Что такое кэш для чего он нужен. Что такое кэш? d) Специальные программы для очистки кэша

20.03.2019

Уверен, даже если вы и не пользуетесь компьютером, хотя в нашем мире такого человека найти сложно, вы слышали такое слово как "КЭШ”. Его смело можно назвать самым грязным местом на компьютере. Да, не корзина, не папки пользователя, не система охлаждения, а именно кэш. Его чистку необходимо выполнять часто и качественно.

Самое интересное, что кешей на компьютере имеется большое количество. Многие могут подумать, что кэш является своего рода свалкой отходов для ПК. Но на самом деле это не так. Кэши служит ускорителями оборудования и приложений. Но как же тогда они получили клеймо "системного мусоропровода?!”. Сегодня мы выясним, что именно называется кэшом, каким он бывает, как работает и почему его периодически нужно чистить.

Кэш память - понятие и виды.

Кэшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

Все приложения, вэб-браузеры, аудио- и видеоплееры, редакторы баз данных, компоненты операционной системы и оборудования, а именно cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей и прочие, имеют собственную кэш память. Но вот ее реализация у всех вышеперечисленных "элементов” будет разной: аппаратной или программной.

Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и уменьшает сетевой трафик.



В накопителях в том числе и в жестких дисках кэш представляет собой отдельный чип RAM емкостью 1-256Mb, который располагается на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.



Что касается современного центрального процессора, то он содержит 2-3 основных уровня кэш-памяти которая еще называется сверхоперативной памятью. Размещены они в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз быстрее самой производительной оперативки.

В сверхоперативной памяти процессора хранятся данные, которые используются постоянно. Они перекачены из ОЗУ и инструкций машинного кода. Чем больше такой памяти, тем процессор работает быстрее.

На сегодняшний день, три уровня кэширования это далеко не предел.

Корпорация Intel, ведущая компания в производстве процессоров уже долгое время, изобрела архитектуру Sandy Bridge. Благодаря ей, стал доступен дополнительный кэш "cache L0”. Данный раздел отвечает за хранение расшифрованных микрокоманд.

А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):



Как все работает - объясняем на пальцах.

Для того, чтобы вам стало более понятно, как же все-таки работаешь кэш память, представьте человека, который работает за письменным столом. Документы и папки, которые он использует, находятся на столе, то - есть, в кэш памяти. Для того, чтобы получить к ним доступ, достаточно лишь протянуть руку.

Бумага, которой человек пользуется очень редко, находится в нижних папках, то есть в оперативной памяти. Для того, чтобы получить к ним доступ, придется встать и немного пройти. А файлы, с которыми человек в данный момент не работает, сдаются в архив, то есть записываются на жесткий диск.

Становится понятно, что чем стол у работающего человека будет шире, тем большее количество документов на нем можно разместить. Соответственно, работник сможет получить быстрый доступ к большему объему информации. Теперь вы понимаете, почему из-за большей емкости кэша, программа или устройство будет работать быстрее.

Иногда работник делает ошибки. Они заключаются в хранении на столе бумаг, которые содержат недостоверные сведения и используемые в работе. После такой работы, естественно снизится качество труда. То-есть,если в кэше есть ошибки, программы и оборудования будут работать со сбоями. Для решения этой проблемы, работник должен найти файлы с ошибкой, выбросить и на их место положить правильные. Это и называется чисткой кэш памяти.

Хотя стол и может быть большим, все же, место на нем ограничено, как и объем кэш памяти. Несмотря на это, места на столе можно добавить, приставив к нему второй стол. Но иногда это выполнить невозможно из-за размеров комнаты. Объем кэш памяти можно увеличить, если данная процедура прописана программой. Само кэш оборудование у вас поменять не получится, так как оно реализовано аппаратно.

Но, можно обойтись и без расширения рабочего места, чтобы быстрее работать с файлами. Можно нанять помощника, который будет подавать нужную папку с файлами. То есть операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств. Но, такой вот помощник особо работу не ускорит, ведь самому брать нужную информацию намного быстрее, так как точно знаешь, где и что лежит.

Ccleaner . Если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную.

На самом деле, с кэшированием файлов мы встречаемся постоянно. К примеру покупка продуктов впрок и все действия, которые мы совершаем во время этого процесса, так сказать заодно! Кешированием можно назвать все то, из-за чего мы не совершаем лишнюю суету и телодвижения. Если бы на компьютере отсутствовал кэш, то его работа замедлилась бы в разы.

Уверен, теперь вы понимаете значение и принцип работы кэша. Вот почему так важно наводить порядок на своем компьютере, если вы конечно не хотите замедлить его работу.

Как уже упоминалось ранее, статическая оперативная память нашла применение в кэш-памяти . Основное достоинство статической памяти - это ее быстродействие. Основной недостаток - большой физический объем, занимаемый памятью и высокое энергопотребление.


Напомним, что ячейка статической памяти построена на транзисторном каскаде, который может содержать до 10 транзисторов. Поскольку, время переключения транзистора из одного состояния в другое ничтожно мало, то и скорость работы статической памяти высока.


Кэш-память имеет небольшой объем и размещается непосредственно на процессорном кристалле. Ее скорость работы гораздо выше, чем у динамической памяти (модули ОЗУ), но ниже, чем работают регистры общего назначения (РОН) центрального процессора.


Впервые кэш-память появилась на 386-х компьютерах и располагалась она на материнской плате. Материнские платы 386 DX имели кэш-память объемом от 64 до 256 Кб. 486-е процессоры уже имели кэш-память, расположенную на процессорном кристалле, но кэш-память на материнской плате была сохранена. Система кэш-памяти стала двухуровневой: память на кристалле стали называть кэшем первого уровня (L1), а на материнской плате - кэшем второго уровня (L2). Со временем кэш второго уровня "перебрался" на кристалл процессора. Первой это осуществила AMD на процессоре K6-III (L1 = 64 Kb, L2 = 256 Kb).

Наличие кэшей двух уровней потребовало создания механизма их взаимодействия между собой. Существует два варианта обмена информацией между кэш-памятью первого и второго уровня, или, как говорят, две кэш-архитектуры: инклюзивная и эксклюзивная .

Инклюзивная кэш-память

Инклюзивная архитектура предполагает дублирование информации, находящейся в L1 и L2.


Схема работы следующая. Во время копирования информации из ОЗУ в кэш делается две копии, одна копия заносится в L2, другая копия - в L1. Когда L1 полностью заполнен, информация замещается по принципу удаления наиболее "старых данных" - LRU (Least-Recently Used). Аналогично происходит и с кэшем второго уровня, но, поскольку его объем больше, то и информация хранится в нем дольше.


При считывании процессором информации из кэша, она берется из L1. Если нужной информации в кэше первого уровня нет, то она ищется в L2. Если нужная информация в кэше второго уровня найдена, то она дублируется в L1 (по принципу LRU), а затем, передается в процессор. Если нужная информация не найдена и в кэше второго уровня, то она считывается из ОЗУ по схеме, описанной выше.


Инклюзивная архитектура применяется в тех системах, где разница в объемах кэшей первого и второго уровня велика. Например, у Pentium 3 (Coppermine): L1 = 16 Kb, L2 = 256 Kb; Pentium 4: L1 = 16 Kb, L2 = 1024 Kb. В таких системах дублируется небольшая часть кэша второго уровня, это вполне приемлемая цена за простоту реализации инклюзивного механизма.

Эксклюзивная кэш-память

Эксклюзивная кэш-память предполагает уникальность информации, находящейся в L1 и L2.


При считывании информации из ОЗУ в кэш - информация сразу заносится в L1. Когда L1 заполнен, то, по принципу LRU информация переносится из L1 в L2.


Если при считывании процессором информации из L1 нужная информация не найдена, то она ищется в L2. Если нужная информация найдена в L2, то по принципу LRU кэши первого и второго уровня обмениваются между собой строками (самая "старая" строка из L1 помещается в L2, а на ее место записывается нужная строка из L2). Если нужная информация не найдена и в L2, то обращение идет к ОЗУ по схеме, описанной выше.


Эксклюзивная архитектура применяется в системах, где разность между объемами кэшей первого и второго уровня относительно невелика. Например, у Athlon XP: L1 = 64 Kb, L2 = 256 Kb. В эксклюзивной архитектуре кэш-память используется более эффективно, но схема реализации эксклюзивного механизма гораздо сложнее.

Взаимодействие кэш-памяти с ОЗУ

Поскольку, кэш-память работает очень быстро, то в кэш помещается информация, к которой часто обращается процессор - это значительно ускоряет его работу. Информация из ОЗУ помещается в кэш, а потом к ней обращается процессор. Существует несколько схем взаимодействия кэш-памяти и основной оперативной памяти.


Кэш-память с прямым отображением. Самый простой вариант взаимодействия кэша с ОЗУ. Объем ОЗУ делится на сегменты (страницы), по объему равные объему всего кэша (например, при объеме кэша 64 Кб и ОЗУ разбивается на страницы по 64 Кб). При взаимодействии кэша с ОЗУ, одна страница ОЗУ размещается в кэш-памяти, начиная с нулевого адреса (т.е., с самого начала кэша). При повторной операции взаимодействия, следующая страница накладывается поверх существующей - т.е., фактически прежние данные заменяются на текущие.


Достоинства : простая организация массива, минимальное время поиска.

Недостатки : неэффективное использование всего объема кэш-памяти - ведь вовсе не обязательно, что данные будут занимать весь объем кэша, они могут занимать и 10%, но следующая порция данных уничтожает предыдущую, таким образом, фактически имеем кэш с гораздо меньшим объемом.


Наборно-ассоциативная кэш-память. Весь объем кэша делится на несколько равных сегментов, кратных двойке в целой степени (2, 4, 8). Например, кэш 64 Кб может быть разделен на:

  • 2 сегмента по 32 Кб каждый;
  • 4 сегмента по 16 Кб каждый;
  • 8 сегментов по 8 Кб каждый.

Pentium 3 и 4 имеют 8-канальную структуру кэша (кэш разбит на 8 сегментов); Athlon Thunderbird - 16-канальную.


При такой организации, ОЗУ делится на страницы, равные по объему одному сегменту кэша (одному кэш-банку). Страница ОЗУ пишется в первый кэш-банк; следующая страница - во второй кэш-банк и т.д., пока все кэш-банки не будут заполнены. Дальнейшая запись информации идет в тот кэш-банк, который не использовался дольше всего (содержит самую "старую" информацию).


Достоинства : повышается эффективность использования всего объема кэша - чем больше кэш-банков (выше ассоциативность), тем выше эффективность.

Недостатки : более сложная схема управления работой кэша; дополнительное время на анализ информации.


Ассоциативная кэш-память. Это предельный случай предыдущего варианта, когда объем кэш-банка становится равным одной строке кэш-памяти (дальше делить уже некуда). При этом любая строка ОЗУ может быть сохранена в любом месте кэш-памяти.


Запоминающий кэш-массив состоит из строк равной длины. Емкость такой строки равна размеру пакета, считываемого из ОЗУ за 1 цикл (например, Pentium 3 - 32 байта; Pentium 4 - 64 байта). Строка загружается в кэш и извлекается только целиком.


Достоинства : максимальная эффективность использования пространства кэш-памяти.

Недостатки : наибольшие затраты времени на поиск информации.

В сегодняшней статье мы немного поговорим о кэшировании. Точнее, я расскажу вам о том, что такое кэш браузера, для чего он нужен, плюсы и минусы его использования и о том, как очистить кэш в популярных на сегодняшний день браузерах. Начнем!

Что такое кэш браузера

В интернете можно найти определения кэша как выделенной области памяти, или что кэш — это временные файлы, хранящееся на жестком диске компьютера. В общем то, так оно и есть, но по моему мнению, общее и в то же время самое точное определение кеша вообще и кеша браузера в частности, дано в Википедии. Звучит оно так:

Кэш — это промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью.

Что это означает? Давайте сразу же на примере интернета и браузера разберем это определение.

Итак, определение «промежуточный буфер » подразумевает, что кэш является посредником между чем-то. Например, есть два объекта: браузер на нашем компьютере и есть сайт в интернете. Согласно определению, кэш будет посредником между ними.

Каким образом? Давайте посмотрим на то, как работает браузер.

Когда мы заходим на любой сайт, браузер загружает на наш компьютер с сервера, на котором этот сайт расположен, все необходимые данные: html код страницы, файл стилей оформления CSS, медиафайлы в виде картинок, видео, музыки и т.д. и отображает страницу. Для выполнения всего этого нужно время и, естественно, интернет трафик. Логично предположить, что пользователь может время от времени снова посещать этот же сайт и тогда, для отображения этой же страниц, снова придется скачивать те же файлы, что и первый раз. Опять нужно затратить время и интернет трафик. Но глупо было бы так делать. Вот здесь и вступает в процесс промежуточный буфер, то есть — кэш браузера.

Когда браузер загружает первый раз страницу с интернета, он сохраняет ее либо всю, либо отдельные ее фрагменты, на компьютере в специально выделенное для этого место на жестком диске. И когда в следующий раз пользователь захочет посетить эту же страницу, браузер загрузит с интернета только недостающие фрагменты, а остальное вытянет из кэша. Таким образом кэш браузера выполняет две функции:

  • Сокращение времени загрузки страницы . Так как скорость загрузки данных с интернета будет медленнее чем загрузка из жесткого диска, закэшированная интернет страница в браузере откроется быстрее. Именно это и кроется под определением «промежуточный буфер с быстрым доступом».
  • Снижение потребления интернет трафика . Браузеру уже не нужно скачивать всю страницу, а только недостающие фрагменты, соответственно снизится объем передаваемых по интернету данных, что в свою очередь так же снизит нагрузку на интернет канал.

Это две основные функции кэша, которые несомненно являются плюсами данной технологии.

Минусы кэширования

Конечно без них не обойтись. И первым минусом будет то, что если долго не очищать кэш браузера, или не настроить ограничение по объему папки для хранения кэша на вашем компьютере, со временем он может занять относительно много места жестком диске. Вторым, более весомым недостатком технологии кеширования веб-страниц, является то, что в нем могут оказаться устарелые данные. Например, когда со времени последнего посещения вами сайта, на нем изменился дизайн, или обновилась какая-то информация. При следующем посещении вы можете не увидеть изменений, так как у вас будет загружатся старая страница из кеша.

Вот поэтому, если вы замечаете, некорректное отображение вэб-сайтов, или замедление работы браузера, возможно стоит почистить его временное хранилище файлов.

Как очистить кэш в браузерах

Cейчас мы рассмотрим как это сделать в самых популярных веб-браузерах.

Как очистить кэш браузера Chrome

Открываем меню Chrome в верхнем правом углу окна браузера и выбираем пункт «Дополнительные инструменты» в подменю выбираем «Удаление данных о просмотренных страницах». Или можно нажать сочетание клавиш «Ctr+Shift+Del».

Откроется страница настроек и появится всплывающее окно «Очистить историю».

Выбираем период, за который нужно удалить данные, отмечаем нужные пункты, можно отметить все, кроме паролей и нажимаем «Очистить историю». Все, мы очистили кэш в Chrome.

Как очистить кэш браузера Firefox

Открываем меню Firefox в верхнем правом углу и выбираем пункт «Настройки»

В окне настроек переходим на вкладку «Приватность» и нажимаем на ссылку «Удалить вашу недавнюю историю»

Откроется окно удаления истории. Выбираем период и отмечаем нужные пункты. Можно отметить все.

После нажимаем «Удалить сейчас».

Кэш Firefox очищен.

Как очистить кэш Opera

Заходим в меню Opera в левом верхнем углу и выбираем «Настройки»

В открывшемся окне выбираем вкладку «Безопасность» и выбираем «Очистить историю посещений»

Появится всплывающее окно «Очистить историю посещений»

Так же выбираем период, за который нужно удалить данные и отмечаем нужные чекбоксы. После жмем «Очистить историю посещений»

Кэш Opera очишен.

Internrt Explorer 9 и выше.

Нажимаем на иконку меню в правом верхнем углу и в выпадающем списке выбираем «Свойства браузера»

В открывшемся окне на вкладке «Общие» в разделе «Журнал браузера» нажимаем «Удалить»

Откроется окно «Удаление истории обзора».

Проставляем нужные отметки и нажимаем «Удалить». После очистки кэша нажимаем «OK».

Кэш Internet Explorer очищен.

Я надеюсь что помог вам и вы теперь знаете, что такое кэш браузера и как его удалить в большинстве современных браузерах. На этом я закончу эту статью. Всего хорошего! По всем вопросам, добро пожаловать в комментарии!

Предыдущая запись
Следующая запись

Основная память компьютера – это устройство с очень низкой скоростью обмена данных. И если процессору необходимы какие-то данные для работы, то он посылает запрос через шину памяти, и производится поиск этих нужных данных.

Только потом они отправляются непосредственно в процессор. Все это занимает очень много времени по компьютерным меркам. А вот, что если бы данные хранились где-то рядом с процессором?

Как раз кэш-память работает на основе этой идеи. И для того чтобы понять концепцию, для наглядности возьмем пример работы обычной библиотеки.

Назначение кеш памяти

Что же такое кэш-память или кэш (по англ. cache memory, cache):

В широком смысле, подразумевается любая память с быстрым доступом , где хранится часть данных с другого носителя с более медленным доступом;

В узком смысле - это сверхоперативный вид памяти, который используется для повышения скорости доступа микропроцессора к оперативной памяти.

Предположим, что в библиотеке работает один библиотекарь. Если человек приходит и просит первый том Пушкина, то библиотекарь идет к далекой книжной полке, находит книгу и приносит ее посетителю.

Когда этот человек прочитал книгу, то она обратно возвращается на полку. И если уже любой другой человек приходит и просит эту же самую книгу, цикл повторяется снова.

Вот пример того, как библиотека, то есть система работает без кэш-памяти .

Зачем нужна кэш-память?

А теперь представьте, что тот же самый библиотекарь использует ящик стола как кэш-память. Процедура выдачи книги остается той же, когда книгу спрашивают первый раз.

Но, когда книга вернулась, библиотекарь не возвращает ее на полку, а кладет в ящик стола (этакая местная оперативная кэш-память ).

Теперь, когда следующий человек приходит и просит эту книгу, библиотекарю уже нужно просто открыть данный ящик. Аналогичным образом кэш-память хранит элементы данных, к которым часто обращается процессор.

Таким образом, каждый раз, запрашиваются эти данные, и процессор получает их из кэша, минуя долгий путь в основную медленную память.

Хранит ли кэш только часто используемые данные? Как функционирует и работает кэш оперативной памяти ?

Кэш – это такая очень умная часть памяти, которая автоматически осуществляет поиск любых данных, которые могут понадобиться в ближайшем будущем. Опять же, вернемся за примером к нашей библиотеке.

Когда человек просит первый томик Пушкина, то библиотекарь приносит также второй том:-) И когда человек прочитает первую книгу, аероятнее всего, что он может попросить второй томик. А когда он это сделает, ходит далеко не надо... тот уже будет лежать в ящике.

Аналогичным образом, когда кэш-память извлекает запрошенные данные из памяти, она также извлекает данные, которые находятся по адресам, близким к запрошенным.

Эти смежные блоки данных, которые и передаются в кэш, называются кэш-линиями. Подробнее о понятии кэш-памяти можно посмотреть в этом видео:

Уровни кэш памяти

Большинство жестких дисков используют один уровень кэш-памяти . Но кэш имеет два уровня, где уровень L1 меньше и быстрее, а уровень L2, несколько медленнее (но все равно быстрее, чем основная внутренняя память ).

Лучшая бесплатная программа HDDScan для проверки жестких дисков

И снова возвратимся за примером к нашей библиотеке, на примере ее работы становится понятна как работает внешняя память компьютера .

Рассмотрим ящик библиотекаря в качестве кэша L1. Когда спрос на книги высок, и в ящике уже довольно много книг (нет места складывать) и вероятность того, что там найдется нужная, снижается.

Память L2 кэш

Здесь и появляется неодходимость L2. Представим L2 как книжный шкаф возле стола библиотекаря. Когда маленький ящик стола заполнен, библиотекарь начинает ставить книги в этот шкаф. И теперь, если книга не найдена в ящике сразу, надо взять ее из шкафа, не отходя далеко.

Аналогичным образом, когда кэш L1 заполнен, данные сохраняются в L2. Процессор в первую очередь ищет данные в L1, если они не будут найдены, то он обратится уже к L2. Если там тоже данные не найдены в L2, то идет обращение к основной памяти.

Двухуровневый кэш процессора

Кэш двух уровней у процессора – хорошая идея? Безусловно, да.

Возвращаясь к нашей упомянутой библиотеке. Если человек просит дать ему книгу, которая не хранится ни в ящике, ни в книжном шкафу, то библиотекарь тратит много времени впустую, осуществляя поиск сначала в ящике, потом в шкафу и только потом получает книгу с полки.

Когда же данные не найдены ни в первом, ни во втором уровне кэша, только тогда посылается запрос в основную память. На это тратится много процессорного времени.

Но если кэш-память работает так быстро, почему бы не выполнять его достаточно большой, чтобы хранить все данные оперативной памяти в нем?

Причина в том, что высокая скорость обходится очень дорого. Поэтому необходимо рациональное использование ресурсов кэш-памяти.

Хотя в последнее время, размеры кэш-памяти все увеличиваются, а цены растут не сильно, поэтому компьютеры работают все быстрее и быстрее.

То есть, наш библиотекарь обзаводится ящиком стола все большего размера, а шкафчик, стоящий рядом становится более вместительным! Еще в тему - двухядерные процессоры - правильно конфигурируем Windows.

Кэширование жесткого диска

Дисковая кэш-память (disk cache ), или кэш-память жестского диска - принцип построения кэш-памяти на основе динамического оперативного запоминающего устройства (типа DRAM), которое хранит наиболее часто используемые данные и команды, доступ к которым производится из внешней памяти.

Поэтому принцип кэширования жесткого диска во многом схож на принцип кэширования, используемый для оперативной динамической памяти, хоть способы доступа к диску и памяти значительно разнятся.

Так, время доступа к любой из ячеек оперативной памяти имеет примерно одинаковое для данного компьютера значение, а вот время доступа к различным блокам информации на жестком диске в общем случае будет различным.

1. Нужно затратить определенное время, чтобы магнитная головка записи-чтения подошла к искомой дорожке.

2. Поскольку при движении головка вибрирует, то необходимо немного времени, чтобы она успокоилась.

3. Наконец, требуется время, чтобы головка нашла искомый сектор.

Методы кэширования, используемые для оперативной памяти, применяются и для кэширования информации, хранимой на жестких дисках.

Кэш-память диска заполняется не только требуемым сектором, но и секторами, непосредственно следующими за ним, так как известно, что в большинстве случаев взаимосвязанные данные хранятся в соседних секторах.

Этот метод известен также как метод опережающего чтения (Read Ahead). При работе с многозадачными системами желательно иметь жесткий дик (винчестер) с мультисегментной кэш-памятью, которая для каждой из задач отводит свою часть кэша.

Кстати, если у вас недостаточно знаний о том, как лучше просканировать и протестировать жесткий диск , то обязательно посмотрите
подробный и бесплатный виде-оурок на эту тему:
как проверить винчестер на работоспособность

Кэш-память процессора

Кэш-памятью сейсас комплектуется большинство современных центральных процессоров. А первоначально кэш-память располагалась не на самом процессоре, а на материнской плате.

Кэш-память процессора на компьютере выполняет функции буфера между процессором и оперативной памятью.

Если кэш-память располагается между самим процессором и оперативной памятью, то при непосредственном обращении процессора к памяти сначала производится поиск необходимых данных в кэш-памяти .

Кэш-памяти процессора делятся на несколько видов:

Cache L1 - это «кэш-память первого уровня». Является промежуточной сверхоперативной памятью, находится на самом кристалле процессора, в ней размещаются наиболее часто используемые данные.

Работает эта память на частоте процессора. Время доступа к ней существенно меньше, чем к данным в основной оперативной памяти. Этим достигается ускорение работы процессора.

Cache L2 - «кэш-память второго уровня». Это промежуточная сверхоперативная память, которая имеет быстродействие ниже памяти первого уровня, но выше основной оперативной памяти. Ее размер обычно составляет от нескольких сотен килобайт до нескольких мегабайт.

Cache L3 - «кэш-память третьего уровня». Тоже промежуточная сверхоперативная память, имеющая быстродействие ниже памяти второго уровня, но выше основной оперативной памяти. Ее размер обычно составляет от одного до нескольких мегабайт.


Секреты и тонкости работы на компьютере

Как вы знаете, на компьютере систематически скапливается большое количество «цифрового мусора», который периодически приходится чистить. И одно из самых «замусоренных» мест – файловый кэш, который служит для ускорения работы приложений и «железа». Давайте разберемся с назначением кэша и принципами его работы.

Кэш-память – что это такое?

Мудреным словом «кэш» (от англ. «Cache» — запас) принято называть промежуточное хранилище информации с более высокой скоростью доступа, чем к оперативной памяти (или винчестеру). Такая память имеется у приложений и оборудования:

Принцип работы кэша

Давайте попробуем разобраться в работе кэша на простом примере офисного сотрудника. Некоторые документы и папки в течение рабочего дня используются постоянно, они лежат на столе (стол – это кэш-память). Найти такой документ можно очень быстро – просто взять его рукой.

Рядом со столом стоит шкаф (оперативная память), где также хранятся документы. Чтобы взять какой-либо из них, нужно встать из-за стола и подойти к шкафу (время доступа к данным немножко больше).

Если сотрудник сейчас не использует документы, папки сдаются в архив, находящийся в другом помещении (сохранение информации на жесткий диск).

От площади рабочего стола (объема кэша) зависит количество папок, которые на нем можно разместить и доступ клерка к информации.

Если бумаг на столе скапливается слишком много, работник начинает в них путаться, соответственно некоторые папки нужно убрать со стола (очистить кэш).

Можно несколько ускорить процесс доступа клерка к документам, выделив ему в помощь секретаря, который будет приносить ему папки из шкафа (выделение операционной системой части ОЗУ для кэширования данных).

Работник должен следить за актуальностью документов и держать свой стол в порядке (необходимость периодической очистки кэша).