетам сетевых адресов.
    Канальный уровень (data-link) - формирование и управление физическим ка­налом передачи данных между объектами сетевого уровня (установление, поддер­жание и разъединение логических каналов), обеспечение “прозрачности” физических соединений, контроля и исправления ошибок передачи.
    Физический уровень (physical) - установление, поддержание и расторжение со­единений с физическим каналом сети. Управление выполняется на уров­не битов цифровых (импульсы, их амплитуда, форма) и аналоговых (амплитуда, частота, фаза непрерывного сигнала).

    Блоки информации, передаваемые между уровнями, имеют стандартный формат: заголовок (header), служебная информация, данные, концевик. Каждый уровень при передаче блока информации нижестоящему уровню снабжает его своим заго­ловком. Заголовок вышестоящего уровня воспринимается нижестоящим как пе­редаваемые данные.

    Средства каждого уровня отрабатывают протокол своего уровня и интерфейсы с со­седними уровнями.
    Указанные уровни управления можно по разным признакам объединять в группы:
    - уровни 1, 2 и частично 3 реализуются в большей части за счет аппаратных средств; верхние уровни с 4 по 7 и частично 3 обеспечиваются программными средствами;

    Уровни 1 и 2 ответственны за физические соединения; уровни 3-6 заняты орга­низацией передачи, передачей и преобразованием информации в понятную для абонентской аппаратуры форму; уровень 7 обеспечивает выполнение приклад­ных программ пользователя.

    4. Стек протоколов. Интерфейс. Характеристика стандартных стеков протоколов, применяемых в современных сетях ЭВМ.

    При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов, до самого высокого уровня, детализирующего, как информация должна быть интерпретирована. Такие формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколами .

    Иерархически организованная совокупность протоколов, решающих задачу взаимодействия узлов сети называется стеком коммуникационных протоколов .

    Протоколы соседних уровней, находящихся в одном узле, взаимодействуют друг с другом также в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор услуг, которые нижележащий уровень предоставляет вышележащему.

    Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, OSI.

    Все эти стеки на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

    Стек OSI

    В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, X.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы X.500, электронной почты X.400 и ряд других.

    Протоколы стека OSI отличаются сложностью и неоднозначностью спецификаций. Эти свойства стали результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи и все существующие технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

    Стек TCP/IP

    Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном количестве корпоративных сетей.

    Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей X.25 и ISDN.

    Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням, соответственно. IP обеспечивает продвижение пакета по составной сети, а TCP гарантирует надежность его доставки.

    За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

    Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей.

    Стек IPX/SPX (Novell) (Internetwork Packet Exchange (IPX и Sequenced Packet Exchange, SPX),

    Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая долгое время сохраняла мировое лидерство по числу установленных систем.

    Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека. Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell, и на его реализацию нужно получать лицензию долгое время ограничивали его поле деятельности только сетями NetWare.

    Стек NetBIOS/SMB (IBM и Microsoft)

    Этот стек широко применяется в продуктах компаний IBM и Microsoft. На его физическом и канальном уровнях используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBIOS и SMB.

    Протокол NetBIOS выполняет много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако он не обеспечивает возможность маршрутизации пакетов. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях.

    Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.


    Похожая информация.