История развития вычислительной техники этапы. Тема: Этапы развития вычислительной техники. Механический этап развития вычислительной техники

18.12.2018

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Экономика

Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Даже развитие самой математики на определенных этапах ее становления было связано с абаком, когда истинность некоторых вычислительных алгоритмов подтверждалась возможность их реализации на абаке. Многовековой путь совершенствования абака привел к созданию счетного прибора законченной классической формы, используемого вплоть до эпохи расцвета клавишных настольных ЭВМ. Да еще и сегодня кое-где его можно встретить, помогающим в расчетных операциях. И только появление карманных электронных калькуляторов в 70-е годы нашего столетия создало реальную угрозу для дальнейшего использования русских, китайских и японских счетов - трех основных классических форм абака, сохранившихся до наших дней. При этом, последняя известная попытка усовершенствования русских счетов путем объединения их с таблицей умножения относится к 1921 г.

Поэтому подход вычислений в организации начинается с выяснения процессов, то есть моделирования бизнеса. Затем эта концепция будет выполняться в соответствии с циклом разработки, который определяет роли и обязанности каждого актера. Термин «оборудование» также используется для описания компьютерного оборудования.

Существуют разные типы компьютеров. Они состоят из центрального блока: коробки с материнской платой, блока питания, блоков хранения. Добавлена ​​консоль: экран и клавиатура. К ним могут быть добавлены различные периферийные устройства, мышь, принтер, сканер и т.д.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером в начале 17 в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модицикаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Особенно мощные и дорогие микрокомпьютеры, используемые только для острых профессиональных потребностей. В шкафу находится центральный блок и блок питания, одно или несколько устройств хранения, в то время как связь и сеть находятся в одной комнате, но в отдельных стойках. Консоль администрирования обычно находится в тех же помещениях.

Это компьютеры, которые часто предоставляют предприятиям универсальное место хранения для пользователей, подключенных к серверам. Серверы могут выполнять такие задачи, как: Брандмауэр, хост веб-сервера или просто для совместного использования большого количества принтеров и устройств. Цены на серверы высоки, потому что сервер был разработан, чтобы оставаться на месте. постоянство, то материал является долговечным и эффективным.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной с.с., предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Введенные Дж. Непером логарифмы оказали революционизирующее влияние на все последующее развитие счета,чему в значительной степени способствовало появление целого ряда логарифмических таблиц, вычисленных как самим Непером,так и рядом других известных в то время вычислителей (Х. Бриггс, И. Кепплер, Э. Вингэйт, А. Влах). Сама идея логарифмов в алгебраической интерпретации базируется на сопоставлении двух типов последовательностей: арифметической и геометрической .

Медиа-центр. . Это компьютеры, на которых хранятся все периферийные устройства и оборудование, чтобы дать компьютеру задачу захвата телевизора, прослушивания музыки и всего, что на экране телевизора, как правило, с помощью пульта дистанционного управления.

В области встроенных вычислений: телефон, электроприборы, автомобили, военное оружие и т.д. смарт-карты или промышленные компьютеры. Программное обеспечение обозначает первую часть компьютерной науки, организацию и обработку информации: программ. Мир мэйнфреймов классифицирует программное обеспечение в следующие категории.

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму.

Более просто, обычно есть три типа программного обеспечения. Программное обеспечение также классифицируется как свободное и проприетарное, хотя оба они иногда различаются в разной степени. У некоторых есть офисная функция или мультимедиа, например видеоигры. Некоторое программное обеспечение приобрело имена, известные всем.

Ядро операционной системы создает связь между аппаратным и программным обеспечением. Большая часть сегодняшнего программного обеспечения работает в графической среде для взаимодействия с пользователем. Разнообразие компьютерных систем выявило технику объединения лучших из каждой из этих вселенных: эмулятора. Это программное обеспечение, которое имитирует поведение другой системы в той, которую мы используем.

Механический этап развития вычислительной техники

Развитие механики в 17 в. стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда.

Первая механическая машина была описана в 1623 г. В. Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.

Французские аппаратные и программные переводы отлично сочетаются с этой оппозицией и этой взаимодополняемостью. Обычно программное обеспечение выполняет функцию, ожидаемую от своих пользователей. Тем не менее, существуют побочные эффекты. Вирусы существуют во внеклеточной или внутриклеточной форме.

Для небольших проектов это отражение часто игнорируется. Это общая причина ошибок и несоответствий, поэтому проект может включать подход к качеству и функциональности компьютерных систем для максимального контроля конечного продукта. Проект включает в себя следующие шаги.

Машина Шиккарда состояла из трех независимых устройств: суммирующего,множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения/вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов. Использованная принципиальная схема машины Шиккарда явилась классической - она (или ее модификации) использовалась в большинстве последующих механических счетных машин вплоть до замены механических деталей электромагнитными. Однако, из-за недостаточной известности машина Шиккарда и принципы ее работы не оказали существенного влияния на дальнейшее развитие ВТ , но она по праву открывает эру механической вычислительной техники.

После каждой из этих фаз у нас может быть шаг рецепта, где клиент будет проверять выбор и предложения мастера. Следует отметить, что эти три режима исполнения вообще несовместимы. После написания кода программа становится программным обеспечением. Часто для широкомасштабных проектов, требующих сотрудничества многих программистов или даже нескольких команд, часто используется общая методология проектирования и семинар по разработке программного обеспечения.

Во время программирования и до доставки конечного продукта программа проверяется на то, что она работает хорошо и что она соответствует ожиданиям конечного пользователя. Промежуточные тесты гарантируют, что каждый модуль кода выполняет функцию правильно: это модульные тесты. Окончательные тесты, которые проверяют правильную последовательность модулей и обработки, являются интеграционными тестами.

В машине Б. Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 г. первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности авто-матизации умственного труда. До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной. Именно машина Паскаля положила начало механического этапа развития ВТ.

Тем не менее, невозможно гарантировать идеальную коррекцию любого программного обеспечения таким образом, и поэтому эта фаза остается необходимой. Она также дополняет, когда речь идет об эволюции существующего приложения, Многочисленные автоматические тесты без регрессии Поскольку тесты не могут полностью гарантировать отсутствие ошибок, полезно дополнить их этапами проверки путем повторного чтения: существуют методы, чтобы попытаться сделать эту проверку исчерпывающей.

Статистика: создание программного обеспечения - сложная задача: около 31% ИТ-проектов заброшены до завершения, более 50% проектов стоят в два раза больше, чем первоначально предполагалось, и только 15% проектов заканчиваются вовремя и в соответствии с определенным бюджетом. Требования к обслуживанию существующего могут занимать до 50% персонала команды с программным обеспечением.

В 17-18 веках предлагался целый ряд различного типа и конструкции суммирующих устройств и арифмометров, пока в 19 в. растущий объем вычислительных работ не определил устойчивого спроса на механические счетные устройства и не способствовал их серийному производству на коммерческой основе.

Первый арифмометр, позволяющий производить все четыре арифметических операции, был создан Г. Лейбницем в результате многолетнего труда. Венцом этой работы стал арифмометр Лейбница, позволяющий использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения. По сравнению с машиной Паскаля было создано принципиально новое вычислительное устройство,существенно ускоряющее выполнение операций умножения и деления. Однако арифмометр Лейбница не получил распространения по двум основным причинам: отсутствие на него устойчивого спроса и конструкционной неточности, сказывающейся при перемножении предельных для него чисел.

В частности, благодаря разработке последовательных итераций, где фазы анализа, проектирования, реализации и тестирования повторяются несколько раз в течение всего срока действия проекта и производят каждый раз исполняемый продукт. Эти методы, таким образом, позволяют лучше управление затратами и особенно качество, в то же время значительно снижая риск несоблюдения пожеланий клиента.

Обмен данными: протоколы и стандарты

Информация, подлежащая лечению, должна быть. Байт может быть представлен последовательностью битов, которые составляют его, или парой шестнадцатеричных значений, более компактными. Выбор двоичного кода не является результатом мистики, а просто использует простые коммутационные схемы, которые имеют очень большие допуски и, следовательно, низкие затраты, представляет собой структурирование информации, позволяющей обмены между компонентами программного обеспечения и между аппаратными компонентами.

  • Биты обычно сгруппированы на восемь, чтобы составлять байты.
  • Для этого мы определяем языки и представительные формализмы.
Протоколы определяют один из способов продолжения, включая кодирование того, как взаимодействуют два объекта.

В 17-18 в.в. был предложен целый ряд вычислительных инструментов по образцу Паскаля и Лейбница (с той или иной степенью модерни-зации), на основе палочек Непера либо оригинальные разработки. Предложенные конструкции являлись отдельными множительными устройствами или комбинациями суммирующей и множительной частей.

Начало 19 в. характеризуется развитием вычислительных средств в трех основных направлениях: суммирующие, множительные устройства, а также (3) арифмометры; при этом, преобладающим становится раз-витие арифмометров.

В частности, мы говорим об коммуникационном протоколе, когда хотим определить механизмы управления на пути обмена информацией. Таким образом, протокол может определять. Некоторые протоколы определяются стандартами для обеспечения совместимости материалов или программного обеспечения, реализующего их. Другие стандарты определяют, все еще в области обмена данными.

Распределение аппаратного и компьютерного программного обеспечения

Что касается хранения информации, то есть устройство для физической записи его таким образом, чтобы информация была структурирована и представлена ​​для облегчения ее обработки. Это может быть предмет мебели, комната, здание, компьютерная база данных. . Исторически сложилось так, что информационные технологии были распространены крупными производителями, которые напрямую касаются своих клиентов, большинство из которых являются крупными счетами или государственными органами. Эти партнеры первоначально были одними брендами и часто работали в форме полу-эксклюзивный агент, а затем они со временем трансформировались в независимых мультибрендовых реселлеров.

В 1881 г. Л. Томас организовывает в Париже серийное производ-ство арифмометров. Конструкция его арифмометра основана на использовании ступенчатого валика Лейбница и явилась дальнейшим развитием арифмометра Лейбница, отличаясь рядом полезных конструкторских решений: удобной формой ввода числа, нали-ием противоинерционного устройства, механизма гашения числа и др. Такой арифмометр получил название томас-машины и его серийность была невелика - за весь 19 в. было выпущено около 2000 томас-машин. Однако важным достоинством томас-машин была их долговечность - арифмометр использовался даже при расчетах, связанных с подготовкой плана ГОЭЛРО в 1920 г.

Оптовики, будь то общие или специализированные, обращаются к множеству небольших торговых точек или сервисных компаний, для которых торговая деятельность является небольшим объемом деятельности. Помимо технических и технологических аспектов, описанных до сих пор, информатика - это совершенно отдельная научная дисциплина.

Классификация современных компьютерных систем. Архитектура и организация компьютеров большого и среднего класса. Архитектура и конфигурация персональных компьютеров. Следующие критерии могут быть использованы для классификации огромного множества компьютерных систем: производительности, назначения и технологии производства. Следующие основные классы компьютерных систем могут быть определены в соответствии с указанными выше критериями.

Важной вехой в развитии арифмометров следует считать создание в 1888 г. машины Болле, которая операцию умножения выполняла втрое быстрее существующих на то время арифмометров (именно поэтому машину называли множительной).

Увеличение во второй половине 19 в. вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышенные требования к ней. Существующие на тот момент различного типа вычислительные устройства решить эту задачу не могли. И только создание в 1874 г. В. Орднером (Рос-сия) своей модели арифмометра, в основе которой лежало специальной конструкции зубчатое колесо Орднера, можно считать началом математического машиностроения. На всем протяжении своего существования арифмометр Орднера совершенствовался и выпускался в нескольких вариантах, получив целый ряд высоких наград. Рост производства арифмометров Орднера продолжался как в СССР, так и за рубежом; с 1931 г. он полу-чает название Феликс, под которым хорошо известен и ныне существующим поколениям отечественных вычислителей.

Суперкомпьютеры, это машины, которые обычно изготавливаются по заказу или в небольших сериях, которые имеют конкретное применение в областях, требующих высокой вычислительной мощности и скорости выполнения - военные, исследования землетрясений, прогнозирование погоды, космические исследования, реальная компьютерная анимация и виртуальной реальности. Как правило, это многопроцессорные архитектуры, которые выполняют параллельную обработку информации. Особенностью этих компьютеров является то, что они производятся в семьях, причем одна семья содержит модели различной производительности и возможностей. Они чаще всего используются для создания централизованных автоматизированных систем обработки, поскольку они характеризуются высокой надежностью и стабильностью производительности. На этих машинах, как и в суперкомпьютерах, внешняя память организована таким образом, чтобы иметь на 100% надежность в работе. Они имеют производительность, аналогичную производительности малогабаритных моделей. Эти машины также используются для организации централизованных систем с меньшим объемом обработки информации, главным образом на уровне ведомств. Недавно, в связи с быстрым развитием микрокомпьютеров, производство этого класса постепенно исчезло; микрокомпьютеры это самый маленький класс компьютерных систем. Теперь на практике они являются наиболее распространенными вычислительными инструментами, в основном из-за их общей протяженности и универсальности. У них низкая цена, у них есть автономия и их можно использовать индивидуально. Они также имеют гибкую и открытую архитектуру, которая позволяет ему адаптироваться к потребностям пользователя или группы пользователей. Микрокомпьютеры характеризуются большим разнообразием видов.

Первоначально появление ЭВМ не очень существенно повлияло на выпуск и применение арифмометров прежде всего из-за их различных назначения, распространенности и стоимости. Однако, уже с 60-х годов в массовое использование все активнее проникают ЭКВМ (электронные клавишные вычислительные машины).

Особое место среди разработок механического этапа развития ВТ занимают работы Ч.Бэбиджа, с полным основанием считающегося родоначальником и идеологом современной ВТ . Среди работ Бэбиджа явно просматриваются два основных направления: разностная и аналитическая вычислительные машины.

Проект разностной машины был разработан в 20-х годах 19 в. и предназначался для табулирования полиномиальных функций методом конечных разностей. Основным стимулом в данной работе была настоятельная необходимость в табулировании функций и проверке существующих математических таблиц, изобилующих ошибками. Однако, данный проект не был завершен, но последователями Бэббиджа были созданы работающие разностные машины, которые нашли широкое применение в науке и технике.

Второй проект Бэбиджа - аналитическая машина, использующая принцип программного управления и явившуюся предшественницей современных ЭВМ. Данный проект был предложен в 30-е годы 19 в., а в 1843 г. Алой Лавлейс для машины Бэбиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли. Оба эти достижения можно считать выдающимися, как опередившими свою эпоху более, чем на столетие. Проект аналитической машины не был реализован, но получил весьма широкую известность и заслужил высокую оценку целого ряда ученых, в первую очередь, математиков. Ч. Бэбидж разработал множество чертежей самой машины, изготовил ряд ее блоков; его сын Генри пытался реализовать проект, но полностью он остался лишь на уровне эскизного проекта. Идея аналитической машины возникла у Бэбиджа в процессе работы над разностной маши-ной. Аналитическая машина предназначалась для вычисления любого алгоритма (в нашей терминологии) и была задумана чисто механической.

В начале 1836 г. Бэбидж уже четко представлял себе основную конструкцию машины, а в 1837 г. в статье "О математической производительности счетной машины" он достаточно подробно описывает свой проект.

Аналитическая машина состояла из следующих четырех основных частей:

    блок хранения исходных, промежуточных данных и результатов вычислений. Он состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру;

    блок обработки чисел из склада, названный мельницей (в современной терминологии - это арифметическое устройство). Организация блока была аналогична первому блоку;

    блок управления последовательностью вычислений (в современной терминологии - это устройство управления УУ);

    блок ввода исходных данных и печати результатов (в современной терминологии - это устройство ввода/вывода).

Ч. Бэбидж в своей машине использовал механизм, аналогичный механизму ткацкого станка Жаккарда, использующему специальные управляющие перфокарты. По идее Бэбиджа управление должно осуществляться парой жакардовских механизмов с набором перфо-карт в каждом.

Бэбидж имел удивительно современные представления о вычислительных машинах, однако имевшиеся в его распоряжении технические средства намного отставали от его представлений.

Основная заслуга А. Лавлейс состоит не только в создании первой программы для машины Бэбиджа, но и в полном и доступном описании машины, а также анализе ее возможностей для решения различных вычислительных задач. Наряду с этим, Лавлейс проводила широкую популяризацию идей Ч. Бэбиджа, сама проектировала некоторые узлы машины и исследовала вопросы применения двоичной с.с.,а также высказывает ряд идей, получивших широкое применение только в наше время.

Электромеханический этап развития вычислительной техники

Электро-механический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887 г.) до первой ЭВМ ENIAC (1945 г.). Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика,статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислите-льные устройства.

Классическим типом средств электро-механического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Г. Холлеритом в 1887 г. и состоял из: ручного перфоратора, сортировочной машины и табулятора. Используя идеи Жаккарда и Бэбиджа (или переоткрыв их заново),Г. Холлерит в качестве ин-формационного носителя использовал перфокарты (хотя им рассматривался и перфо-ленточный вариант); все остальные компоненты комплекса носили оригинальный харак-тер. Основным назначением комплекса являлась статистическая обработка перфокарт. В первых моделях комплекса использовалась ручная сортировка перфокарт (в 1890 г. замененная электрической), а табулятор был создан на основе простейших электроме-ханических реле. Первое испытание комплекса было произведено в 1887 г. в Балтиморе (США) при составлении таблиц смертности населения, основные же испытания уже модифицированного комплекса производились в 1889 г. на примере обработки итогов переписи населения в четырех районах Сент-Луиса (США). Основные испытания прошли весьма успешно и табулятор Холлерита очень быстро получил международное признание, используясь для переписей населения в России (1897 г.), США и Австро-Венгрии (1890), и Канаде (1891 г.).

В 1897 г. Холлерит организовал фирму, которая в дальнейшем стала называться IBM.

Значение работ Г. Холлерита для развития ВТ определяется двумя основными факторами. Во-первых, он стал основоположником нового направления в ВТ - счетно-перфорационного (счетно-аналитического), состоящего в применении табуляторов и сопутствующего им оборудования для выполнения широкого круга экономических и научно-технических расчетов. На основе данной ВТ создаются машинно-счетные станции для механизированной обработки информации, послужившие прообразом современных вычислительных центров (ВЦ ). В 20-30-е годы 20 в. применение счетно-перфорационной техники становится ведущим фактором развития ВТ; только появление ЭВМ ограничило ее применение.

Во-вторых, даже после прекращения использования табуляторов основным носителем информации (ввод/вывод) для ЭВМ остается перфокарта, а в качестве периферийных используются перфокарточные устройства, предложенные Холлеритом. Даже в наше время использование большо-го числа разнообразных устройств ввода/вывода информации не отменило полностью использования перфокарточной технологии.

Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов,из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

Используемая на первых порах для статистической обработки, перфорационная техника в последующем начинает широко использоваться для механизации бухучета и экономических задач,а также в ряде случаев и для расчетов научно-технического характера; в первую очередь для астрономических расчетов. В СССР первое применение перфорационной техники для астрономических расчетов относится к началу 30-х годов, а с 1938 - для математических исследований в АН СССР создается самостоятельная машино-счетная станция.

Заключительный период (40-е годы 20 в.) электро-механического этапа развития ВТ характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом. Наиболее крупные проекты данного периода были выполнены в Германии (К. Цузе) и США (Д. Атанасов, Г. Айкен и Д. Стиблиц). Данные проекты мож-о рассматривать в качестве прямых предшественников универсальных ЭВМ.

Конрад Цузе (K. Zuse) явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве (ЗУ). Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэбиджа - в ней не предусматривалась условная передача управления.

Следующая модель Z-2 не была за-вершена из-за призыва Цузе в армию, из которой он был демобилизован в связи с заинтересованностью его работами военного ведомства Германии. При финансовой поддержке военного ведомства Цузе в 1939-1941 г.г. создает модель Z-3, явившуюся первой программно-управляемой универсальной вычислительной машиной.

После завершения в 1941 г. машины Z-3 К. Цузе до конца войны интенсивно занимался вопросами ВТ .

Пос войны направление работ К. Цузе было ы основном связано с теоретическими исследованиями по вопросам программирования и архитектуры ВТ. Здесь им был высказан целый ряд весьма прогрессивных для своего времени идей, включая кле-точные вычислительные структуры, структуру команд ЭВМ, параллельное программирование и др.

В 1937 г. в США Дж. Атанасов начал работы по созданию ЭВМ, предназначенной для решения ряда задач математической физики. Им были созданы и запатентованы первые электронные схемы узлов ЭВМ, а совместно с К. Берри к 1942 г. была построена электронная машина ABC, которая оказала влияние на Д. Моучли из Муровской технической школы и ряд его идей существенно ускорил создание первой ЭВМ ENIAC в 1945 г.

В отличие от машины Z-3, судьба была намного более благосклонной к автоматической управляемой вычислительной машине Г. Айкена MARK-1, созданной в США в 1944 г. И до знакомства с работами Цузе научная общественность считала ее первой электромеханической машиной для решения сложных математических задач.

Последним крупным проектом релейной ВТ следует считать построенную в 1957 г. в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до ко-нца 1964 г. в основном для решения экономических задач.

Электронный этап развития вычислительной техники

В силу физико-технической природы релейная ВТ не позволяла существенно повысить скорость вычислений;для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

К началу 40-х г.г. 20 в. электроника уже располагала необходимым набором таких элементов. С изобретением М. Бонч-Бруеви-чем в 1913 г. триггера (электронное реле-двухламповый симметричный усилитель с положительной обратной связью в качестве базовой компоненты использует электронную вакуумную лампу триод, изобретенную в 1906 г.) появилась реальная возможность создания быстродействующей электронной ВТ .

Электронные вычислительные машины (ЭВМ) ознаменовали собой новое направление в ВТ, интенсивно развиваемое и в настоящее время в различных направлениях.

Первой ЭВМ (правда, специализированной, предназначенной для дешифровки) можно считать английскую машину Colossus, созданную в 1943 г. при участии А. Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием,однако была узко-специализированной.

Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 г. Первоначально предназначенная для решения задач баллистики,машина оказалась универсальной, т.е. способной решать различные задачи. Главным консультантом проекта являлся Д. Моучли, а главным конструктором - Д. Эккерт. Позднее их авторство электронной технологии для проектирования ЭВМ было оспорено - в 1973 г. федеральный Суд США постановил, что Моучли и Эккерт не создали ЭВМ, а заимствовали ее идею у Дж. Атанасова, хотя последний и не построил действующей модели своего компьютера.

Проект создания ENIAC , начатый в апреле 1943 г., был полностью завершен в декабре 1945 г. В качестве официальной апробации ЭВМ была выбрана задача оценки принципиальной возможности создания водородной бомбы. Машина успешно выдержала испытания,обработав около 1 млн. перфокарт фирмы IBM с исходными данными.

Еще до начала эксплуатации ENIAC Моучли и Эккерт по заказу военного ведомс-тва США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы. Такой подход (хранимые в памяти программы) устранял основной недостаток ENIAC - необходимость перекоммутации многих узлов машины, что при сложных программах требовало до двух дней. Данное обстоятельство не позволяло считать ENIAC полностью автоматической ЭВМ.

В EDVAC программа электронным методом записывалась в специальную память на ртутных трубках (линиях задержки), а вычисления производились уже в двоичной с.с., что позволило существенно уменьшить количество ламп и других элементов электронных цепей машины.

Полностью заверше-нная в 1952 г., ЭВМ содержала более 3500 ламп 19-ти различных типов и около 27000 других электронных элементов.

В конце 1944 г. к проекту в качестве научного консультанта был подключен 41-летний Джон фон Нейман,к тому времени уже имевший большой авторитет в научном мире как математик, внесший значительный вклад в квантовую механику и создавший математическую теорию игр. Интерес фон Неймана к компьютерам частично связан с его непосредственным участием в Манхэттенском проекте по созданию атомной бомбы, где он математически обосновал осуществимость взрывного способа детонации атомного заряда критической массы, а также работами по созданию водородной бомбы, требующими весьма сложных расчетов. Творчески переработав и обобщив материалы по разработке проекта, фон Нейман в июне 1945 г. готовит итоговый 101-страничный научный отчет, который содержал превосходное описание как самой машины, так и ее логических возможностей. Более того, фон Нейман в докладе на основе анализа проектных решений,а также идей А. Тьюринга по формальному универсальному вычислителю (впоследствии названному машиной Тьюринга) впервые представил логическую организацию компьютера безотносительно от его элементной базы, что позволило заложить основы проектирования ЭВМ.

В докладе выделено и детально описано пять базовых компонент универсального компьютера и принцип его функционирования архитектура фон Неймана:

    центральное арифметико-логическое устройство (АЛУ);

    центральное устройство управления (УУ),ответственное за функционирование всех основных компонент компьютера;

    запоминающее устройство (ЗУ);

    система ввода и вывода информации.

Была обоснована необходимость использования двоичной с.с., электронной техно-логии и последовательного порядка выполнения операций.

Принципы организации ЭВМ,предложенные фон Нейманом, стали общепринятыми.

Находясь в творческой командировке в группе разработчиков EDVAC и ознакомившись с идеями Дж. фон Неймана, М. Уилкс, вернувшись в Кэмбриджский университет (Англия), смог на два года раньше (в мае 1949 г.) завершить разработку первой в мире ЭВМ с хранимыми в памяти программами. Его компьютер EDSAC (Electronic Delay Storage Automatic Calculator) работал в двоичной с.с.,выполнял одноадресные команды в количестве 18 и оперировал как с короткими (17 бит), так и с длинными (35 бит) словами.

Механического этапа развития вычислительной техники занимают работы Чарльза Бэббиджа, ...

  • История развития вычислительной техники . Краткая историческая справка. Поколения ЭВМ. Перспектив

    Реферат >> Информатика

    3 Начальный этап развития вычислительной техники .............. стр. 4 Начало современной истории электронной вычислительной техники ………………………………...……. стр. ... используемого агрегата – арифмометра (механического вычислительного

  • История развития вычислительной техники (7)

    Лекция >> Информатика

    ... развития вычислительной техники План 1. Начальный этап развития вычислительной техники 2. Начало современной истории электронной вычислительной техники ... используемого агрегата – арифмометра (механического вычислительного устройства, способного выполнять 4 ...

  • История развития вычислительной техники (6)

    Контрольная работа >> Информатика

    Период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем...

  • Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах XX века, когда технической базой ВТ стала электроника и микроэлектроника, а основой для развития архитектуры компьютеров (называемых ранее ЭВМ) – достижения в области искусственного интеллекта.

    До этого времени в течение почти 500 лет ВТ сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления. Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе таких колес принадлежит Леонардо да Винчи.

    Первым реально осуществленным механическим цифровым вычислительным устройством стала "Паскалина" великого французского ученого Блеза Паскаля, которая представляла собой 6-ти (или 8-ми) разрядное устройство, на зубчатых колесах, рассчитанное на суммирование и вычитание десятичных чисел (1642 г.).

    Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление.

    В конце XVIII века во Франции произошли два события, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники. К таким событиям относятся:

     изобретение Жозефом Жакардом программного управления ткацким станком с помощью перфокарт;

     разработка Гаспаром де Прони, технологии вычислений, разделившей численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой.

    Указанные новшества позже были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств ВТ – переход от ручного к автоматическому выполнению вычислений по составленной программе . Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина состояла из пяти устройств: арифметическое (АУ); запоминающее (ЗУ); управления (УУ); ввода (УВВ); вывода (УВ).

    Именно из таких устройств и состояли первые ЭВМ, появившиеся спустя 100 лет. АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на тысячи 50-разрядных чисел). Для ввода данных и программы использовались перфокарты. Предполагаемая скорость вычислений - сложение и вычитание за 1 сек, умножение и деление - за 1 мин. Помимо арифметических операций имелась команда условного перехода.

    Следует отметить, что хотя и были созданы отдельные узлы машины, всю машину из-за ее громоздкости создать не удалось. Только зубчатых колес для нее понадобилось бы более 50 000. Изобретатель намечал использовать паровую машину для приведения в действие своей аналитической машины.

    В 1870 г. (за год до смерти Беббиджа) английский математик Джевонс сконструировал первую в мире "логическую машину", позволяющую механизировать простейшие логические выводы.

    Создателями логических машин в дореволюционной России стали Павел Дмитриевич Хрущев (1849-1909) и Александр Николаевич Щукарев (1884-1936), работавшие в учебных заведениях Украины.

    Гениальную идею Беббиджа осуществил американский ученый Говард Ай­кен, создавший в 1944 г. первый в США релейно-механический компьютер. Ее основные блоки – арифметики и памяти – были исполнены на зубчатых колесах. Если Беббидж намного опередил свое время, то Айкен, использовав все те же зубчатые колеса, в техническом плане при реализации идеи Беббиджа использовал устаревшие решения.

    Следует отметить, что десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать цифровую вычислительную машину с программным управлением. В этой машине впервые в мире была использована двоичная система исчисления. В 1937 г. машина Z1 произвела первые вычисления. Она была двоичной 22-х разрядной с плавающей запятой с памятью на 64 числа, и работала на чисто механической (рычажной) основе.

    В том же 1937 г., когда заработала первая в мире механическая двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированного компьютера, впервые в мире применив электронные лампы (300 ламп).

    В 1942-43 годах в Англии была создана (с участием Алана Тьюринга) вычислительная машина "Колоссус". Эта машина, состоящая из 2000 электронных ламп, предназначалась для расшифровки радиограмм германского вермахта. Поскольку работы Цузе и Тьюринга были секретными, о них в то время знали немногие и они не вызвали какого-либо резонанса в мире.

    Только в 1946 г. появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д. Мочли и П. Эккертом, с применением электронной техники. В машине использовалось 18 тысяч электронных ламп, и она выполняла около 3-х тыс. операций в сек. Однако, машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.

    Почти одновременно, в 1949-52 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭВМ "ЭДСАК", 1949 г.; Сергей Лебедев, ЭВМ "МЭСМ", 1951 г.; Исаак Брук, ЭВМ "М1", 1952 г.; Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭВМ "ЭДВАК", 1952 г.), создали ЭВМ с хранимой в памяти программой.

    В общем случае выделяют пять поколений ЭВМ.

    Первое поколение (1945-1954 ) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали для себя отдельных зданий.

    Основоположниками компьютерной науки по праву считаются Клод Шеннон – создатель теории информации, Алан Тьюринг – математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, – кибернетика – наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

    Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

    Но главные достижения этой эпохи принадлежат к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

    При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризовать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

    В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной.

    В эти годы производство компьютеров приобретает промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов.

    Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов.

    В 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

    На рубеже 60-х и 70-х годов двадцатого столетия (1969 г) зародилась первая глобальная компьютерная сеть ARPA, прототип современного Интернета. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

    Четвертое поколение (1975 – 1985) характеризуется все меньшим количеством принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

    Самая главная новация четвертого поколения – это появление в начале 80-х годов персональных компьютеров. Благодаря персональным компьютерам вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и миникомпьютеры по-прежнему в вычислительных мощностях отстают от больших машин, львиная доля новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана появлением и развитием именно этой техники.

    Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

    Некоторые характеристики вычислительной техники четырех поколений приведены в табл. 1.1.

    Таблица 1.1

    Поколения вычислительной техники

    Поколение

    Основной элемент

    Эл. лампа

    Транзистор

    Интегральная схема

    Большая интегральная схема (микропроцессор)

    Количество ЭВМ

    в мире (шт.)

    Десятки тысяч

    Миллионы

    Размеры ЭВМ

    Значительно меньше

    микроЭВМ

    Быстродействие (условное)операций/ сек

    Несколько единиц

    Несколько десятков

    Несколько тысяч

    Несколько десятков тысяч

    Носитель информации

    Перфокарта,

    Перфолента

    Магнитная

    Пятое поколение (1986 до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий, должны удовлетворять следующим качественно новым функциональным требованиям:

     обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;

     обеспечить возможность обучаемости, ассоциативных построений и логических выводов;

     упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

     улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

     обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

    В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем