Самодельный динамик для сабвуфера. Простой самодельный усилитель для сабвуфера

28.01.2019

Качественный фирменный сабвуфер стоит дорого. Объяснений этому много: это и особые акустические требования к корпусу, и высококачественный динамик, и большая мощность выходного каскада, и особая, очень тщательная заводская регулировка.

Итак, корпус. На проявляются все недоработки любой акустической системы. Резонансные частоты приводят к нежелательным вибрациям, ощущаемым как дребезжание. Для того чтобы избежать неправильного звучания, корпус сабвуфера забивают звукопоглощающими волокнистыми наполнителями, но если форма и размеры рассчитаны и подобраны неверно, то такая мера даст только частичное улучшение.

Динамик - очень важный элемент конструкции. Его мощность должна быть не менее 100 Ватт, а характеристики обязаны предусматривать воспроизведение инфрачастот. Сейчас они производятся относительно небольшие - от 6 до 15 дюймов в диаметре.

Собрать усилитель для может опытный радиолюбитель, имеющий практику монтажа и настройки сложной аппаратуры. Дело это непростое, несмотря на то, что современные полупроводниковые детали имеют высокую степень интеграции. Требуется не только уметь читать схемы и разбираться в принципе работы усилителя низкой частоты, но и владеть техникой травления плат и другими полезными навыками, включая такое нехитрое дело, как качественная пайка.


Собравшись изготовить усилитель для сабвуфера своими руками, сразу нужно определиться в назначении устройства. Если оно предназначено для работы в салоне автомобиля, то требования к нему будут одни, а если для домашнего кинотеатра - то другие.

В первом случае напряжение питания ограничивается рабочей величиной бортовой электросети, обычно это 12 Вольт с минусом на корпусе. Задача упрощается тем, что мощного силового трансформатора, усилителя и стабилизатора не требуется. Зато придется собирать схему самостоятельно. Хорошие отзывы получили TDA7293, выдерживающие высокий выходной ток и обеспечивающие достаточную мощность (до 100 Ватт) для раскачки басов.

Если самодельный усилитель для сабвуфера предназначен для домашнего кино, то требования другие. Можно, собственно, пойти по тому же пути и собрать его по аналогичной схеме, но потребуется достаточно мощный трансформатор с блоком питания, причем все это нужно уместить внутри корпуса, где уже установлены довольно объемный громкоговоритель и фазоинвертор. При этом не следует забывать и о теплоотдаче, радиаторы тоже займут свое место.

Есть еще один способ решения задачи - не собирать усилитель для сабвуфера своими руками, а использовать уже готовую схему, например, от усилителей «Амфитон» или «Бриг-001» еще советского производства. Приобрести их можно по вполне доступной цене, особенно если один из каналов не работает. Удобная модульная система, уже готовый блок питания и регулировки создают все условия для использования этой высококачественной техники, и можно не ломать себе голову над тем, как сделать усилитель для сабвуфера.

LC-фильтры, ограничивающие средних и верхних частот, следует располагать и на входе, и на выходе устройства, непосредственно перед динамиком. Собирая усилитель для сабвуфера своими руками или используя готовую схему, следует позаботиться и об ограничении шумов, и о долговечной и надежной работе этого электронного устройства, чувствительного к перегрузкам.

И еще хочется сказать, что не стоит слишком навязчиво демонстрировать результаты своих трудов соседям, они не оценят.


Здесь мы рассмотрим классический качественный 100-ваттный усилитель для сабвуфера для авто. Этот автомобильный усилитель для саба гораздо мощнее, чем всем известные , которые с трудом дают 50 ватт. Основа - проверенная многими очень достойная микросхема ТДА7294 плюс преобразователь 12 - 2х40 В. Имеется встроенный НЧ фильтр, причём все разместилось на одной односторонней печатной плате 75 х 125 мм. Вот рисунки . Схема состоит из трех блоков:

Преобразователь питания УМЗЧ сабвуфера

Этот конвертер на основе TL494 (KA7500) драйвера. Есть защита от перенапряжения - отключение, если напряжение превышает 15 вольт на вход. Защита от недонапряжения будет беречь от сильного разряда батареи - драйвер будет отключен, если напряжение упадает до 9 В. Токовая защита заботиться о транзисторах выхода и общей безопасности всей схемы. Зеленый диод означает нормальную работу, красный диод - одна из защит отключила драйвер. Схема плавного пуска позволяет медленно запустить преобразователь несмотря на большие емкости на выходе.


Трансформатор вы можете сделать свой собственный или взять один из блока ATX (в блоке питания компьютера). Используйте 5V и 12V линии, будет коэфициент трансформации - 2,4x. Это означает, что, если мы подадим 14 В аккумуляторного напряжения по 5 В линии, мы получаем в 2,4x больше напряжения на 12 В линии - примерно +/-33 В, чтобы питать микросхему усилителя. Это очень хорошее и простое решение. Частота переключения - 50 кГц. Изменить её можно путем установки конденсатора на pin5 TL494. Например 1nF даст частоту около 50 кГц, 1,5nF - 30 кГц.


Вы можете заменить полевые IRFZ44N на другие транзисторы, нужно только обеспечить более 100 Вт выходной мощности, а IRFZ44N до 300 ватт.

Предварительный усилитель и фильтр низких частот

Это простая схема с одним операционным усилителем TL072. Питается от симметричного двухполярного напряжения +12V/-12V, формируемых стабилитронами на 12 В из основных.


Усилитель мощности на микросхеме

Микросхема TDA7294 в типовом включении, ничего особенного. Контакты MUTE и ST-BY постоянно подключены к плюсу через нужные цепочки R-C.


  1. Используйте толстые провода в силовых цепях. Входной конденсатор С4 должен иметь, по крайней мере, 4700uF ёмкости, от его эффективности зависит выходная мощность. Обязательно используйте 10 А предохранитель на аккумуляторной линии. Предупреждаем - схема не для начинающих, запуск инвертора требует некоторых знаний и оборудования. Когда делаете первый запуск, используйте питание с ограничением тока.
  2. Масса разведена удачно - опасались, что появится фон, шум, самовозбуждение, но оказалось, что всё нормально. В начале были проблемы с лёгким гулом в фильтре, но оказалось, что виновата была LM358 - эта микросхема совершенно не подходит для качественного аудио. Обычная TL072 или NE5532 гораздо лучше.
  3. Преобразователь устойчив к короткому замыканию во вторичной обмотке и выходных линиях питания - мгновенно отключается, так что не бойтесь его сжечь при случайных КЗ на плате УМЗЧ. Про корпус УНЧ для автомобильного сабвуфера сказать нечего - кто какой хочет, такой и применит - главное грамотно настроить саму схему, а дальше дело фантазии...

Началось все с того, что полтора года назад купил двенадцатидюймовый низкочастотный динамик с целью собрать автомобильный сабвуфер. Но времени не хватало, и динамик разлежался у меня в квартире. И вот полтора года спустя, наконец, решился собрать, но не автомобильный, а активный домашний сабвуфер. В этой статье буду описывать пошаговую инструкцию по расчету и сборке сабвуферов такого типа.

1. Расчет и конструирование корпуса (ящика) сабвуфера

Для расчета корпуса сабвуфера нам понадобятся:

    Параметры Тиля-Смолла для громкоговорителя,

    Программа для расчета акустических оформлений JBL Speakershop (ссылка для скачивания в конце статьи)

1.1.Измерение параметров Тиля-Смолла для громкоговорителя

Обычно эти параметры указываются производителем в паспорте громкоговорителя или на их сайте. Но сейчас большинство громкоговорителей, продающихся на рынках (в том числе и мой громкоговоритель), не имеют указанных этих параметров или не соответствуют им (несмотря на многочисленные попытки, мне так и не удалось найти мой динамик в интернете, а о параметрах Тиля-Смолла уже и речи не могло быть). Поэтому нам придется измерять все самому.

Для этого нам понадобится:

    Компьютер или ноутбук с ХОРОШЕЙ (то есть с линейной АЧХ) звуковой картой,

    Программный генератор звукового сигнала, использующий выход наушников звуковой карты (мне лично нравиться программа NCH Tone Generator-ссылка для скачивания в конце статьи),

    Вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ,

    Ящик с фазоинвертором,

    Резистор 150-220Ом,

    Разъемы, провода и т д……..


1.1.1. Сначала проверим линейность АЧХ звуковой карты. Существует большое количество программ, которые автоматически измеряют АЧХ в диапазоне 20-20000Гц (при подключенном состоянии выхода наушников к входу микрофона звуковой карты). Но здесь я буду описывать ручной метод измерения АЧХ в диапазоне 10-500Гц (для измерения параметров Тиля Смолла низкочастотного излучателя важен только этот диапазон). Если под рукой не оказался вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ, не расстраивайтесь, можно использовать обычный недорогой мультиметр (Тестер). Обычно такие мульиметры измеряют переменное напряжение с точностью 0,1В а постоянное напряжение с точностью 0,1 мВ. Чтобы измерять переменное напряжение порядка несколько мВ, нужно всего лишь поставить диодный мост перед входом мультиметра и измерять в режиме вольтметра постоянного напряжения в диапазоне до 200мВ.

Сначала подключаем вольтметр к выходу наушников (Или к правому, или к левому каналу).


Отключаем все звуковые эффекты и эквалайзеры, открываем свойства динамиков и ставим уровень громкости на 100%.

Открываем программу NCH Tone Generator, нажимаем “Options”, в “Tone Interval” выбираем “Frequency”, и ставим шаг на 1Гц.

Закрываем “Options”, ставим уровень громкости на 100%, ставим начальную частоту на 10Гц и нажимаем “Play”. Кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц.


При этом смотрим на значение напряжения на вольтметре. Если максимальная разница амплитуды находится в пределах 2дБ (1,259 раза) то такая звуковая карта годиться для измерения параметров динамика. У меня, например, максимальное значение составляло 624мВ, а минимальное 568мВ, 624/568=1,09859 (0,4дБ), что вполне допустимо.

1.1.2. Перейдем к долгожданным параметрам Тиля-Смолла. Минимум параметров, по которым можно рассчитать и сконструировать акустическое оформление (в данном случае сабвуфер) это:

    Резонансная частота (Fs),

    Полная электромеханическая добротность (Qts),

    Эквивалентный объем (Vas).

Для более профессионального расчета понадобится еще больше параметров, такие как механическая добротность (Qms), электрическая добротность (Qes), чувствительность (SPL), и т д.

1.1.2.1. Определение резонансной частоты (Fs) громкоговорителя.

Собираем вот такую схему.



Динамик при этом должен находиться в свободном пространстве как можно подальше от стен, пола и потолка (я повесил его с люстры). Снова открываем программу NCH Tone Generator, настаиваем громкости так, как было описано выше, ставим начальную частоту на 10Гц и начинаем плавно, шагом 1Гц увеличивать частоту. При этом опять же смотрим на значение вольтметра, которое сначала будет возрастать, достигнет максимальной точки (Umax) на частоте собственного резонанса (Fs), и начнет уменьшаться до минимальной точки (Umin). При дальнейшем увеличении частоты напряжение будет плавно возрастать. График зависимости напряжения (активного сопротивления динамика) от частоты сигнала имеет такой вид.


Та частота, на которой значение вольтметра максимальная, и есть приблизительная резонансная частота (при шаге 1Гц). Чтобы определить точную резонансную частоту, нужно в области приблизительной резонансной частоты менять частоту шагом уже не на 1Гц, а 0,05Гц (точность 0,05Гц). Записываем резонансную частоту (Fs), минимальное значение вольтметра (Umin), значение вольтметра на резонансной частоте (Umax) (в дальнейшем они пригодятся для расчета следующих параметров).

1.1.2.2. Определение полной электромеханической добротности (Qts) громкоговорителя.
Находим UF1,F2 по следующей формуле.

Изменяя частоту, добиваемся значений вольтметра соответствующих напряжению UF1,F2. Частот будет две. Одна ниже резонансной частоты(F1), другая выше (F2).



Проверять правильность расчетов можно этой формулой.

Если разница Fs’ и Fs не превышает 1Гц, то смело можно продолжить измерения. Если нет, то надо все сделать сначала. Находим механическую добротность (Qms) по этой формуле.

Электрическую добротность (Qes) находим по этой формуле.

И наконец, определяем полную электромеханическую добротность (Qts) по этой формуле.

1.1.2.3. Определение эквивалентного объема (Vas) громкоговорителя.

Для определения точного эквивалентного объема нам понадобиться заранее изготовленный, прочный, герметичный ящик-фазоинвертор с отверстием для нашего динамика.

Объем ящика зависит от диаметра динамика, и выбирается согласно этой таблице.


Закрепляем динамик к ящику и подключаем к схеме описанной выше (Рис.9). Опять открываем программу NCH Tone Generator, ставим начальную частоту на 10Гц и кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц. При этом смотрим на значение вольтметра, которое опять же начнет возрастать до частоты FL ,потом уменьшаться, достигнув минимальной точки на частоте настройки фазоинвертора (Fb), снова возрастать и достичь максимальной точки на частоте FH, потом уменьшатся и снова медленно возрастать. График зависимости напряжения от частоты сигнала имеет вид двугорбого верблюда.




И наконец, находим эквивалентный объем (Vas) по этой формуле (где Vb-объем ящика с фазоинвертором).

Повторяем все наши измерения 3-5 раз и берем среднее арифметическое значение всех параметров. Например, если мы получили значения Fs соответственно 30,45Гц 30,75Гц 30,55Гц 30,6Гц 30,8Гц, то берем (30,45+30,75+30,55+30,6+30,8)/5=30,63Гц.

В результате всех моих измерений я получил следующие параметры для моего динамика:

  • Vas=112.9≈113 л

1.2.Моделирование и расчет корпуса (ящика) сабвуфера программой JBL Speakershop.

Существует несколько вариантов акустических оформлений, из которых наиболее распространены следующие варианты.

    Vented box-ящик с фазоинвертором,

    Band-pass 4-го, 6-го и 8-го порядка,

    Passive radiator-ящик с пассивным излучателем,

    Closed box-закрытый ящик.


Тип акустического оформления выбирается исходя от параметров Тиля-Смолла громкоговорителя. Если Fs/Qts<50, то такой громкоговоритель можно использовать исключительно в закрытом оформлении, если Fs/Qts>100, то исключительно в Vented box или Band-pass или Closed box. Если 50

Сначала скачиваем и устанавливаем программу JBL Speakershop. Эта программа написана для Windows XP и не работает в Windows 7. Чтобы заставить программу работать в Windows 7, нужно скачать и установить виртуальную машину Windows Virtual PC-XP Mode (скачать можно с официального сайта Microsoft), и запустить установку JBL Speakershop через нее. Открывать JBL Speakershop тоже нужно через виртуальную машину. После открывания программы видим вот такой интерфейс.


Нажимаем “Loudspeaker” и выбираем “Parameters--minimum”, в открытом окне пишем, соответственно, значение резонансной частоты (Fs), значение эквивалентного объема (Vas), значение полной электромеханической добротности (Qts) и нажимаем “Accept”.

При этом программа предложит два оптимальных (с наиболее ровной АЧХ) варианта, один в закрытом оформлении (Closed box), другой в Vented box (ящик с фазоинвертором). Нажимаем “plot”(и в области Vented box и в области Closed box) и смотрим на график АЧХ. Выбираем то оформление, АЧХ которого наиболее подходит к нашим требованиям.


В моем случае это Vented box, поскольку на низких частотах (20-50Гц) у Closed box спад амплитуды намного больше, чем у Vented box (Рисунок выше).

Если объем ящика в оптимальном варианте устраивает, то можно построить ящик с таким объемом и насладится звучанием сабвуфера. Если нет (при слишком больших объемах), то нужно задать свой объем (чем ближе к оптимальному объему, тем лучше) и рассчитать оптимальную частоту настройки фазоинвертора.


Для этого в области Vented box нажимаем “Custom”, в открывшемся окне пишем свой объем ящика, нажимаем “Optimum Fb” (при этом программа рассчитает оптимальную частоту настройки фазоинвертора, при котором АЧХ акустического оформления будет наиболее линейной) а потом “Accept”.

Нажимаем “Box” и выбираем “Vent…”, в открывшемся окне в области “Custom” пишем диаметр трубы (Dv), который будем использовать в качестве фазоинвертора. Если будем использовать два фазоинвертора, то ставим точку на “Area” и пишем суммарную площадь сечения труб.


Нажимаем “Accept” и в области “Custom” на строке Lv появится длина трубы фазоинвертора. Теперь, когда мы знаем внутренний объем ящика, диаметр и длину трубы фазоинвертора, то смело можно перейти к конструированию акустического оформления, однако если уж очень хочется узнать оптимальное соотношение сторон ящика то можно нажать “Box”, выбрать “Dimensions…”.


1.3.Конструирование корпуса (ящика) сабвуфера

Для получения высококачественного звучания необходимо не только правильно рассчитать, но и тщательно изготовить корпус акустического оформления. После определения внутреннего объема ящика, длины и диаметра трубы фазоинвертора, можно смело поступить к изготовлению корпуса сабвуфера. Материал ящика должен быть достаточно прочным и жестким. Наиболее подходящий материал для корпусов акустических оформлений большой мощности является двадцатимиллиметровый МДФ. Стены ящика крепятся друг к другу саморезами, а щели между ними намазываются герметиком или силиконом. После изготовления ящика делаются отверстия для ручек, и приступают к отделке внешней поверхности. Все неровности выровняются с помощью замазки или эпоксидной смолы (в замазку я добавляю немножко клея ПВА, что предотвращает появление трещин со временем и снижает уровень вибраций). После высыхания замазки поверхности нужно отшлифовать до получения идеально ровных стен. Готовый ящик можно как покрасить, так и покрыть самоклеющейся декоративной пленкой, или просто приклеить плотную ткань. Изнутри к стенам ящика клеится звукопоглощающий материал, состоящий из ваты и марли (в моем случае я приклеил ватину). В качестве фазоинвертора можно использовать пластиковую канализационную трубу или бумажную стержень от разных рулонов, а так же готовый фазоинвертор который можно купить почти в любом музыкальном магазине.

Корпус активного сабвуфера состоит из двух отсеков. В первом отсеке располагается собственно громкоговоритель, а во втором вся электрическая часть (формирователь сигнала, усилитель, блок питания……). В моем случае я расположил блок сумматоров и блок фильтров в отдельном отсеке от блока усилителя мощности, блока питания и блока охлаждения. Изнутри к стенам отсека блока сумматоров и блока фильтров приклеил фольгу, которую подключил к земле (GND). Фольга предотвращает воздействие внешних полей и уменьшает уровень шумов.



Если будете использовать мои печатные платы, то эти отсеки должны иметь следующие размеры.









2. Электрическая часть активного сабвуфера

Перейдем к электрической части активного сабвуфера. Общая схема и принцип работы устройства представляется этой схемой.


Устройство состоит из четырех блоков, собранных на отдельных печатных платах.

    Блок сумматоров (Summators),

    Блок фильтров (Subwoofer driver),

    Блок усилителя мощности (Power amplifier),

    Блок питания (Power supply) и блок охлаждения (Heatsink fun).

Сначала звуковой сигнал поступает в блок сумматоров (Summators), где происходит суммирование сигналов правого и левого каналов. Потом поступает в блок фильтров (Subwoofer driver), где идет формирование сигнала сабвуфера, что включает в себя регулятор громкости, subsonic filter (фильтр инфра низких частот), bass booster (увеличение громкости на определенной частоте) и Crossover (фильтр нижних частот). После формирования сигнал поступает в блок усилителя мощности (Power amplifier), а потом в громкоговоритель.
Обсудим эти блоки по отдельности.

2.1.Блок сумматоров (Summators)

2.1.1.Схема

Сначала рассмотрим схему сумматоров, приведенную на рисунке ниже.

Звуковой сигнал с внешних устройств (компьютер, CD-плеер……..) поступает в блок сумматоров, который имеет 6 стерео входов. 5 из них представляют собой обычные линейные входы, отличающийся друг от друга только типом разъема. А шестой это высоковольтный вход, к которому можно подключать выход динамиков (например, музыкальный центр или автомагнитола, которые не имеют линейного выхода). Каждый вход имеет отдельный сумматор на операционных усилителях, смещающий сигналы правого и левого каналов, что предотвращает поступление звукового сигнала с одного внешнего устройства в другую, при этом дает возможность одновременно подключать к сабвуферу несколько внешних устройств. А также имеются выходы (5 выходов, 6-ой просто не поместился на плате, поэтому и не поставил), которые дают возможность подать тот же сигнал, который поступает в сабвуфер, к входу широкополосной стерео системе. Это очень удобно, когда источник звука имеет только один выход.



2.1.2.Компоненты

В качестве операционных усилителей использованы TL074 (5шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные), но если уж очень хочется, можно поставить специальные аудио конденсаторы (конденсаторы, предназначенные для использования в высококачественных аудио системах). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Катушки L1-L4 содержат 20 витков, намотанных медным проводом с диаметром 0,7мм, на стержне гелевой ручки (3мм). Также использованы разъемы типов RCA, 3.5mm audio jack, 6.35mm audio jack, XLR, WP-8.


2.1.3.Печатная плата





Печатная плата изготовлена по лазерно-утюжной технологии (мой видео урок по изготовлению печатных плат в домашних условиях). После пайки деталей печатную плату следует покрыть цапонлаком, чтобы избегать от окисления меди.

2.1.4.Фото готового блока сумматоров






Питается блок сумматоров от двухполярного источника питания напряжением ±12В. Входное сопротивление составляет 33кОм.

2.2.Блок фильтров (Subwoofer driver)

2.2.1.Схема

Рассмотрим схему драйвера сабвуфера, приведенную на рисунке ниже.

Суммированный сигнал с блока сумматоров поступает в блок фильтров, который состоит из следующих частей:

    Регулятор громкости (volume regulator),

    Фильтр инфра низких частот (subsonic filter),

    Усилитель баса определенной частоты (bass booster),

    Фильтр нижних частот (crossover).

Регулирование громкости происходит на двух уровнях. Первый при входе сигнала в блок фильтров, который уменьшает уровень собственных “шумов” блока сумматоров, второй при выходе сигнала с блока фильтров, который уменьшает уровень собственных “шумов” блока фильтров. Регулируется громкость с помощью переменного резистора VR3. После первого уровня регулирования громкости сигнал поступает в так называемый “бас бустер”, представляющее собой устройство, которое увеличивает амплитуду сигналов определенной частоты. То есть, если частота настройки бас бустера вставлен, например на 44Гц, а уровень усиления на 14дБ, то АЧХ имеет такой вид (Ряд1 ).


Ряд2 - частота настройки=44Гц, уровень усиления=9дБ,
Ряд3 - частота настройки=44Гц, уровень усиления=2дБ,
Ряд4 - частота настройки=33Гц, уровень усиления=3дБ,
Ряд5 - частота настройки=61Гц, уровень усиления=6дБ.

Частота настройки бас бустера вставляется при помощи переменного резистора VR5 (в пределах 25…125Гц), а уровень усиления резистором VR4 (в пределах 0…+14дБ). После бас бустера сигнал поступает в фильтр инфранизких частот (subsonic filter), который представляет собой фильтр, срезающий нежелательные, ультранизкие сигналы, которые уже не слышимы для человека, но могут сильно перегрузить усилитель, тем самым уменьшая действительную выходную мощность системы. Частота среза фильтра регулируется с помощью переменного резистора VR2 в пределах 10…80Гц. Если, например, частота среза вставлена на 25Гц, то АЧХ имеет следующий вид.


После фильтра инфранизких частот сигнал поступает в фильтр нижних частот (crossover), который срезает верхние, ненужные для сабвуфера (средние + высокие) частоты. Частота среза регулируется при помощи переменного резистора VR1 в пределах 30…250Гц. Крутизна затухания составляет 12дБ/октава. АЧХ имеет такой вид (при частоте среза 70Гц).


2.2.2.Компоненты

В качестве операционных усилителей использованы TL074 (2шт.), TL072 (1шт.) и NE5532 (1шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Также использованы три сдвоенных (50кОм-2шт., 20кОм-1шт.) и два счетверенных переменных (50кОм-6шт.) резисторов. В качестве счетверенных переменных резисторов можно использовать два сдвоенных.

2.2.3.Печатная плата


Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

2.2.4.Фото готового блока фильтров





Питается блок фильтров от двухполярного источника питания напряжением ±12В.

2.3.Блок усилителя мощности (Power amplifier).

2.3.1.Схема

В качестве усилителя мощности используется усилитель Энтони Холтона с полевыми транзисторами в выходном каскаде. Статей описывающих принцип работы, сборку и настройку усилителя в интернете очень много. Поэтому я ограничусь вложением схемы и моей версии печатной платы.



2.3.2.Печатная плата





Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи. Питается блок усилителя мощности от двухполярного источника питания напряжением ±50…63В. Выходная мощность усилителя зависит от напряжения питания и числа пар полевых транзисторов (IRFP240+IRFP9240) в выходном каскаде.

2.4. Блок питания и блок охлаждения (Power supply)

2.4.1.Схема



2.4.2.Компоненты

В качестве трансформатора питания можно использовать как готовый, так и самодельный трансформатор мощностью приблизительно 200Вт. Напряжения вторичных обмоток показаны на схеме.




Диодный мост Br2 рассчитан на ток 25А. Конденсаторы C1…C12,С29…С31 должны иметь номинальное напряжение 25В. Конденсаторы C13…C28 должны иметь номинальное напряжение 63В (при напряжении питания ниже 60В), или 100В (при напряжении питания выше 60В). В качестве неполярных конденсаторов лучше использовать пленочные конденсаторы. Все резисторы рассчитаны на мощность 0,25Вт. Терморезистор R5 намазывается термопастой и прикрепляется к радиатору усилителя. Рабочее напряжение вентилятора 12В.

2.4.3.Печатная плата


Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

3.Заключительный этап сборки сабвуфера


Блок питания и блок охлаждения.lay
Фронтальный панель



ID: 1448

Как вам эта статья?

Представляю конструкцию самодельного автомобильного усилителя, который предназначен для питания сабвуферных головок средней мощности. Данный усилитель собран на широко-популярной микросхеме TDA 7294, мощность под синусом 1 кГц составляет порядка 100 ватт. Максимальная мощность усилителя составляет около 150 ватт, конечно же это недолговременная, а кратковременное мощность.

Для питания микросхемы от бортовой сети автомобиля нужен преобразователь напряжения, который будет повышать стандартное 12 вольт от автомобиля в двухполярное напряжение повышенного номинала, для того чтобы обеспечить нужные параметры для питание микросхемы. Преобразователь является самым сложным в любом автомобильном усилителе, но для получения хорошего звука, без него не обойтись.




Преобразователь напряжения собран по стандартной схеме с применением генератора TL494, это двухтактный ШИМ контроллер, который включен по схеме генератора импульсов, рабочая частота схемы порядка 50 кГЦ. Это двухтактный инвертор без защит, имеет также силовые ключи.


Корпус взял от инвертора 12-220 Вольт. Он сделан целиком из алюминия, что и является теплоотводом, поэтому активного охлаждения в виде кулера не использовал. Перегрев в данном случае не такой уж и большой, прогреется только силовые компоненты - это мощные полевые транзисторы преобразователя и сама микросхема.



Напомним, что микросхема работает в классе AB, следовательно, на ней должен наблюдаться перегрев,если учесть что мощность тут не маленькая. Но так как охлаждение довольно хорошее, боятся нечего.

Трансформатор намотан на ферритовом кольце (я использовал кольцо из электронного трансформатора на 150 ватт, также можете взять кольца марки 1500/2000/3000НМ, сохраняя параметры намотки). Первичная обмотка намотка из 10 витков с отводом от середины. Мотать витки нужно равномерно, растягивая по всему кольцу.






Намотка каждого плеча делалась 6-ю жилами, проводом 0,8 мм (каждая жила). Вторичная обмотка состоит из 40 витков, с отводом от середины, провод в 3 жилы с диаметром 0,8 мм. Мотаем по принципу первого.

Расчет сделал на опытах, так как использовать специальные программы для расчета трансформаторов я не люблю. Далее, соединяем начало одного плеча первичной обмотки к концу второго плеча той же обмотки. Со вторичной обмоткой делаем тоже самое (фазируем), так мы получаем отвод от средней точки, на который подается плюс силового питания 12 Вольт по схеме. Так фазировку мы сделали идем дальше.


Фильтр я поставил на входе и на выходе преобразователя. То что поставлено на входе состоит из конденсатора и дросселя. Кстати дроссель намотан на ферритовом стержне, обмотка намотана из одножильного провода с диаметром 1. 5 мм, количество витков порядка 7.

Есть также 2 электролита на 25 вольт, 2200 мф, параллельно им подключен пленочный конденсатор с емкостью 0.1 мкФ, напряжения этого конденсатора не принципиально, можно использовать любые пленочные конденсаторы практически с любым напряжением.
В схеме с генератора TL494, состоит из 2 маломощных биполярных транзисторов прямой проводимости, которые работают в качестве драйвера.


Они предназначены для того, чтобы вовремя разрядить затвор одного из плеча полевого транзистора на землю, когда открывается второй. Если драйвер будет работать неправильно, один из транзисторов откроется, в то время, как другой еще не закрылся, то один из транзисторов выйдет из строя.

На входе питания установлен небольшой фильтр, который состоит из лц цепочки-это дроссель.





Также хочу заметить, что пленочные конденсаторы (на входе и выходе) не принципиальны,их вообще удалить из схемы.

Переменное напряжения со вторичной обмотки трансформатора выпрямляется 4 мощным диодами серии MUR 460, это довольно мощные и быстрые диоды на 600 Вольт, ток, допустимый через диоды составляет 4 Ампера.


После диодов поставленные еще два дросселя, намотаны также на ферритовых стержнях, каждый дроссель состоит из 7 ветков, провод на сей раз миллиметровый. Но можно найти готовые дросселя в блоках питания, в основном компьютерных. После них применены 2 электролита на каждое плечо, емкость 2200 мкф при напряжении 50 Вольт.
Использовал полевые ключи серии IRFZ46, хотя можно и IRFZ40/40/48, укреплял их к корпусу через слюдяные прокладки и шайбы.


Фильтр низких частот (ФНЧ) выполнен всего на одной микросхеме, типа LM324 . Схема является одновременно и фильтром и сумматором. Имеется плавная регулировка частоты, т.е. можно настроить частоту саба под свой вкус.

Мощность преобразователя напряжения составляет порядка 200 ватт, при желании можно подключить к ней 2 микросхемы типа TDA7294 или TDA7293. Усилитель собрал на отдельной плате, для удобства, и укреплял через прокладку к корпусу. Схема стандартная (из даташита) , без каких-либо изменений.

В случае подключение TDA7293, нужно учитывать то что она потребляет больше, поскольку отдает выходную мощность порядка 140 ватт.


Данный усилитель отличный вариант для самодельного автомобильного сабвуфера, как простой и довольно высококачественный вариант, который вполне способен питать довольно мощные динамические головки. Можно также подключить и широкополосную акустику, такие как например колонки S90. Также хочу заметить что затраты не большие, где-то в районе 30-40$, учитывая корпус и силовые клеммы.

Началось все с того, что полтора года назад купил двенадцатидюймовый низкочастотный динамик с целью собрать автомобильный сабвуфер. Но времени не хватало, и динамик залежался у меня в квартире. И вот полтора года спустя, наконец, решился собрать, но не автомобильный, а активный домашний сабвуфер. В этой статье буду описывать пошаговую инструкцию по расчету и сборке сабвуферов такого типа.

1. Расчет и конструирование корпуса (ящика) сабвуфера

Для расчета корпуса сабвуфера нам понадобятся:

  • Параметры Тиля-Смолла для громкоговорителя,
  • Программа для расчета акустических оформлений

1.1.Измерение параметров Тиля-Смолла для громкоговорителя

Обычно эти параметры указываются производителем в паспорте громкоговорителя или на их сайте. Но сейчас большинство громкоговорителей, продающихся на рынках (в том числе и мой громкоговоритель), не имеют указанных этих параметров или не соответствуют им (несмотря на многочисленные попытки, мне так и не удалось найти мой динамик в интернете, а о параметрах Тиля-Смолла уже и речи не могло быть). Поэтому нам придется измерять все самому.

Для этого нам понадобится:

  • Компьютер или ноутбук с ХОРОШЕЙ (то есть с линейной АЧХ) звуковой картой,
  • Программный генератор звукового сигнала, использующий выход наушников звуковой карты (мне лично нравится программа ,
  • Вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ,
  • Ящик с фазоинвертором,
  • Резистор 150-220 Ом,
  • Разъемы, провода и т д……..


1.1.1. Сначала проверим линейность АЧХ звуковой карты. Существует большое количество программ, которые автоматически измеряют АЧХ в диапазоне 20-20000Гц (при подключенном состоянии выхода наушников к входу микрофона звуковой карты). Но здесь я буду описывать ручной метод измерения АЧХ в диапазоне 10-500Гц (для измерения параметров Тиля Смолла низкочастотного излучателя важен только этот диапазон). Если под рукой не оказался вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ, не расстраивайтесь, можно использовать обычный недорогой мультиметр (Тестер). Обычно такие мультиметры измеряют переменное напряжение с точностью 0,1В а постоянное напряжение с точностью 0,1 мВ. Чтобы измерять переменное напряжение порядка несколько мВ, нужно всего лишь поставить диодный мост перед входом мультиметра и измерять в режиме вольтметра постоянного напряжения в диапазоне до 200мВ.

Сначала подключаем вольтметр к выходу наушников (Или к правому, или к левому каналу).


Отключаем все звуковые эффекты и эквалайзеры, открываем свойства динамиков и ставим уровень громкости на 100%.

Открываем программу , нажимаем “Options”, в “Tone Interval” выбираем “Frequency”, и ставим шаг на 1Гц.

Закрываем “Options”, ставим уровень громкости на 100%, ставим начальную частоту на 10Гц и нажимаем “Play”. Кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц.


При этом смотрим на значение напряжения на вольтметре. Если максимальная разница амплитуды находится в пределах 2дБ (1,259 раза), то такая звуковая карта годится для измерения параметров динамика. У меня, например, максимальное значение составляло 624мВ, а минимальное 568мВ, 624/568=1,09859 (0,4дБ), что вполне допустимо.

1.1.2. Перейдем к долгожданным параметрам Тиля-Смолла. Минимум параметров, по которым можно рассчитать и сконструировать акустическое оформление (в данном случае сабвуфер) это:

  • Резонансная частота (Fs),
  • Полная электромеханическая добротность (Qts),
  • Эквивалентный объем (Vas).

Для более профессионального расчета понадобится еще больше параметров, такие как механическая добротность (Qms), электрическая добротность (Qes), чувствительность (SPL), и т д.

1.1.2.1. Определение резонансной частоты (Fs) громкоговорителя.

Собираем вот такую схему.


Динамик при этом должен находиться в свободном пространстве как можно подальше от стен, пола и потолка (я повесил его с люстры). Снова открываем программу NCH Tone Generator, настаиваем громкости так, как было описано выше, ставим начальную частоту на 10Гц и начинаем плавно, шагом 1Гц увеличивать частоту. При этом опять же смотрим на значение вольтметра, которое сначала будет возрастать, достигнет максимальной точки (Umax) на частоте собственного резонанса (Fs), и начнет уменьшаться до минимальной точки (Umin). При дальнейшем увеличении частоты напряжение будет плавно возрастать. График зависимости напряжения (активного сопротивления динамика) от частоты сигнала имеет такой вид.


Та частота, на которой значение вольтметра максимальная, и есть приблизительная резонансная частота (при шаге 1Гц). Чтобы определить точную резонансную частоту, нужно в области приблизительной резонансной частоты менять частоту шагом уже не на 1Гц, а 0,05Гц (точность 0,05Гц). Записываем резонансную частоту (Fs), минимальное значение вольтметра (Umin), значение вольтметра на резонансной частоте (Umax) (в дальнейшем они пригодятся для расчета следующих параметров).

1.1.2.2. Определение полной электромеханической добротности (Qts) громкоговорителя.
Находим UF1,F2 по следующей формуле.

Изменяя частоту, добиваемся значений вольтметра соответствующих напряжению UF1,F2. Частот будет две. Одна ниже резонансной частоты(F1), другая выше (F2).


Проверять правильность расчетов можно этой формулой.

Если разница Fs’ и Fs не превышает 1Гц, то смело можно продолжить измерения. Если нет, то надо все сделать сначала. Находим механическую добротность (Qms) по этой формуле.

Электрическую добротность (Qes) находим по этой формуле.

И наконец, определяем полную электромеханическую добротность (Qts) по этой формуле.

1.1.2.3. Определение эквивалентного объема (Vas) громкоговорителя.

Для определения точного эквивалентного объема нам понадобится заранее изготовленный, прочный, герметичный ящик-фазоинвертор с отверстием для нашего динамика.

Объем ящика зависит от диаметра динамика, и выбирается согласно этой таблицы.

Закрепляем динамик к ящику и подключаем к схеме описанной выше (Рис.9). Опять открываем программу NCH Tone Generator, ставим начальную частоту на 10Гц и кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц. При этом смотрим на значение вольтметра, которое опять же начнет возрастать до частоты FL ,потом уменьшаться, достигнув минимальной точки на частоте настройки фазоинвертора (Fb), снова возрастать и достичь максимальной точки на частоте FH, потом уменьшатся и снова медленно возрастать. График зависимости напряжения от частоты сигнала имеет вид двугорбого верблюда.




И наконец, находим эквивалентный объем (Vas) по этой формуле (где Vb-объем ящика с фазоинвертором).

Повторяем все наши измерения 3-5 раз и берем среднее арифметическое значение всех параметров. Например, если мы получили значения Fs соответственно 30,45Гц 30,75Гц 30,55Гц 30,6Гц 30,8Гц, то берем (30,45+30,75+30,55+30,6+30,8)/5=30,63Гц.

В результате всех моих измерений я получил следующие параметры для моего динамика:

  • Fs=30.75 Гц
  • Qts=0.365
  • Vas=112.9≈113 л

1.2.Моделирование и расчет корпуса (ящика) сабвуфера программой JBL Speakershop.

Существует несколько вариантов акустических оформлений, из которых наиболее распространены следующие варианты.

  • Vented box-ящик с фазоинвертором,
  • Band-pass 4-го, 6-го и 8-го порядка,
  • Passive radiator-ящик с пассивным излучателем,
  • Closed box-закрытый ящик.


Тип акустического оформления выбирается исходя от параметров Тиля-Смолла громкоговорителя. Если Fs/Qts<50, то такой громкоговоритель можно использовать исключительно в закрытом оформлении, если Fs/Qts>100, то исключительно в Vented box или Band-pass или Closed box. Если 50

Сначала скачиваем и устанавливаем программу . Эта программа написана для Windows XP и не работает в Windows 7. Чтобы заставить программу работать в Windows 7, нужно скачать и установить виртуальную машину Windows Virtual PC-XP Mode (скачать можно с официального сайта Microsoft), и запустить установку JBL Speakershop через нее. Открывать JBL Speakershop тоже нужно через виртуальную машину. После открывания программы видим вот такой интерфейс.


Нажимаем “Loudspeaker” и выбираем “Parameters--minimum”, в открытом окне пишем, соответственно, значение резонансной частоты (Fs), значение эквивалентного объема (Vas), значение полной электромеханической добротности (Qts) и нажимаем “Accept”.

При этом программа предложит два оптимальных (с наиболее ровной АЧХ) варианта, один в закрытом оформлении (Closed box), другой в Vented box (ящик с фазоинвертором). Нажимаем “plot”(и в области Vented box и в области Closed box) и смотрим на график АЧХ. Выбираем то оформление, АЧХ которого наиболее подходит к нашим требованиям.


В моем случае это Vented box, поскольку на низких частотах (20-50Гц) у Closed box спад амплитуды намного больше, чем у Vented box (Рисунок выше).

Если объем ящика в оптимальном варианте устраивает, то можно построить ящик с таким объемом и насладится звучанием сабвуфера. Если нет (при слишком больших объемах), то нужно задать свой объем (чем ближе к оптимальному объему, тем лучше) и рассчитать оптимальную частоту настройки фазоинвертора.


Для этого в области Vented box нажимаем “Custom”, в открывшемся окне пишем свой объем ящика, нажимаем “Optimum Fb” (при этом программа рассчитает оптимальную частоту настройки фазоинвертора, при котором АЧХ акустического оформления будет наиболее линейной) а потом “Accept”.

Нажимаем “Box” и выбираем “Vent…”, в открывшемся окне в области “Custom” пишем диаметр трубы (Dv), который будем использовать в качестве фазоинвертора. Если будем использовать два фазоинвертора, то ставим точку на “Area” и пишем суммарную площадь сечения труб.


Нажимаем “Accept” и в области “Custom” на строке Lv появится длина трубы фазоинвертора. Теперь, когда мы знаем внутренний объем ящика, диаметр и длину трубы фазоинвертора, то смело можно перейти к конструированию акустического оформления, однако если уж очень хочется узнать оптимальное соотношение сторон ящика то можно нажать “Box”, выбрать “Dimensions…”.


1.3.Конструирование корпуса (ящика) сабвуфера

Для получения высококачественного звучания необходимо не только правильно рассчитать, но и тщательно изготовить корпус акустического оформления. После определения внутреннего объема ящика, длины и диаметра трубы фазоинвертора, можно смело поступить к изготовлению корпуса сабвуфера. Материал ящика должен быть достаточно прочным и жестким. Наиболее подходящий материал для корпусов акустических оформлений большой мощности является двадцатимиллиметровый МДФ. Стены ящика крепятся друг к другу саморезами, а щели между ними намазываются герметиком или силиконом. После изготовления ящика делаются отверстия для ручек, и приступают к отделке внешней поверхности. Все неровности выровняются с помощью замазки или эпоксидной смолы (в замазку я добавляю немножко клея ПВА, что предотвращает появление трещин со временем и снижает уровень вибраций). После высыхания замазки поверхности нужно отшлифовать до получения идеально ровных стен. Готовый ящик можно как покрасить, так и покрыть самоклеющейся декоративной пленкой, или просто приклеить плотную ткань. Изнутри к стенам ящика клеится звукопоглощающий материал, состоящий из ваты и марли (в моем случае я приклеил ватину). В качестве фазоинвертора можно использовать пластиковую канализационную трубу или бумажную стержень от разных рулонов, а так же готовый фазоинвертор который можно купить почти в любом музыкальном магазине.

Корпус активного сабвуфера состоит из двух отсеков. В первом отсеке располагается собственно громкоговоритель, а во втором вся электрическая часть (формирователь сигнала, усилитель, блок питания……). В моем случае я расположил блок сумматоров и блок фильтров в отдельном отсеке от блока усилителя мощности, блока питания и блока охлаждения. Изнутри к стенам отсека блока сумматоров и блока фильтров приклеил фольгу, которую подключил к земле (GND). Фольга предотвращает воздействие внешних полей и уменьшает уровень шумов.



Если будете использовать мои печатные платы, то эти отсеки должны иметь следующие размеры.








2. Электрическая часть активного сабвуфера

Перейдем к электрической части активного сабвуфера. Общая схема и принцип работы устройства представляется этой схемой.


Устройство состоит из четырех блоков, собранных на отдельных печатных платах.

  • Блок сумматоров (Summators),
  • Блок фильтров (Subwoofer driver),
  • Блок усилителя мощности (Power amplifier),
  • Блок питания (Power supply) и блок охлаждения (Heatsink fun).

Сначала звуковой сигнал поступает в блок сумматоров (Summators), где происходит суммирование сигналов правого и левого каналов. Потом поступает в блок фильтров (Subwoofer driver), где идет формирование сигнала сабвуфера, что включает в себя регулятор громкости, subsonic filter (фильтр инфра низких частот), bass booster (увеличение громкости на определенной частоте) и Crossover (фильтр нижних частот). После формирования сигнал поступает в блок усилителя мощности (Power amplifier), а потом в громкоговоритель.
Обсудим эти блоки по отдельности.

2.1.Блок сумматоров (Summators)

2.1.1.Схема

Сначала рассмотрим схему сумматоров, приведенную на рисунке ниже.

Звуковой сигнал с внешних устройств (компьютер, CD-плеер……..) поступает в блок сумматоров, который имеет 6 стерео входов. 5 из них представляют собой обычные линейные входы, отличающийся друг от друга только типом разъема. А шестой это высоковольтный вход, к которому можно подключать выход динамиков (например, музыкальный центр или автомагнитола, которые не имеют линейного выхода). Каждый вход имеет отдельный сумматор на операционных усилителях, смещающий сигналы правого и левого каналов, что предотвращает поступление звукового сигнала с одного внешнего устройства в другую, при этом дает возможность одновременно подключать к сабвуферу несколько внешних устройств. А также имеются выходы (5 выходов, 6-ой просто не поместился на плате, поэтому и не поставил), которые дают возможность подать тот же сигнал, который поступает в сабвуфер, к входу широкополосной стерео системе. Это очень удобно, когда источник звука имеет только один выход.



2.1.2.Компоненты

В качестве операционных усилителей использованы TL074 (5шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные), но если уж очень хочется, можно поставить специальные аудио конденсаторы (конденсаторы, предназначенные для использования в высококачественных аудио системах). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Катушки L1-L4 содержат 20 витков, намотанных медным проводом с диаметром 0,7мм, на стержне гелевой ручки (3мм). Также использованы разъемы типов RCA, 3.5mm audio jack, 6.35mm audio jack, XLR, WP-8.


2.1.3.Печатная плата





Печатная плата изготовлена по . После пайки деталей печатную плату следует покрыть , чтобы избегать от окисления меди.

2.1.4.Фото готового блока сумматоров






Питается блок сумматоров от двухполярного источника питания напряжением ±12В. Входное сопротивление составляет 33кОм.

2.2.Блок фильтров (Subwoofer driver)

2.2.1.Схема

Рассмотрим схему драйвера сабвуфера, приведенную на рисунке ниже.

Суммированный сигнал с блока сумматоров поступает в блок фильтров, который состоит из следующих частей:

  • Регулятор громкости (volume regulator),
  • Фильтр инфра низких частот (subsonic filter),
  • Усилитель баса определенной частоты (bass booster),
  • Фильтр нижних частот (crossover).

Регулирование громкости происходит на двух уровнях. Первый при входе сигнала в блок фильтров, который уменьшает уровень собственных “шумов” блока сумматоров, второй при выходе сигнала с блока фильтров, который уменьшает уровень собственных “шумов” блока фильтров. Регулируется громкость с помощью переменного резистора VR3. После первого уровня регулирования громкости сигнал поступает в так называемый “бас бустер”, представляющее собой устройство, которое увеличивает амплитуду сигналов определенной частоты. То есть, если частота настройки бас бустера вставлен, например на 44Гц, а уровень усиления на 14дБ, то АЧХ имеет такой вид (Ряд1 ).


Ряд2 - частота настройки=44Гц, уровень усиления=9дБ,
Ряд3 - частота настройки=44Гц, уровень усиления=2дБ,
Ряд4 - частота настройки=33Гц, уровень усиления=3дБ,
Ряд5 - частота настройки=61Гц, уровень усиления=6дБ.

Частота настройки бас бустера вставляется при помощи переменного резистора VR5 (в пределах 25…125Гц), а уровень усиления резистором VR4 (в пределах 0…+14дБ). После бас бустера сигнал поступает в фильтр инфранизких частот (subsonic filter), который представляет собой фильтр, срезающий нежелательные, ультранизкие сигналы, которые уже не слышимы для человека, но могут сильно перегрузить усилитель, тем самым уменьшая действительную выходную мощность системы. Частота среза фильтра регулируется с помощью переменного резистора VR2 в пределах 10…80Гц. Если, например, частота среза вставлена на 25Гц, то АЧХ имеет следующий вид.


После фильтра инфранизких частот сигнал поступает в фильтр нижних частот (crossover), который срезает верхние, ненужные для сабвуфера (средние + высокие) частоты. Частота среза регулируется при помощи переменного резистора VR1 в пределах 30…250Гц. Крутизна затухания составляет 12дБ/октава. АЧХ имеет такой вид (при частоте среза 70Гц).


2.2.2.Компоненты

В качестве операционных усилителей использованы TL074 (2шт.), TL072 (1шт.) и NE5532 (1шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Также использованы три сдвоенных (50кОм-2шт., 20кОм-1шт.) и два счетверенных переменных (50кОм-6шт.) резисторов. В качестве счетверенных переменных резисторов можно использовать два сдвоенных.

2.2.3.Печатная плата


Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

2.2.4.Фото готового блока фильтров





Питается блок фильтров от двухполярного источника питания напряжением ±12В.

2.3.Блок усилителя мощности (Power amplifier).

2.3.1.Схема

В качестве усилителя мощности используется усилитель Энтони Холтона с полевыми транзисторами в выходном каскаде. Статей описывающих принцип работы, сборку и настройку усилителя в интернете очень много. Поэтому я ограничусь вложением схемы и моей версии печатной платы.

2.3.2.Печатная плата





Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи. Питается блок усилителя мощности от двухполярного источника питания напряжением ±50…63В. Выходная мощность усилителя зависит от напряжения питания и числа пар полевых транзисторов (IRFP240+IRFP9240) в выходном каскаде.

2.4. Блок питания и блок охлаждения (Power supply)

2.4.1.Схема

2.4.2.Компоненты

В качестве трансформатора питания можно использовать как готовый, так и самодельный трансформатор мощностью приблизительно 200Вт. Напряжения вторичных обмоток показаны на схеме.




Диодный мост Br2 рассчитан на ток 25А. Конденсаторы C1…C12,С29…С31 должны иметь номинальное напряжение 25В. Конденсаторы C13…C28 должны иметь номинальное напряжение 63В (при напряжении питания ниже 60В), или 100В (при напряжении питания выше 60В). В качестве неполярных конденсаторов лучше использовать пленочные конденсаторы. Все резисторы рассчитаны на мощность 0,25Вт. Терморезистор R5 намазывается термопастой и прикрепляется к радиатору усилителя. Рабочее напряжение вентилятора 12В.

2.4.3.Печатная плата


Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

3.Заключительный этап сборки сабвуфера











Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1-U5 Операционный усилитель

TL074

5 Поиск в Чип и Дип В блокнот
C1-C4, C15, C16, C25-C27, C29, C39-C42 10 мкФ 14 Поиск в Чип и Дип В блокнот
C5-C10, C23, C24, C28, C30, C35-C38 Конденсатор 33 пФ 14 Поиск в Чип и Дип В блокнот
C11-C14, C19-C22, C31-C34 Конденсатор 0.1 мкФ 12 Поиск в Чип и Дип В блокнот
C17, C18 Электролитический конденсатор 470 мкФ 2 Поиск в Чип и Дип В блокнот
R1, R2 Резистор

390 Ом

2 Поиск в Чип и Дип В блокнот
R3, R12 Резистор

15 кОм

2 Поиск в Чип и Дип В блокнот
R4, R16-R18 Резистор

20 кОм

4 Поиск в Чип и Дип В блокнот
R5, R13-R15 Резистор

13 кОм

4 Поиск в Чип и Дип В блокнот
R6, R10, R23, R24, R31, R33, R40, R41, R46, R47 Резистор

68 кОм

10 Поиск в Чип и Дип В блокнот
R7, R11, R21, R22, R32, R34, R37, R38, R45, R48 Резистор

22 кОм

10 Поиск в Чип и Дип В блокнот
R8, R9, R25, R26, R29, R30, R39, R42, R49, R50 Резистор

10 кОм

10 Поиск в Чип и Дип В блокнот
R19, R20, R27, R28, R35, R36, R43, R44 Резистор

22 Ом

8 Поиск в Чип и Дип В блокнот
L1-L4 Катушка индуктивности 20x3мм 4 20 витков, провод 0.7мм, оправа 3мм Поиск в Чип и Дип В блокнот
L5-L13 Катушка индуктивности 100 мГн 10