Что делать, если CentOS не видит сетевую карту? Использование сетевых утилит traceroute, dig в CentOS.

04.03.2019
UNIX , что способствовало росту популярности протокола, так как производители включали TCP/IP в набор программного обеспечения каждого UNIX -компьютера. TCP/IP находит свое отображение в эталонной модели OSI , как это показано на рисунке 3.1 .

Вы видите, что TCP/IP располагается на третьем и четвертом уровнях модели OSI . Смысл этого состоит в том, чтобы оставить технологию работы LAN разработчикам. Целью TCP/IP является передача сообщений в локальных сетях любого типа и установка связи с помощью любого сетевого приложения.

Протокол TCP/IP функционирует за счет того, что он связан с моделью OSI на двух самых нижних уровнях - на уровне передачи данных и физическом уровне. Это позволяет TCP/IP находить общий язык практически с любой сетевой технологией и, как результат, с любой компьютерной платформой. TCP/IP включает в себя четыре абстрактных уровня, перечисленных ниже.


Рис. 3.1.

  • Сетевой интерфейс. Позволяет TCP/IP активно взаимодействовать со всеми современными сетевыми технологиями, основанными на модели OSI.
  • Межсетевой. Определяет, как IP управляет пересылкой сообщений через маршрутизаторы сетевого пространства, такого как интернет.
  • Транспортный. Определяет механизм обмена информацией между компьютерами.
  • Прикладной. Указывает сетевые приложения для выполнения заданий, такие как пересылка, электронная почта и прочие.

Благодаря своему широкому распространению протокол TCP/IP фактически стал интернет -стандартом. Компьютер , на котором реализована сетевая технология , основанная на модели OSI ( Ethernet или Token Ring ), имеет возможность устанавливать связь с другими устройствами. В "Основы организации сети" мы рассматривали уровни 1 и 2 при обсуждении LAN -технологий. Теперь мы перейдем к стеку OSI и посмотрим, каким образом компьютер устанавливает связь в интернете или в частной сети. В этом разделе рассматривается протокол TCP/IP и его конфигурации.

Что такое TCP/IP

То, что компьютеры могут общаться между собой, само по себе представляется чудом. Ведь это компьютеры от разных производителей, работающие с различными операционными системами и протоколами. При отсутствии какой-то общей основы такие устройства не смогли бы обмениваться информацией. При пересылке по сети данные должны иметь такой формат, который был бы понятен как отправляющему устройству, так и принимающему.

TCP/IP удовлетворяет этому условию за счет своего межсетевого уровня. Этот уровень напрямую совпадает с сетевым уровнем эталонной модели OSI и основан на фиксированном формате сообщений, называемом IP-дейтаграммой. Дейтаграмма - это нечто вроде корзины, в которую помещена вся информация сообщения. Например, при загрузке веб-страницы в браузер то, что вы видите на экране, доставлено по частям дейтаграммой.

Легко перепутать дейтаграммы с пакетами. Дейтаграмма - это информационная единица, в то время как пакет - это физический объект сообщения (созданный на третьем и более высоких уровнях), который действительно пересылается в сети. Хотя некоторые считают эти термины взаимозаменяемыми, их различие на самом деле имеет значение в определенном контексте - не здесь, конечно. Важно понять то, что сообщение разбивается на фрагменты, передается по сети и собирается заново на принимающем устройстве.


Положительным в таком подходе является то, что если один-единственный пакет будет испорчен во время передачи, то потребуется повторная передача только этого пакета, а не сообщения целиком. Другой положительный момент состоит в том, что ни одному хосту не приходится ждать неопределенно долгое время, пока не закончится передача на другом хосте, чтобы послать свое собственное сообщение.

TCP и UDР

При пересылке IP-сообщения по сети используется один из протоколов транспортировки: TCP или UDР. TCP (Transmission Control Protocol) составляет первую половину аббревиатуры TCP/IP. Протокол пользовательских дейтаграмм (User Datagram Protocol, UDР) используется вместо ТСР для транспортировки менее важных сообщений. Оба протокола служат для корректного обмена сообщениями в сетях TCP/IP. Между этими протоколами есть одно существенное различие.

ТСР называют надежным протоколом, так как он связывается с получателем для проверки факта получения сообщения.

UDР называют ненадежным протоколом, так как он даже не пытается устанавливать связь с получателем, чтобы убедиться в доставке.


Важно помнить, что для доставки сообщения можно воспользоваться только одним протоколом. Например, при загрузке веб-страницы доставкой пакетов управляет ТСР без всякого вмешательства UDP. С другой стороны, простой протокол передачи файлов (Trivial File Transfer Protocol, TFTP) загружает или отправляет сообщения под контролем протокола UDP.

Используемый способ транспортировки зависит от приложения - это может быть электронная почта, НТТР, приложение, отвечающее за сетевую работу, и так далее. Разработчики сетевых программ используют UDP везде, где только можно, так как этот протокол снижает избыточный трафик. Протокол ТСР прилагает больше усилий для гарантированной доставки и передает гораздо больше пакетов, чем UDP. На рисунке 3.2 представлен список сетевых приложений, и показано, в каких приложениях применяется ТСР, а в каких - UDP. Например, FTP и TFTP делают практически одно и то же. Однако TFTP, в основном, применяется для загрузки и копирования программ сетевых устройств. TFTP может использовать UDP, потому что при неудачной доставке сообщения ничего страшного не происходит, поскольку сообщение предназначалось не конечному пользователю, а администратору сети, уровень приоритета которого гораздо ниже. Другим примером является сеанс голосовой видеосвязи, в котором могут быть задействованы порты как для ТСР-сессий, так и для UDP. Так, сеанс TCP инициируется для обмена данными при установке телефонной связи, в то время как сам телефонный разговор передается посредством UDP. Это связано со скоростью потоковой передачи голоса и видео. В случае потери пакета не имеет смысла повторно посылать его, так как он уже не будет соответствовать потоку данных.


Рис. 3.2.
Формат IP-дейтаграммы

IP-пакеты можно разбивать на дейтаграммы. Формат дейтаграммы создает поля для полезной нагрузки и для данных управления передачей сообщения. На рисунке 3.3 показана схема дейтаграммы.

Примечание. Пусть вас не вводит в заблуждение величина поля данных в дейтаграмме. Дейтаграмма не перегружена дополнительными данными. Поле данных является на самом деле самым большим полем дейтаграммы.


Рис. 3.3.

Важно помнить, что IP-пакеты могут иметь различную длину. В "Основы организации сети" говорилось о том, что информационные пакеты в сети Ethernet имеют размер от 64 до 1400 байт. В сети Token Ring их длина составляет 4000 байт, в сети ATM - 53 байта.

Примечание. Использование в дейтаграмме байтов может привести вас в недоумение, так как передача данных чаще связана с такими понятиями, как мегабиты и гигабиты в секунду. Однако в связи с тем, что компьютеры предпочитают работать с байтами данных, в дейтаграммах также используются байты.

Если вы еще раз посмотрите на формат дейтаграммы на рисунке 3.3 , то заметите, что крайние поля слева имеют постоянную величину. Так происходит, потому что центральный процессор, работающий с пакетами, должен знать, где начинается каждое поле. Без стандартизации этих полей конечные биты будут представлять собой мешанину из нулей и единиц. В правой части дейтаграммы находятся пакеты переменной длины. Назначение различных полей дейтаграммы состоит в следующем.

  • VER . Версия протокола IP, используемого станцией, где появилось исходное сообщение. Текущей версией IP является версия 4. Это поле обеспечивает одновременное существование различных версий в межсетевом пространстве.
  • HLEN. Поле информирует получающее устройство о длине заголовка, чтобы центральный процессор знал, где начинается поле данных.
  • Service type (Тип сервиса). Код, сообщающий маршрутизатору о типе управления пакетом с точки зрения уровня сервиса (надежность, первоочередность, отсрочка и т. д.).
  • Length (Длина). Общее количество байт в пакете, включая поля заголовка и поле данных.
  • ID, frags и frags offset. Эти поля указывают маршрутизатору, как следует проводить фрагментацию и сборку пакета и как компенсировать различия в размере кадров, которые могут возникать во время прохождения пакета по сегментам локальной сети с различными сетевыми технологиями (Ethernet, FDDI и т.д.).
  • TTL. Аббревиатура для Time to Live (Время жизни) - число, которое уменьшается на единицу при каждой последующей пересылке пакета. Если время жизни становится равным нулю, то пакет прекращает существование. TTL предотвращает возникновение циклов и бесконечное блуждание потерянных пакетов в межсетевом пространстве.
  • Protocol. Протокол транспортировки, который следует использовать для передачи пакета. Чаще всего в этом поле указывается протокол TCP, но могут быть использованы и другие протоколы.
  • Header checksum . Контрольная сумма - это число, которое используется для проверки целостности сообщения. Если контрольные суммы всех пакетов сообщения не совпадают с правильным значением, то это означает, что сообщение было искажено.
  • Source IP address (Адрес отправителя). 32-битный адрес хоста, отправившего сообщение (обычно персональный компьютер или сервер).
  • Destination IP address (Адрес получателя). 32-битный адрес хоста, которому отправлено сообщение (обычно персональный компьютер или сервер).
  • IP options. Используются для тестирования сети или других специальных целей.
  • Padding. Заполняет все неиспользованные (пустые) позиции битов, чтобы процессор мог правильно определить позицию первого бита в поле данных.
  • Data. Полезная нагрузка отправленного сообщения. Например, в поле данных пакета может содержаться текст электронного письма.

Как говорилось ранее, пакет состоит из двух основных компонентов: данных об обработке сообщения, размещенных в заголовке, и собственно информации. Информационная часть находится в секторе полезной нагрузки. Можете представить себе этот сектор в виде грузового отсека космического корабля. Заголовок - это все бортовые компьютеры шаттла в кабине управления. Он распоряжается всей информацией, необходимой всевозможным маршрутизаторам и компьютерам на пути следования сообщения, и используется для поддержания определенного порядка сборки сообщения из отдельных пакетов.

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.

Интернет – глобальная система взаимосвязанных компьютерных, локальных и других сетей, которые взаимодействуют друг с другом посредством стека протоколов TCP/IP (рис. 1.).

Рисунок 1 – Обобщенная схема сети Интернет

Интернет обеспечивает обмен информацией между всеми компьютерами, подключенными к нему. Тип компьютера и используемая им операционная система значения не имеют.

Основные ячейки Интернета – локальные вычислительные сети (LAN – Local Area network). Если некоторая локальная сеть непосредственно подключена к Интернету, то каждая рабочая станция этой сети также может подключаться к нему. Существуют также компьютеры, самостоятельно подключенные к Интернету. Они называются хост-компьютерами (host – хозяин).

Каждый подключенный к сети компьютер имеет свой адрес, по которому его может найти абонент из любой точки света.

Важной особенностью сети Интернет является то, что она, объединяя различные сети, не создает при этом никакой иерархии - все компьютеры, подключенные к сети, равноправны.

Еще одной отличительной особенностью Интернета является высокая надежность. При выходе из строя части компьютеров и линий связи сеть будет продолжать функционировать. Такая надежность обеспечивается тем, что в Интернете нет единого центра управления. Если выходят из строя некоторые линии связи или компьютеры, то сообщения могут быть переданы по другим линиям связи, так как всегда имеется несколько путей передачи информации.

Интернет не является коммерческой организацией и никому не принадлежит. Пользователи Интернета имеются практически во всех странах мира.

Пользователи подключаются к сети через компьютеры специальных организаций, которые называются поставщиками услуг Интернета. Соединение с Интернетом может быть постоянным или временным. Поставщики услуг Интернета имеют множество линий для подключения пользователей и высокоскоростные линии для связи с остальной частью Интернета. Часто мелкие поставщики подключены к более крупным, которые, в свою очередь, подключены к другим поставщикам.

Организации, соединенные друг с другом самыми скоростными линиями связи, образуют базовую часть сети, или хребет Интернета Backbon [Бэкбон]. Если поставщик подключен непосредственно к хребту, то скорость передачи информации будет максимальной.

В действительности разница между пользователями и поставщиками услуг Интернета достаточно условна. Любой человек, подключивший свой компьютер или свою локальную вычислительную сеть к Интернету и установивший необходимые программы, может предоставлять услуги подключения к сети другим пользователям. Одиночный пользователь, в принципе, может подключиться скоростной линией непосредственно к хребту Интернета.

В общем случае, Интернет осуществляет обмен информацией между любыми двумя компьютерами, подключенными к сети. Компьютеры, подключенные к Интернету, часто называютузлами Интернета, или сайтами, от английского слова site, которое переводится как место, местонахождение. Узлы, установленные у поставщиков услуг Интернета, обеспечивают доступ пользователей к Интернету. Существуют также узлы, специализирующиеся на предоставлении информации. Например, многие фирмы создают узлы в Интернете, с помощью которых они распространяют информацию о своих товарах и услугах.

Как же осуществляется передача информации? В Интернете используются два основных понятия: адрес и протокол . Свой уникальный адрес имеет любой компьютер, подключенный к Интернету. Так же, как почтовый адрес однозначно определяет местонахождение человека, адрес в Интернете однозначно определяет местонахождение компьютера в сети. Адреса в Интернете являются важнейшей его частью, и ниже о них будет подробно рассказано.

Данные, пересылаемые с одного компьютера на другой с использованием Интернета, разбивается на пакеты. Они перемещаются между компьютерами, составляющими узлы сети. Пакеты одного сообщения могут пройти разными маршрутами. Каждый пакет имеет свою маркировку, что обеспечивает правильную сборку документа на компьютере, которому адресовано сообщение.

Что такое протокол? Как ранее было сказано, протокол - это правила взаимодействия. Например, дипломатический протокол предписывает, как поступать при встрече зарубежных гостей или при проведении приема. Так же сетевой протокол предписывает правила работы компьютерам, которые подключены к сети. Стандартные протоколы заставляют разные компьютеры "говорить на одном языке". Таким образом осуществляется возможность подключения к Интернету разнотипных компьютеров, работающих под управлением различных операционных систем.

Базовыми протоколами Интернета является стек протоколов TCP/IP. Прежде всего требуется уточнить, что, в техническом понимании TCP/IP - это не один сетевой протокол, а два протокола, лежащих на разных уровнях сетевой модели (это так называемый стек протоколов). Протокол TCP - протокол транспортного уровня. Он управляет тем, как происходит передача данных. Протокол IP - адресный. Он принадлежит сетевому уровню и определяет, куда происходит передача.

Протокол TCP. Согласно Протоколу TCP, отправляемые данные «нарезаются» на небольшие пакеты, после чего каждый пакет маркируется таким образом, чтобы в нем были данные, необходимые для правильной сборки документа на компьютере получателя.

Для понимания сути протокола TCP можно представить игру в шахматы по переписке, когда двое участников разыгрывают одновременно десяток партий. Каждый ход записывается на отдельной открытке с указанием номера партии и номера хода. В этом случае между двумя партнерами через один и тот же почтовый канал работает как бы десяток соединений (по одному на партию). Два компьютера, связанные между собой одним физическим соединением, могут точно так же поддерживать одновременно несколько TCP-соединений. Так, например, два промежуточных сетевых сервера могут одновременно по одной линии связи передавать друг другу в обе стороны множество ТСР-пакетов от многочисленных клиентов.

Когда мы работаем в Интернете, то по одной единственной телефонной линии можем одновременно принимать документы из Америки, Австралии и Европы. Пакеты каждого из документов поступают порознь, с разделением во времени, и по мере поступления собираются в разные документы.

Протокол IP. Теперь рассмотрим адресный протокол - IP (Internet Protocol). Его суть состоит в том, что у каждого участника Всемирной сети должен быть свой уникальный адрес (IP-адрес). Без этого нельзя говорить о точной доставке ТСР-пакетов на нужное рабочее место. Этот адрес выражается очень просто - четырьмя числами, например: 195.38.46.11. Структуру IP-адреса мы подробнее рассмотрим позже. Она организована так, что каждый компьютер, через который проходит какой-либо TCP-пакет, может по этим четырем числам определить, кому из ближайших «соседей» надо переслать пакет, чтобы он оказался «ближе» к получателю. В результате конечного числа перебросок ТСР-пакет достигает адресата.

Слово «ближе» взято в кавычки не случайно. В данном случае оценивается не географическая «близость». В расчет принимаются условия связи и пропускная способность линии. Два компьютера, находящиеся на разных континентах, но связанные высокопроизводительной линией космической связи, считаются более «близкими» друг к другу, чем два компьютера из соседних поселков, связанные простым телефонным проводом. Решением вопросов, что считать «ближе», а что «дальше», занимаются специальные средства - маршрутизаторы. Роль маршрутизаторов в сети обычно выполняют специализированные компьютеры, но это могут быть и специальные программы, работающие на узловых серверах сети.

Стек протоколов TCP/IP

Стек протоколов TCP/IP - набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства - Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте.

Протоколы работают друг с другом в стеке (англ. stack , стопка) - это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP включает в себя четыре уровня:

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI (таблица 1). На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Таблица 1 – Сравнение стека протоколов TCP/IP и эталонной модели OSI

Прикладной уровень

На прикладном уровне (Application layer) работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

  • HTTP на TCP-порт 80 или 8080,
  • FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),
  • запросы DNS на порт UDP (реже TCP) 53,

Транспортный уровень

Протоколы транспортного уровня (Transport layer) могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

TCP (IP идентификатор 6) - «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень

Сетевой уровень (Internet layer) изначально разработан для передачи данных из одной (под)сети в другую. С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий - транспортный - уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число - уникальный IP-номер протокола . ICMP и IGMP имеют номера, соответственно, 1 и 2.

Канальный уровень

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня - Ethernet, Wi-Fi, Frame Relay, Token Ring, ATM и др.

Канальный уровень иногда разделяют на 2 подуровня - LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Инкапсуляция

Инкапсуляция – упаковка, или вложение, пакетов высокого уровня (возможно, разного протокола) в пакеты одного протокола (нижнего уровня), включая адрес.

Например, когда приложению требуется послать сообщение с помощью TCP, то производится следующая последовательность действий (рис. 2):

Рисунок 2 – Процесс инкапсуляции

  • в первую очередь, приложение заполняет специальную структуру данных, в которой указывает информацию о получателе (сетевой протокол, IP-адрес, порт TCP);
  • передаёт сообщение, его длину и структуру с информацией о получателе обработчику протокола TCP (транспортный уровень);
  • обработчик TCP формирует сегмент, в котором в качестве данных выступает сообщение, а в заголовках находится TCP-порт получателя (а также другие данные);
  • обработчик TCP передаёт сформированный сегмент обработчику IP (сетевой уровень);
  • обработчик IP рассматривает переданный TCP сегмент как данные и предваряет их своим заголовком (в котором, в частности, находится IP-адрес получателя, взятый из той же структуры данных приложения, и номер верхнего протокола;
  • полученный пакет обработчик IP передаёт на канальный уровень, который опять-таки рассматривает данный пакет как «сырые» данные;
  • обработчик канального уровня, аналогично предыдущим обработчикам, добавляет в начало свой заголовок (в котором так же указывается номер протокола верхнего уровня, в нашем случае это 0x0800(IP)) и, в большинстве случаев, добавляет конечную контрольную сумму, тем самым формируя кадр;
  • далее полученный кадр передаётся на физический уровень, который осуществляет преобразование битов в электрические или оптические сигналы и посылает их в среду передачи.

На стороне получателя для распаковки данных и предоставления их приложению производится обратный процесс (снизу вверх), называемый декапсуляцией.

Похожая информация.


Основное, что отличает Интернет от других сетей - это ее протоколы — TCP/IP . Вообще, термин TCP/IP обычно означает все, что связано с протоколами взаимодействия между компьютерами в Интернете. Он охватывает целое семейство протоколов, прикладные программы, и даже саму сеть. TCP/IP - это технология межсетевого взаимодействия. Сеть, которая использует технологию TCP/IP, называется «internet» . Если речь идет о глобальной сети, объединяющей множество сетей с технологией TCP/IP, то ее называют Интернет.

Свое название протокол TCP/IP получил от двух коммуникационных протоколов (или протоколов связи). Это Transmission Control Protocol (TCP) и Internet Protocol (IP). Несмотря на то, что в сети Интернет используется большое число других протоколов, сеть Интернет часто называют ТСР/1Р-сетью , так как эти два протокола, безусловно, являются важнейшими.

Протокол IP (Internet Protocol) заведует непосредственной передачей информации по сети. Вся информация разбивается на части - пакеты и пересылается от отправителя получателю. Для того чтобы точно адресовать пакет, необходимо задать четкие координаты получателя или его адрес.

Адрес в Интернете состоит из 4 байт. При записи байты отделяются друг от друга точками: 123.45.67.89 или 3.33.33.3. В действительности адрес состоит из нескольких частей. Так как Интернет есть сеть сетей, начало адреса говорит узлам Интернета, частью какой из сетей является адрес. Правый конец адреса говорит этой сети, какой компьютер или хост должен получить пакет. Каждый компьютер в Интернете имеет в этой схеме уникальный адрес.

Числовой адрес компьютера в Интернете аналогичен почтовому индексу отделения связи. Существует несколько типов адресов Интернета (типы: А, В, С, D, Е), которые по-разному делят адрес на поля номера сети и номера узла, от типа такого деления зависит количество возможных сетей и машин в таких сетях.

Из-за ограничений оборудования информация, пересылаемая по сетям IP, делится на части (по границам байтов), раскладываемые в отдельные пакеты . Длина информации внутри пакета обычно составляет от 1 до 1500 байт. Это защищает сеть от монополизирования каким-либо пользователем и предоставляет всем примерно равные права. По этой же причине, если сеть недостаточно быстра, чем больше пользователей ее одновременно использует, тем медленнее она будет общаться с каждым.

Одно из достоинств Интернета состоит в том, что протокола IP самого по себе уже вполне достаточно для работы. Однако этот протокол имеет и ряд недостатков:

  • - большая часть пересылаемой информации длиннее 1500 символов, поэтому ее приходится разбивать на несколько пакетов;
  • - некоторые пакеты могут теряться в пути следования;
  • - пакеты могут приходить в последовательности, отличной от начальной.

Используемые протоколы должны обеспечить способы пересылки больших объемов информации без искажений, которые могут возникать по вине сети.

Протокол управления передачей (TCP, Transmission Control Protocol) - это протокол, тесно связанный с IP, который используется в аналогичных целях, но на более высоком уровне. Протокол TCP занимается проблемой пересылки больших объемов информации, основываясь на возможностях протокола IP.

TCP делит информацию, которую надо переслать, на несколько частей и нумерует каждую часть, чтобы позже восстановить порядок. Чтобы пересылать эту нумерацию вместе с данными, он обкладывает каждый кусочек информации своей обложкой - TCP-конвертом, который содержит соответствующую информацию.

Получатель по получении распаковывает IP-конверты и видит TCP-конверты, распаковывает и их и помещает данные в последовательность частей в соответствующее место. Если чего-то недостает, он требует переслать этот кусочек снова. В конце концов, информация собирается в нужном порядке и полностью восстанавливается.