Как разогнать процессор intel pentium в биосе. Как разогнать процессор, несколько простых способов

30.01.2019

Возможно, многие знают, а кто не знает, тому мы расскажем, что быстродействие любого компьютера можно значительно увеличить не только посредством замены имеющегося аппаратного обеспечения на новое, обладающее более высокой производительностью, но и в результате разгона старого.

Оверклокинг или разгон подразумевает увеличение производительности таких составляющих аппаратного обеспечения ПК, как процессор, видеокарта, оперативная память, системная плата за счет улучшения их номинальных характеристик. В том случае, когда разгону будет подвергаться процессор, мы будем увеличивать его тактовую частоту, коэффициент множителя, а также напряжение питания.

Как увеличить частоту

Итак, как разогнать процессор intel? Рассказывая о методах подобного типа, начнем с повышения частотных характеристик. Откуда берется такая возможность? Дело в том, что производители микропроцессорной техники всегда поставляют на рынок свою продукцию с определенным запасом прочности, величина которого находится в пределах от 20 до 50% от заявленных в паспорте характеристик. Например, установленный в вашем ПК Intel 2,5 ГГц имеет максимальное значение тактовой частоты, величина которой равна 3 ГГц.

Иными словами, в ходе правильно выполненного процесса разгона можно добиться увеличения его характеристик до значения 3 ГГц. Однако это вовсе не означает, что в подобном режиме он будет работать дольше, чем на своей паспортной частоте. Пиковая частота при сильном нагреве процессора сбрасывается до минимальных значений. Кроме того, нет абсолютно никаких гарантий, что вам удастся увеличить этот показатель, однако некоторое несложные манипуляции позволят без проблем увеличить его на 20-30%.

Каждый процессор характеризуется наличием такого параметра, каким является множитель. Если умножить значение этого параметра на частоту шины FSB (BCLK), выясним частоту. Следовательно, наиболее простым и абсолютно безопасным методом разгона Intel является увеличение значения частотности системной шины FSB (BCLK).

Доступность и простота этого метода сводится к тому, что изменение FSB (BCLK) допускается осуществлять непосредственно в BIOS, а также программно, используя для этой цели шаг, равный 1 МГц.

В более «древних» моделях использование подобного метода могло обернуться печальными последствиями – процессор мог просто-напросто сгореть. Сегодня, для того чтобы «убить» современный многоядерный Intel только увеличением его тактовой частоты потребуются неимоверные усилия. Но мы же не ставим перед собой подобную цель, а, следовательно, этот метод вполне безопасен.

В том случае, когда начинающий оверклокер даже перестарается с настройкой, система моментально сбросит установленные настройки, перезагрузится и будет функционировать в своем штатном режиме. Для изменения частотности шины следует зайти в BIOS, после чего найти величину значения CPU Clock, нажать клавишу «Enter» в пределах этого значения, после чего ввести значение величины частоты шины.

Внимание! Рекомендуется разгонять только настольные процессоры. Процессоры в нотбуках лучше оставить в текущем состоянии, т.к. они не справляются с повышенным тепловыделением процессоров под разгоном. Для входа в Биос обычно используется клавиша «Del» при загрузке ПК. Прочитайте эту статью: . Но лишь для ознакомления с частотой и прочими параметрами.

Итак, входим в Биос, открываем информацию о CPU и видим:



В настройках строки FSB или BCLK выставляйте новые значения. На данном скриншоте BCLK равно 100 MHz, что при умножении на множитель 33 даёт частоту процессора 3300 Мгц. Если установить значение BCLK равным 105, то итоговая частота станет равной 3465 Мгц. Помните, что большинство современных процессоров Intel болезненно реагирую на изменение этого значения. Их лучше разгонять увеличением множителя. О множителях читайте ниже.

Для того чтобы результат разгона был максимально эффективным, необходимо заменить имеющийся кулер на более производительный. Для определения эффективности той или иной модели вентилятора следует измерять температуру Intel при его максимальной загрузке. В этом помогут такие программы, как Everest, 3D Mark. Если величина температуры при максимальной загрузке составляет 65-70°С, необходимо либо увеличить производительность вентилятора до максимального значения, либо уменьшить значение частоты шины FSB (BCLK).

Как изменить множитель

Также, увеличения производительности можно добиться путем изменения множителя. Это возможно только в том случае, когда имеющийся «камень» разблокирован с множителем. Как правило, подобные устройства имеют маркировку «Extreme». Если же версия имеющегося Intel не относится к данной категории, расстраиваться не стоит, так как для получения будет достаточно применения первого варианта. Или же вам не обойтись без увеличения напряжения.

Меняем множитель в большую сторону от стандартного, как на скриншоте.


Не нужно сразу выставлять большие множители. Попробуйте прибавить для начала 2-3 единицы. Сохраните и перезагрузите компьютер. Если он будет работать стабильно, можете добавить ещё единицу. И так до тех пор, пока стабильность не будет нарушена. Предположим, что компьютер завис при включении после установки множителя 45. Тогда Итоговый множитель лучше установить равным 43. Так компьютер будет работать стабильно.

Если материнская плата самостоятельно не может сбросить настройки — помогите ей. Нужно изъять круглую батарейку на материнской плате. Если Вы не знаете как она выглядит, Вам лучше не браться за разгон процессора!

Как увеличить напряжение питания

Как разогнать процессор intel посредством увеличения напряжения питания процессора? Принцип увеличения производительности посредством увеличения напряжения достаточно прост. Для его реализации необходимо всего лишь увеличить питание устройства. Для того чтобы воплотить желаемое в реальность, необходимо:

  1. установить более производительный кулер;
  2. не увеличивать значение напряжения выше, чем на 0,3 В от номинального.

Для того чтобы увеличить напряжение, нужно зайти в BIOS, найти здесь пункт под названием «Power Bios Setup => Vcore Voltege» или что-то похожее, увеличить величину напряжения питания на 0,1 В. Затем, необходимо установить кулер на максимальное значение и установить более высокую частоту FSB (BCLK) или множитель.



Каждый процессор рассчитан на какую-то номинальную частоту. Эта частота указана на его поверхности, указывается в прайс-листах и другой документации. Например, PentiumII-300 должен работать с внешней частотой 300 МГц. Но, как показывает практика - от процессора можно добиться большего. Дело в том, что частота, на которой будет работать микропроцессор, задается материнской платой, поэтому возникает возможность увеличить ее относительно значения, указанного на процессоре. Это и называется разгоном.

Зачем нужен разгон процессора

Да, в общем-то, особенно и не за чем. Разгоняя процессор можно увеличить производительность своей системы процентов на 10. Кроме этого поднять мнение о себе в глазах друзей. Ну и конечно почерпнуть некоторые сведения об устройстве компьютера. Однако, превышая номинальное значение тактовой частоты процессора, система теряет надежность. Впрочем, в большинстве случаев это будет совсем незаметно. Так что главное - это идея сэкономить средства, покупая один процессор, а используя его как другой, более быстрый.

Почему возможен разгон

Для того чтобы понимать теорию разгона, необходимо представлять, как изготавливаются и тестируются процессоры. Модели, создаваемые в одних и тех же технологических рамках (например, 0.25 мкм, напряжение 3.3 В), производятся на одной технологической линии. Затем некоторые образцы серии выборочно тестируются. Тестирование проходит в экстремальных (по напряжению и температуре) условиях. На основании этих тестов на процессор наносится маркировка о номинальной частоте, на которую рассчитан процессор. Учитывая то, что частота берется с некоторым запасом прочности, и что далеко не все кристаллы были протестированы, можно с большой долей вероятности предсказать, что большинство изделий имеют запас мощности по частоте в 10-15%, а то и больше. Кроме того, дополнительный ресурс для разгона можно получить, обеспечив процессору хорошее охлаждение, так как производитель тестирует свои изделия в очень жестких температурных условиях.

Практически все материнские платы для процессоров Pentium и Pentium II рассчитаны на работу не с одним типом кристалла, а с несколькими. Т.е., предоставляют пользователю возможность указать, какой процессор на них установлен. Выбор его тактовой частоты осуществляется путем умножения внешней частоты (той, на которой работает системная шина и оперативная память PC) на один из фиксированных множителей (эти множители обычно кратны 0.5 и находятся в диапазоне 1.5 - 4). Способ установки того или иного умножения и внешней частоты всегда указывается в руководстве к материнской плате и иногда - на самой плате. Возможность выбора внешней частоты и коэффициента умножения внутренней частоты процессора порождает возможность выдать процессор за более быстрый.

Разгон можно осуществлять двумя путями. Во-первых, возможно увеличение множителя внешней частоты процессора (например, с 2.5 до 3), так как в этом случае повышается лишь скорость работы самого процессора, а скорость работы системной шины (памяти) и других устройств не увеличивается. Однако данный способ, хотя и надежен (сбоев можно ждать только от процессора), не дает большого прироста производительности всей системы в целом. Кроме того, в последнее время ведущий производитель процессоров для PC - фирма Intel решила блокировать эту возможность, фиксируя умножение у своих кристаллов.

Второй метод - увеличение внешней частоты без изменения коэффициента или и того и другого (например, с 60 до 66 МГц). Дело в том, что именно от величины внешней тактовой частоты зависит быстродействие таких компонентов компьютера, как кеш второго уровня, оперативная память и шины PCI и ISA (а значит, и все платы расширения). В настоящее время практически все материнские платы поддерживают внешние частоты 50, 55, 60, 66, 75 и 83 МГц. Однако, экспериментируя с внешней частотой, следует помнить, что риск, столкнуться со сбоями в работе системы резко повышается, так как разгоняется не только процессор, но и все остальные компоненты системы. Поэтому, разгоняя систему таким способом, следует быть уверенным в качестве комплектующих (особенно это относится к модулям оперативной памяти).

Перемаркировка процессоров

Однако думать, что такие умные только конечные пользователи в России, несправедливо. Многие китайские, а то и наши, конторы специализируются на перемаркировке кристаллов. То есть они, проверяя разгоняемость процессоров, уничтожают старую и наносят на него более высокую тактовую частоту. Для того чтобы перемаркировать процессор, достаточно уничтожить (соскоблить) верхний слой краски на его корпусе и нанести новые отметки, соответствующие более старшей модели. Купив такой кристалл, человек невольно разгоняет его, и если компьютер после этого работает без нареканий, он может и не узнать, что его процессор пиленый.

Защититься от покупки такого микропроцессора практически невозможно. Однако, можно покупать процессоры в коробке или низшие модели в одном технологическом ряду (например, Intel Pentium 166 MMX). Существуют лишь косвенные признаки для определения пиленности процессора - неровная поверхность, несоответствие маркировок на верхней и нижней сторонах корпуса кристалла, некачественно нанесенная маркировка.

Опасность разгона

Вопрос, которым задаются многие при разгоне - это вопрос о том, не сгорит ли процессор или другие компоненты системы. Однозначно ответить на этот вопрос нельзя. Однако, случаи сгорания процессора крайне редки. Об этом говорит статистика. Только примерно в 0.1% случаев возможны необратимые проблемы. Особенно опасны в этом смысле процессоры Cyrix/IBM, которые горят чаще всего. Кроме того, если материнская плата оборудована не импульсным (отличаемым наличием тороидальной катушки на плате), а линейным источником питания, то возможно повреждение материнской платы при разгоне процессоров Cyrix и AMD из-за большого потребления тока. При повышении внешней частоты, а, следовательно, и частоты шины PCI, возможна потеря данных на винчестере, но сам жесткий диск при этом остается работоспособен. В любом случае, большинство из описанных проблем можно решить. Об этом рассказывается ниже.

Как разогнать процессор

  1. Сначала необходимо определить, к чему стремиться. То есть решить для себя, что Вы будете изменять - внешнюю частоту или коэффициент умножения. Имейте в виду, что на одну ступень по частоте подняться удастся почти всегда, а увеличение множителя частоты даст эффект меньший, чем при таком же увеличении внешней частоты. Кроме этого новые процессоры фирмы Intel, для пресечения разгона и перемаркировки, имеют возможность установить только номинальные коэффициенты для умножения частоты. Поэтому в таком случае возможно лишь манипулирование внешней частотой.
  2. Изучите, как устанавливаются перемычки на Вашей материнской плате для выбранных Вами значений. Многие производители материнских плат не документируют внешние частоты выше 66МГц, потому что такие частоты не документированы для чипсетов фирмы Intel, на которых собрано подавляющее количество системных плат. Недокументированные установки перемычек для своей материнской платы можно посмотреть . И еще, умножение на 3.5 устанавливается так же, как и 1.5. Поэтому, если в руководстве к Вашей материнской плате умножение на 3.5 не указано, можете смело использовать установку для множителя 1.5
  3. Выключите компьютер и переустановите перемычки в соответствии с п.2
  4. Включите компьютер. Если система не запускается (черный экран), значит, Вы переразогнали процессор и компьютер в такой конфигурации работать не будет.
  5. Если компьютер запускается и загружается, то необходимо проверить стабильность его работы. Эта проверка выполняется запуском многозадачной операционной системы (Windows 95/NT) и выполнением приложений, требующих активной работы с памятью, так как операции по пересылке данных сильнее всего прогревают кристалл. В качестве примера можно предложить одновременный запуск архиватора pkzip, просмотр mpeg-файла, и работу пары копий игры Quake, непрерывно переключаясь между ними. Пятнадцати минут стабильной работы в таком режиме вполне достаточно, чтобы сделать вывод об устойчивости системы.
  6. Если компьютер запускается, но не загружается (повисает после вывода таблицы с конфигурацией системы), то за его стабильную работу можно побороться. Такое поведение, скорее всего, вызвано невозможностью нормальной работы жесткого диска, памяти или ISA-карт. Как преодолеть такие проблемы, написано ниже.
  7. При нестабильной работе операционной системы и приложений корень проблемы, скорее всего, кроется в недостаточном охлаждении кристалла. Иногда, правда, такие эффекты наблюдаются при недостаточном уровне логического сигнала. Эта проблема решается на материнских платах, оборудованных возможностью выбора напряжений питания процессора путем его повышения на 0.1-0.2 В. Однако в этом случае об охлаждении надо задуматься еще сильнее. Вопросы охлаждения рассмотрены ниже.

Охлаждение процессора

Одна из самых важных задач, встающих при разгоне процессора - это его охлаждение. Перегрев процессора можно считать главным обстоятельством, препятствующим разгону. В 90 процентах случаев, когда разогнанная система запускается, но через некоторое время начинает сбоить и виснет или сбоит при выполнении приложений, сильно загружающих процессор, причину следует искать именно в перегреве процессора.

Поэтому стоит обзавестись хорошим радиатором с вентилятором, обеспечивающим наилучший отвод тепла. Чем лучше будет вентилироваться весь системный блок, тем стабильнее будет работать компьютер. Кстати, форм-фактор ATX с этой точки зрения значительно лучше, так как корпуса ПК и системные платы, выполненные в соответствии с этим форм-фактором, очень хорошо вентилируются благодаря удачномо расположению компонент. Однако и обычный Baby AT-корпус можно оборудовать дополнительным вентилятором.

Как же правильно выбрать вентилятор? При выборе радиатора следует обратить внимание на высоту и строение собственно железной части (чем выше радиатор, и чем больше на нем выступов - тем лучше), и на высоту вентилятора (чем выше - тем лучше, обычно - 20 или 30 мм). Стоит также учесть, что предпочтительнее вентиляторы, работающие "на вытяжку" (т.е. гонящие воздушный поток вверх, от радиатора).

Во-вторых, очень важно при покупке обратить внимание на способ крепления радиатора к процессору. Существует несколько типов крепежа.

Однако в наилучшем случае радиатор крепится к процессору с помощью изогнутой металлической скобы, которая цепляется за специальные выступы у разъемов Socket 7 (Pentium) и Socket 8 (Pentium Pro). Этот способ следует признать наиболее приемлимым, так как изогнутая скоба хорошо прижимает радиатор к процессору, практически не оставляя места для воздушных "подушек". Но даже при других схемах крепления радиатора можно достигать неплохих результатов. Лучшим является то крепление, при котором воздушная прослойка между процессором и радиатором сводится к минимуму. Этого можно достигать как увеличением силы прижима поверхности радиатора, так и шлифовкой соприкасающихся плоскостей.

Следует отметить, что у Pentium II задача крепления радиатора к процессору решена гораздо лучше, однако, некоторые (особенно ранние) модели поставляются только с пассивными радиаторами (без вентилятора). Пользователям процессоров Pentium II можно посоветовать самостоятельно прикрепить вентилятор к радиатору.

Однако, как бы крепко вы не посадили радиатор на процессор, небольшие воздушные прослойки между поверхностью радиатора и верхом процессора все же останутся. А воздух, обладающий очень низкой теплопроводностью, сильно мешает теплообмену между процессором и радиатором. Ликвидируются эти прослойки обычно путем применения теплопроводящей пасты КПТ-8, сделанной на основе окиси Берилия (BeO), она хорошо проводит тепло, химически малоативна и используется в атомной промышленности как отражатель нейтронов. Паста помещается тонким слоем между процессором и радиатором, обеспечиваю лучшую теплопроводность.

Основные проблемы

В неустойчивой работе на частотах 75 и 83 МГц отмечены:

  • HDD Quantum Fireball, Fireball TM, Fireball ST (проблема решается использованием шлейфа не более 10-15 сантиметров)
  • SVGA на чипе ET6000 - в основном из-за перегрева чипа.
  • SoundBlasters - старых выпусков - проблема решается увеличением IO Recovery

Кроме этого возможны следующие проблемы:

  • Неустойчивая работа. Данная проблема может быть решена изменением временных характеристик ваших модулей памяти (SIMM/DIMM) в сетапе. Например, увеличьте циклы ожидания (wait state).
  • Неустойчивая работа дисковой подсистемы. Или вообще не загружается операционная система, либо выдаются сообщения типа "Missing operation system", при создании архивов они создаются с ошибками, при копировании файлы копируются с ошибками, CD-ROM привод не опознается операционной системой. В этом случае постарайтесь укоротить шлейфы IDE-устройств или если это не помогает, попробуйте принудительно установить в сетапе PIO-mode ваших HDD и CD-ROM приводов на ступень ниже.
  • Неустойчивая работа ISA устройств. Установите в сетапе больший коэффициент деления частоты тактировани ISA шины и задержки операций ввода/вывода (I/O Recovery).

Полезные ссылки

  • Дополнительная информация о разгоне и оптимизации работы PC может быть найдена на сайте нашего партнера www.sysopt.com

Если вы хотите выжать каждую последнюю унцию вычислительной мощности из вашего нового компьютера или старой системы,разгон процессора большое дело, если у вас есть немного нервов и вариантов. Вот несколько простых рекомендаций для безопасного разгона процессора.Проще говоря, разгон процессора включает в себя работу процессора с более высокой скоростью, чем предполагалось из коробки. В то время как разгон, по своей сути (не каламбур), может быть достаточно простым, есть немного больше вариантов, чем просто один параметр настройки. Основным параметром, определяющим скорость вашего процессора (известный как ваша Base Clock) также влияет на скорость памяти, так что для получения правильного баланса,необходимо сделать некоторые настройки.Вы также должны настроить несколько уровней напряжения, потому что без достаточного питания, процессор не может работать достаточно быстро.

Тем не менее, высокое напряжение также означает более высокие температуры, поэтому нужно быть осторожным, чтобы не перегреть ваш процессор, так как перегрев может сократить срок службы процессора, не говоря уже о его полном сгорании, так что будьте осторожны.

Данное руководство было написано для процессора Intel i7-930 «Bloomfield» ,установленном на на материнской плате Gigabyte GA-X58A-UD3R , хотя большинство основных идей,можно обратить к другой материнской плате,поддерживающей подобные процессоры (такие, как Lynnfield i5s и i7s) . Я настоятельно рекомендую прочитать дополнительно, даже если у вас есть такой же механизм, как и у меня, особенно, если у вас есть другой механизм разгона.Нет двух совпадающих систем, и разгон не является чем-то,что следует принимать всерьез. Я написал это руководство из моего опыта, но у меня было много помощи от других сайтов.Кроме того, посетите некоторые форумы и просмотрите статьи по разгону процессора для получения дополнительной информации по темам,если вы что то не понимаете. Это руководство должно поставить процесс на основные термины, достаточных для тех, кто незнаком с разгоном и могут получить общее ощущение, что это влечет за собой и, как начать разгон своих систем.

Почему нужен разгон?

Есть большое количество причин,что бы хотелось разогнать систему, но в общем, вы получите наибольшую пользу, если вы используете компьютер для более ресурсоемких задач, таких как игры или кодирование видео. Конечно, многие оверклокеры просто наслаждаются трепетом, играя с их системами и толкая их до предела (или по крайней мере, выдвигая это в дальнейшем), так что если это достаточная причина для вас, то вы можете пойти на это. Но помните, что разгон может быть опасен, и может сократить срок службы или повредить некоторые из компонентов, если что-то пойдет не так, поэтому не стоит начинать настройку, если вы не готовы столкнуться с потенциальными последствиями.

Примечание: Я особо хочу подчеркнуть, что всё может пойти не так. Если всё сделано правильно, разгон, как правило, довольно безопасная деятельность, но если вы не готовы рисковать и повредить процессор, вы можете не делать разгон системы.

Глоссарий

Хотя это не исчерпывающий список,но эти параметры мы будем использовать для настройки в данном руководстве. Жаргон, связанный с вашей тактовой частотой выглядит следующим образом:

  • Base Clock - базовая частота ,влияет и на частоту процессора и оперативной памяти (между прочим), как описано ниже. Это один из основных параметров, но котором мы сосредоточимся в этом руководстве.
  • В сочетании с базовой частотой, ваш множитель процессора решает окончательную частоту процессора. Он работает следующим образом: если ваша базовая частота, скажем, 133 МГц (по умолчанию i7) и ваш множитель x21, ваша частота процессора будет 133 МГц х 21 = 2,8 ГГц.
  • Множитель памяти RAM - очень похожи. Та же базовая частота 133 МГц в сочетании с множителем памяти 8 даст вам частоту 1066 МГц.
  • Uncore частота другая базовая частота, в основном влияет на скорость, всё это не основное. Ваша единственная цель работа с частотой Uncore , это держать её в соотношении 2:1 с RAM скоростью, поэтому в любое время,вы можете отредактировать свои RAM множители, вам придется дважды проверить вашу Uncore частоту, чтобы ваша система была стабильной.

Что касается напряжения,с которым вы хотите быть знакомы:

  • CPU Vcore напрямую связано с вашей частотой процессора. Вам, вероятно, придется поднять его, если вы поднимаете множитель процессора.
  • QPI или Vtt напряжение помогут вам сохранить стабильность системы,когда вы поднимете базовую частоту.
  • DRAM или VDIMM напряжения являются напряжением, подаваемым на вашу память. В этом руководстве, вам, вероятно, не придется повышать его, но если вы делаете разгон, убедитесь, что оно не более 0,5 вольт QPI напряжения Vtt.
  • IOH напряжения является напряжением, подаваемым на вашу PCI карту. Вам, вероятно,придётся установить его один раз и оставить его так, в зависимости от того, сколько видеокарт у вас установлено в системе.

То, что вам нужно

  • Компьютер с установленной Windows . Данное руководство предназначено для Windows, хотя, если у Вас есть Mackintosh или Linux машины с разделом Windows, вы можете сделать разгон - что бы сделать нашу стабильность тестирования в Windows.
  • Intel i5 или i7 . Опять же, это руководство было написано с i7-930 Bloomfield, Lynnfield i5s хотя и i7s должны следовать аналогичным процессам. Clarkdale i3s и i5s немного сложнее, так как GPU также смешано.Хотя еще раз подчеркну, прочитайте про эти процессоры, даже если у вас есть Lynnfield процессор, так как каждая модель имеет свои отличительные особенности.
  • Prime 95 . Эта программа была сделана для расчета простых чисел, и стала стандартом для стресс-тестирования вашего процессора. Она будет постоянно загружать процессор на 100%, чтобы помочь Вам решить, будет ли это стабильно и достаточно прохладно, чтобы работать на регулярной основе. Обновление: Многие читатели также рекомендовали программу LinX вместо Prime95. Я до сих пор, не проверил её самостоятельно, но немного почитайте про обе программы и решите, какую из них вы предпочли бы использовать.
  • RealTemp . Эта программа поможет вам контролировать температуру вашего процессора, как только вы запустите Prime95, чтобы вы знали, если ваш процессор становится слишком горячим.
  • . Это маленький загрузочный компакт-диск,с которым мы так же будем работать, чтобы убедиться, что ваша память стабильна после повышения базовой частоты.
  • Эффективная система охлаждения . Если вы планируете разгонять систему больше, чем просто немного,и вы хотите получить нечто иное, чем установка дополнительного радиатора Intel и вентилятора. Я использую радиатор и вентилятор Noctua NH-U12P SE1366 120mm SSO CPU Cooler, и он служит мне очень хорошо. Конечно, если у вас есть деньги, то вы рассмотреть для охлаждения водяные радиаторы и получить еще более низкие температуры (и, следовательно, выше разгон).Поспрашивайте, почитайте мнения о водяном охлаждении, и думайте о своих целях разгона и решите, какой тип охлаждения вы хотите.

Процесс

Здесь я опишу основные шаги, чтобы получить стабильный разгон в вашей системе. Данный процесс более длительный, чем то, что большинство руководств предлагают, но я обнаружил, что гораздо легче получить устойчивое состояние системы, если вы только измените одну настройку, и не будете настраивать тактовые частоты и напряжения наугад. Этот процесс довольно трудоёмкий, поэтому найдите себе занятие во время тестов, потому что вы будете делать много перезагрузок и ожиданий.

Редактирование BIOS - довольно легко. Чтобы изменить настройки, просто выделите их с помощью клавиш навигации и нажмите Enter, чтобы ваша BIOS выставила предопределенные значения для этого параметра. Кроме того, вы можете просто выбрать опцию и набрать текст в номере, и ваша BIOS, как правило, покажет вам, предопределенные значения в небольшом окне слева. Некоторые настройки не могут быть изменены по умолчанию, и вам может понадобиться, чтобы посмотреть на опции над ними, чтобы включить настройки этой функции. Отмечу также, что некоторые параметры будут в подменю, как правило, определяется наличием вариант «press enter» вместо значения рядом с ними.

Мы собираемся проводить большую часть нашего времени в моей BIOS ,которая называется «MB Intelligent Tweaker», ваша материнская плата может называться по другому.Кроме того, фотографии не могут выглядеть так же, как мои, но они должны дать вам общее руководство относительно того, что есть что. Извиняюсь за несколько плохое качество изображения, но трудно делать скриншоты BIOS , таким образом они просто фотографии.

Поставьте себе цель и подготовьте BIOS

Поскольку мы не можем просто прыгнуть сразу вплоть до желаемой скорости,прежде чем мы начнем, очень важно иметь какую-то цель. Подумайте, почему вы делаете разгон и какую окончательную скорость вы хотели получить на вашем компьютере: то ли это просто немного (скажем, в результате чего i7 2,8 ГГц разогнан до 3,5 ГГц), или вы хотите разогнать его довольно высоко (скажем, до 4-х или 4,2 ГГц). Имейте в виду, что эти цифры относительные, если у вас есть i5 или i3, ваши цели будут немного ниже. Теперь, зная свою цель, думайте о том, что вам нужно сделать с базовыми частотами, которые имеют множители x19 или x21, так как мультипликаторы вообще будут в этой области, и x20, как правило, неустойчиво.

Так, например, моей целью было разогнать процессор до 4 ГГц, что является довольно высоким, но выполнимым. Таким образом, базовая частота - моя цель будет около 210 МГц, я мог либо идти с 190 МГц с множителем 21 или 210 МГц с множителем 19 и достиг бы 3,99 ГГц.Я выбрал первое, но сделал базовую частоту 200 МГц,что бы иметь манёвра в дальнейшем.

Если вы запутались с вашим BIOS, перезагрузите компьютер и перед началом разгона сделайте настройки по умолчанию. Если есть какие-либо настройки,которые нужно включить (такие, как драйвера для клавиатур USB), установите их. Есть также несколько параметров,которые которые нам нужно отключить, прежде чем начать разгон. Во-первых, нужно отключить всё, что связано с Turbo Mode , так как это даст вам более высокую тактовую частоту, чем пока вы определите, и мы хотим точно знать, частоту нашего процессора. Также отключите все энергосберегающие настройки, такие как EIST, C1E и другие. Я также выключил калибровку Load Line. И энергосберегающие настройки и калибровка Load Line немного спорные, многие пользователи говорят,что вы можете включить их обратно, но после того как вы сделали разгон, в то время как другие предпочитают не делать этого. Почитайте некоторые дополнительные руководства по этой теме и посмотрите обсуждение,прежде чем принять решение для себя, для чего это стоит, у меня они включены прямо сейчас, и я до сих пор не имел проблем с разгоном.

Наконец, обратимся к вашей памяти. В данном руководстве,мы не будем делать разгон оперативной памяти, но нам всё равно придется повозиться немного с ней. Прежде чем начать, нам нужно настроить тайминги памяти в зависимости от вашего производителя. Чтобы найти ваши рекомендации производителя, найтдите RAM на Newegg (например,у меня установлена память G.SKILL Ripjaws Series 4GB (2 x 2GB) 240-Pin DDR3 SDRAM DDR3 1600 (PC3 12800) Desktop Memory Model F3-12800CL9D-4GBRL) и нажмите на вкладку спецификации. В разделе «timing», вы увидите набор цифр, например, 9-9-9-24-2N. Это относится ко времени, CAS Latency, TRCD, TRP, TRAS и Command Rate, соответственно. Таким образом, войдите в вашу BIOS и введите номера этих функций вашего производителя (возможно, вам нужно сделать это отдельно для каждого канала). Также убедитесь, что вы установили DRAM напряжение, которое определяется у производителя, в данном случае 1.5. Когда вы закончите, ваш экран должен выглядеть примерно так:

Если все выглядит также,то это хорошо, пришло время начать настраивать базовые частоты.

Изолировать и стабилизировать базовые частоты

Первый шаг - убедитесь,что ваши базовые частоты могут достигать желаемой цели.Лучший способ сделать это,который я нашел, является поворотом всего вниз, поэтому мы можем сосредоточиться на одной вещи за один раз. Установите множитель процессора до низкого значения,скажем x12, и поставьте множитель памяти на минимальное значение, как правило, 6 (иногда также отображается как 2:6). Так как мы отредактировали множитель памяти, мы также должны изменить частоту Uncore, поэтому установите это значение на x12 (если объем оперативной памяти в два раза больше,то множитель 6). Это позволит поддерживать систему стабильной.

Теперь вернемся к настройке экрана и спустимся к разделу напряжений.Установите IOH ядро ​​1.3, если у вас есть одна PCI карта, или 1,35, если у вас есть две (некоторые материнские платы не имеют этот параметр, в этом случае просто пропустите этот шаг). Установите напряжение питания QPI/Vtt напряжения к нормальному числу (которые должны быть указаны рядом с ними), только не забудьте снять Auto. Все остальное сейчас,можно оставить как есть. И наконец, увеличьте базовую частоту от нормальной установки на 10 или 20 МГц. Затем сохраните настройки BIOS и выйдите из программы, перезагрузите компьютер. Загрузите Windows и запустите CoreTemp.

На данный момент, многие люди также запускают CPU-Z , чтобы убедиться, что их настройки были применены правильно, хотя я считаю, что это только мешает.Но это зависит от вас.

Далее, запустите Prime95 (или любую другую программу стресс-тестирования по выбору) и если будет предложено,выберите «Just Stress Testing» . Если окно Torture Test автоматически не появляется, выберите Options > Torture Test и установите его, чтобы сделать смесь тестов. Нажмите ОК и дайте ему поработать минут пять. Ваша температура, вероятно, не будет слишком высокой на этом этапе, но следите за ней в любом случае.Самые большие температуры,которые вы хотите достичь во время работы Prime95 за вами, но я хотел бы держать её на уровне 85 градусов или около того.

Через пять минут, если прежнему работает Prime95, идите вперед,перезапустите систему и зайдите обратно в BIOS. Сделайте удар вашей базовой частоте ещё на 10 МГц и пройдите через процесс тестирования снова. Если Prime95 показывает ошибки, или если ваш компьютер застыл, перезагрузите или если BSOD выдал синий экран смерти, либо во время тестирования или еще до того, полностью перезагрузитесь, вернитесь в ваш BIOS и поднимите QPI/Vtt напряжение на один шаг и снова запустите проверку. Повторяйте этот процесс, пока не дойдёте до цели базовой частоты, или пока вы не достигнете небезопасных температур (что опять-таки, вы вряд ли будет на этом этапе). Если вы работаете с желаемой базовой частотой и через несколько минут Prime95 не выдаёт ошибок, запустите его в течение часа или около того, а не пять минут,в случае необходимости напряжение можете поднять. Как только Prime95, стабильно работает в течение часа, переходите к следующему шагу.

Стабилизировать память

Теперь, когда базовые частоты в норме и те которые вы хотели,нужно чтобы ваша память работала на или вблизких штатных тактовых частотах. Ваш запас скорости, будет перечислен на странице Newegg для памяти, как правило, в названии после его типа DDR. Скорость моей памяти, например 1600 МГц (указана как «DDR3 1600»). На данный момент в моих тестах, моя база составляла 200 часов, поэтому установка моей памяти имеет множитель 8 , хотел бы дать ей запас скорости 1600 (200 базовых часов х 8 = 1600). Вы не сможете получить её точную частоту с выбранной базовой частоты, так что получить её можно ближе к базовой, как вы можете для целей настоящего разгона (вспомним, что мы не собираемся говорить о разгоне оперативной памяти сегодня, так что целью является только заставить её правильно работать). Не забудьте сбросить Uncore частоты, а также, убедитесь, что она в два раза больше скорости оперативной памяти.

Как только все будет установлено, перезагрузите компьютер,вставьте диск с Memtest86 + (убедитесь, что ваша BIOS настроена на загрузку с компакт-диска до загрузки с жесткого диска). Как только диск запустится, выберите вариант 1, и он автоматически начнёт тестирование. Он должен сделать это в течение одного цикла без проблем, так как мы не разгоняли память. Если он выдаёт ошибки, попробуйте увеличить напряжение DRAM (но будьте осторожны, чтобы не поднять его более чем на 0,5 вольта над QPI/Vtt значениями). Если тест всё ещё не является стабильным, вы можете быть одним из тех кому немного не повезло, что вы не можете запустить RAM на скорости разгона, поэтому вернитесь и понизьте множитель снова (Uncore частоту), чтобы увидеть, поможет ли это. Если всё ещё возникают проблемы после небольшой настройки, вы можете иметь дефектную планку оперативной памяти,которая осталась незамеченной до сих пор. После проверки оперативной памяти, пройдите снова Memtest, перезагрузите вашу BIOS для последнего шага.

Настройте множитель

Теперь пришло время, чтобы получить ваш процессор работающий на желаемой частоте. Все остальное в этот момент должно быть стабильным, так что нужно просто поменять множитель процессора и напряжение питания. Оставьте Vcore, где оно должно быть по-прежнему работающим на «нормальных» скоростях, а также установите множитель на несколько уровней. Запустите снова тест Prime95 , как описано выше, но держите ближе глаза на температуре, поскольку она может стать довольно высокой в этой фазе. Если через несколько минут все проверки прошли нормально, перезагрузитесь в вашу BIOS и поднимите множитель снова. Если тест не пройден, перезагрузите вашу BIOS и поднимите напряжение питания на один шаг и снова запустите проверку. Если температура слишком высокая, вам необходимо либо сделать лучшую систему охлаждения, или согласиться на более низкий разгон.

Если вы достигли желаемой частоты, то вы на финишной прямой. Возможно, вам придется немного повозится в этот момент, чтобы добраться до частоты,которую вы хотите (200 МГц была моя целью базовой частоты, но на самом деле работает на 190, чтобы получить 190 х 21 = 3,99 ГГц тактовую частоту). После того как все выглядит хорошо, нужно сделать несколько тщательное тестирование: запустите Prime95 где-нибудь от 6 до 12 часов, и посмотрите,как пройдёт тестирование. Если нет, то повысьте напряжение питания немного и повторите попытку. После того как вы запустите Prime95 на 6 часов и более без ошибок,значит у вас есть довольно стабильный разгон. Я хотел бы проверить свою систему на более практических ситуациях, а также, чтобы убедиться, то есть, если вы геймер, поиграйте в Crysis, если вы видео кодировщик, запишите Blu-Ray в ручном режиме и посмотрите,как он работает без ошибок. Если все проверки пройдены, то поздравляю! Вы успешно разогнали вашу систему.

Разгон. Что это?

Разгон – принудительная работа оборудования на повышенных частотах. Разгон процессоров непосредственно пользователем появился достаточно давно, приблизительно начиная с 486 процессоров. Уже тогда люди хотели ускорить свой компьютер без расхода средств из своего бюджета. Так как процессор был той частью компьютера, чьё быстродействие всегда измерялось в мегагерцах, целью разгона было увеличение этих самых мегагерц. Сначала процессоры не очень-то стремились дарить радость их владельцам. Виной тому то, что в те далёкие времена компьютеры стоили намного дороже, нежели теперь и производители процессоров выжимали из них всё, что только можно. Поэтому запаса частоты у них практически не было. Но время всё меняет. В нашем случае - к лучшему:) (иначе не было б этой статьи). Итак, цель данной статьи максимально помочь начинающим пользователям, и минимально помочь производителям процессоров:) …

Почему производители CPU радуют нас разгоном?

На самом деле производитель CPU не стремиться радовать пользователей, он лишь старается выжать максимальную выгоду из своих "изделий". Кроме этого есть ещё несколько пунктов по поводу возможности разгона, вот они:

Система выпуска процессоров.

К примеру: AMD Athlon XP 1500+ и 2000+ на ядре Palomino выпускаются не отдельно (то бишь: надо AMD заполнить пробел на рынке ХР 1500+ процессоров, отлично, запускаем процесс по изготовлению ХР 1500+... не всё так просто). Вот почему:

Неоднородность ядер

Современные процессоры – очень сложные устройства, которые содержат миллионы транзисторов. А как сделать так, что бы в двух 1500 процессорах было, к примеру, по 40000000 миллионов транзисторов? Никак. Обязательно в одном будет, к примеру, на 100 больше, в другом на 200 меньше. И первый будет работать чуть быстрее, а второй чуть медленнее. А количество транзисторов напрямую зависит от способности процессора разгоняться.

Как узнать производителю, на какой CPU клеить лейбл 1500ХР, а на какой 2000ХР?

Тестировать процессоры? Итак: выпущено 10000000 Athlon XP Palomino. Поставить 10000000 компьютеров с этими CPU, посадить за них 10000000 человек и дать всем установку: разгоните процессоры до максимума. Понятно, что так делать никто не будет ввиду очень больших затрат. И тут в дело вступает такая наука, как статистика. Продемонстрирую упрощённую модель: На заводе AMD выпустили 1000000 процессоров за год. В первом полугодии 400000, во втором полугодии – 600000. Из первого взяли 100, протестировали. 10 процессоров заработало как 2000ХР, 90 – как 1500ХР. Из второй: 10 – 2100ХР, 90 – 2000ХР. Маркируем первую партию как 1500ХР (отбирать из 40000 CPU 10%, работающих как 2000 - не имеет смысла). Вторую маркируем как 2000ХР по тем же причинам. А почему первая партия была меньше, и качество было хуже, я рассмотрю в следующих пунктах.

Условия тестирования

Дело в том, что на заводе процессоры тестируются в жёстких условиях (температурный режим, время тестирования и тд.), дабы они гарантированно работали на заявленных частотах. Покупая процессор, мы стараемся, наоборот, обеспечить ему хорошие условия (покупаем дорогой кулер, иногда даже оставляем корпус открытым и тд.). За это процессоры благодарят нас и работают на повышенных частотах.

Brand и "иже с ними"

Такие компьютеры мало распространены в странах СНГ из-за их высокой стоимости. Существует много корпораций, продающих готовые компьютеры в фирменных корпусах, зачастую с собственного производства мониторами, мышами, клавиатурами и тд. Среди таких компаний: Dell, Compaq, Toshiba и тд. Свои компьютеры они оснащают только качественными комплектующими. Поэтому процессоры в этих компьютерах могут стоять с намеренно пониженными частотами для наибольшей надёжности системы.

Маркетинг

Важно не только произвести качественный и быстрый процессор, но и умело расписать его достоинства. Разглашать недостатки производители почему-то не любят:). Делается всё это чтобы убедить нас купить продукт именно этой фирмы, а не какой-либо другой. Умело пользуется этим правилом компания Intel.

Не все процессоры одинаковы полезны…

Всегда есть спрос на топовые модели, но он относительно низок. Часто случается так, что процессоры с низкими частотами продаются намного лучше. Из-за этого возникает пробел на рынке. Производители стремятся его заполнить и перемаркировывают процессоры. Если этого не делать, то на складе скапливаются топовые модели. А их всё равно придётся рано или поздно продавать, притом по цене, которая заметно ниже запланируемой.

Технический процесс

На заводе во втором полугодии процессоров получилось больше и их частоты были выше. Связано это с техническим процессом, который определяет величину транзистора, измеряемую в микронах. Чем меньше эта величина, тем лучше процессор будет разгоняться. То есть в ядро одного и того же объёма можно будет поместить больше транзисторов и, следовательно, частота будет больше. А с младшими моделями поступим так: в тот же объём поместим меньшее количество транзисторов, из-за чего тепловыделение будет меньше и расположенность к разгону выше.

Потенциал

Раз процессоры одной серии производятся по одной и той же технологической линии и отличаются лишь частотами, то можно пронаблюдать такую картину: 1500MHz процессор разогнан до 1800MHz, а процессор 2000MHz разогнан до 2100MHz. Что мы видим? Лидирует по частоте конечно второй процессор, но он разогнался только на 100MHz, а первый на 300MHz, хотя по частоте он уступает. Объясняется это тем, что 2000MHz работает уже практически на пределе своих возможностей. Поэтому процессоры одной серии с наименьшей частотой разгоняются намного лучше по относительному показателю, нежели их старшие братья.

Дата выпуска

Чем позднее произведён процессор, тем он лучше приспособлен к разгону. Инженеры компаний постоянно пытаются всё лучше наладить производство, дабы обеспечить больший процент выхода годных продуктов, следовательно, уменьшить затраты. Достигается это засчёт использования более прогрессивных технологий (новая упаковка корпуса и тд.). А чем более технологически совершенен проц., тем лучше он приспособлен к нестандартным частотам.

А зачем нам этот разгон?

Разгоном занимаются из-за ряда причин, начиная от увеличения производительности, заканчивая энтузиазмом. Вот эти причины:

  • Хочу быстрее! (с) Наш пользователь
  • Хочу за меньшие деньги! (с) Наш пользователь

Сбалансированность системы

Часто случается так: купил крутую видеокарту и думал, что всё ОК. Но не тут-то было. Забыл/не знал/не помнил, что в системе остался старенький Duron 600MHz, а GeForce 4 уже лежит на столе. Процессор по своей значимости в играх (так как играми искушён почти каждый пользователь, так случается, что ради игр люди занимаются разгоном) занимает один подиум с видеокартой. Поэтому для того, чтобы хоть как-то заставить видеокарту трудится как положено, разгоняется процессор.

Азарт

И вот настал мой самый любимый пункт! Многие люди (включая меня) разгоняют всё, что только можно для азарта. Зачем процессор с частотой 2Ггц разгонять? – спросит начинающий пользователь/оверклокер. Да затем - интересно выжать максимум! (Даже если этот максимум реально не нужен) Это как рулетка: повезло – хорошо разогнался, не повезло – всё равно разогнался, но уже не намного. Ещё более добавляет адреналин то, что такими манипуляциями можно и спалить "драгоценный камень". Хотя, случаи вылета процессоров от разгона крайне редки. Просто всё надо делать с умом, а не с тупым азартом. Если всё делать правильно, то вероятность провала 0,0ХХХ%.

А вдруг он сгорит?

Как говорилось в предыдущем пункте, при правильных действиях риск крайне мал, но он есть. Вот несколько минусов разгона:

Летальный исход – процессор сгорел. Это может произойти если:

  1. При сборке забыл прикрепить кулер. Лечится просто: надо быть внимательным и перед запуском проверить систему в целом.
  2. Кулер остановился. В БИОСах большинства материнских плат есть опция: остановить систему при остановке кулера.
  3. Температура процессора зашкаливает за допустимые пределы, в один прекрасный день компьютер завис и не "ожил". Следите за температурой. Обычно она не должна превышать 60 градусов.
  4. Хотел разблокировать множитель на Athlon/Duron и после этого система не стартует. Аккуратно сотрите остатки токопроводящего лака/карандаша с процессора и, если в этом случае "ничего не начинается" (с) Масяня:), несите камень на фирму, где вы его купили по гарантии. При разговоре с менеджером надо делать невинное тупое лицо и всё время мямлить: я играл в Quake/Unreal/NFS…а он…он остановился и не работает теперь. Никаких умных словечек, на вопросы менеджера о том, доставали ли вы процессор/снимали кулер и тд. Говорить – НЕТ.
  5. Пошёл к соседу поставить на его комп свой камень, принёс домой, вставил в свой комп – не работает. См. пункт выше.
  6. Скол на ядре при неаккуратной установке кулера, но гарантия есть. Попробуйте ляпнуть на ядро термопасты так, чтобы она закрывала место скола и вперёд на фирму. Вариантов успешного результата мало, но они есть. Это лучше чем оплакивать дома умерший процессор.
  7. Отломалась ножка. Попробуйте обратиться в профессиональную мастерскую, там возможно помогут. Советую не доверять это занятие какому-нибудь соседу "Саше", якобы умеющему обращаться с паяльником - понесёте процессор в мастерскую с пятью поломанными ногами.

Срок эксплуатации

Процессоры рассчитаны примерно на 10-15 лет непрерывной работы. Своими действиями вы можете сократить срок их службы до 5-10 лет. Но через это время ваш процессор будет стоить пару банок пива:).

Экстремальный разгон

Занятие для бесстрашных людей. Я к таковым не отношусь, следовательно, такими вещами не занимаюсь (описывать в этой статье не буду, так как она рассчитана на начинающих и продвинутых пользователей, которым лучше не браться за это занятие. А опытные оверклокеры вряд ли нашли бы что-нибудь новое в моих познаниях об экстремальном разгоне) и вам не советую. Но если вам всё же неймётся, то можете попробовать. Отмечу лишь то, что шансы умереть у процессора резко увеличиваются.

Производитель и разгон

Производители отрицательно относятся к разгону, но есть и некоторые исключения (почему AMD не заблокирует коэффициент "намертво"?).

Целесообразность

Что я получу от разгона, если у меня ХХХМВ память, GeForce X видеокарта и тд.? Разгонять процессор целесообразно во всех случаях (за исключением подобных ситуаций: вы геймер, у вас 3GHz CPU\TNT2 M64\64Mb RAM). Вопрос в том, какие отрицательные моменты может принести разгон?

  • При разгоне с помощью FSB греется больше не только процессор, но и все компоненты системы. Поэтому сбоить может практически всё (память, винчестер, SCSI-плата, даже блок питания).
  • Проблема определить: что именно сбоит? Чаще всего: память или CPU.
  • После нескольких часов работы компьютер виснет. Практически всегда это случается из-за перегрева. Нужен более качественный кулер.
  • После покупки более "навороченного" кулера, корпус будет издавать гораздо больший шум.
  • Иногда: ощущение страха. А вдруг сгорит?

Оптимизация

Зачастую после оптимизации памяти (выставлением более низких таймингов в БИОСе, настройка ОС и тд.), разгона и оптимизации видеокарты можно получить бо льшую прибавку производительности, нежели от разгона процессора.

Free RAM

Если у вас мало рамы и ваш tray в Windows представляет нечто, наподобие: AVP Monitor, ICQ, PowerStrip, Chat, CPUCool, Winzip, Windows Messager и тд., то есть смысл что-нибудь выгрузить, так как эти программы занимают драгоценное место в оперативной памяти.

Main board

Обновите БИОС. Возможно, в нём появились настройки, ранее не доступные. Обычно производители не любят говорить о каких-то конкретных изменениях в версиях БИОСов, поэтому обычно приходится проверять самому. P.S. Цель написания данной статьи: помочь пользователю получить "халявные" мегагерцы, а не рассказать про настройки БИОСа под заглавием: "Поставьте в нём пару Enabled и 2Т и всё заработает в 2 раза быстрее". Это вопрос отдельной статьи.

Опции ОС

Существует возможность настройки производительности почти каждой ОС. Поэтому можно просто переустановить или настроить ОС. Прирост производительности может быть значительным (в зависимости от состояния запущенности ОС:)).

Разгон видеокарты

Этот пункт адресован любителям поиграть в 3D игры. Для таких пользователей разгон видеокарты может дать такой же прирост, как и от разгона процессора. "Как и что" делать, прекрасно написано в статье "FAQ по разгону видеокарт" (за что большое спасибо моему тёзке Алексею Ф. ака fin:)).

Оптимизация видео

Существует возможность оптимизации видеокарты. Делается это с помощью настроек в драйверах.

Подготовка к разгону или доведение до ума.

Для этого понадобится наждачная бумага мелкой зернистости, армейская паста ГОИ, кусок хлопбум:) ткани и термопаста. Делается это примерно так: Распаковываем свежекупленный кулер. Если на его основании может быть наклеена фольга или какая-то вязкость, похожая на жвачку, смело отдираем их. Смотрим на то место, где ядро должно соприкасаться с основанием радиатора: на нём не должно быть следов клея. Далее берём наждачку и полируем основание радиатора (в некоторых статьях авторы рекомендуют также полировать поверхность ядра процессора… я настоятельно не рекомендую это делать) так, чтобы оно было ровным. Идеальной поверхности добиться не удастся. Тут нам на помощь призвана придти паста ГОИ (в армии используется не для полировки радиаторов:)). Натираем об неё кусочек ткани и полируем то самое основание. Когда работа будет закончена, вы сможете увидеть на радиаторе отражение своего довольного лица:).

Далее берём термопасту совдеповского производства КПТ-8 (пасты на основе серебра и тд. использовать не рекомендую: во-первых потому, что КПТ-8 прекрасно справляется со своей задачей за меньшие деньги, во-вторых потому, что при использовании паст на основе проводников существует риск что-нибудь закоротить) и наносим её на ядро процессора. Опасаться перебора не стоит, так как при установке кулера остатки пасты выдавятся, достаточно всего лишь чуть подвигать радиатор из стороны в сторону.

Как мне разогнать свой процессор?

Разгон процессора зависит не только от самого процессора, но и от конкретного железа в системе. Я возьму тот случай, когда все компоненты системы прекрасно приспособлены к разгону:

С помощью изменения частоты FSB

Наиболее популярный вариант разгона, доступный практически каждому. Формула расчёта тактовой частоты процессора: FSB x Multiplier=Clock Frequency. В БИОСе материнской платы или при помощи DIP переключателей (раньше были перемычки. То же, что и DIP, только устройство попроще:)) устанавливается нужная вам частота FSB, умножаемая на "множитель" и получается частота процессора. Увеличиваем частоту FSB на 5MHz, запускаем комп, пару раз прогоняем 3D Mark2001 или что-нибудь в этом духе. Если всё прошло ОК, повторяем процедуру… доходим до того момента, когда система загружается, но через пару минут начинает работать нестабильно (fatal error, 3D Mark вылетает, появляются непонятные ошибки системы и тд.). Настало время отодвинуться на 5MHz назад. Тестируем систему в течение нескольких часов на наличие перегрева (можно и больше, но после нескольких часов 3D Mark, CPUBurn и тд. и так станет всё понятно.). Если все тесты пройдены – процессор разогнан. Осталось подкорректировать частоту, добавляя по 1 MHz к FSB и тестируя так, как описано выше. Разгон с помощью FSB даёт бо льшую прибавку производительности (так как разгоняются почти все компоненты системы, в частности наибольшую прибавку из этих "всех" даёт RAM), нежели с помощью множителя.

С помощью множителя (multiplier)

Практически все современные процессоры, за исключением AMD Duron/Athlon (не беру в расчёт старые процессоры и Athlon под Slot A), не имеют возможности изменять множитель. Первоначально Duron/Athlon не мог изменять коэффициент, однако после того, как умные люди разгадали секрет AMD, всё стало веселее:). У разных модификаций этих процессоров multiplier разблокируется по-разному. Вот инструкции по разблокировке:

AMD Athlon (Thunderbird), Duron (Spitfire)

Эти процессоры разблокировались без особых напрягов. Достаточно было соединить простым карандашом (графит пропускает ток, но имеет большое сопротивление, которое, впрочем, не такое уж большое для этой процедуры:)) мостики L1, заклеить всё это дело скотчем (графит имеет свойство со временем осыпаться) и процессор готов к употреблению:).

AMD Athlon XP (Palomino), Duron (Morgan)

Здесь дело обстоит намного сложнее. Ещё раз напомню: если вы не уверены в том, что у вас всё получится, НЕ ДЕЛАЙТЕ ЭТОГО. Итак, приступим:

Средства и инструменты

Итак, как же сделать так, чтобы ваш камень Athlon XP работал не на той частоте, которая дана ему, так сказать, свыше, а на более высокой, и при этом не дать процессору потерять лицо, то есть товарный вид?

Сделать это сложнее, чем в случае с AMD Athlon Thunderbird, мостики на котором замыкались обычным простым карандашом, но все равно возможно. Для этого нам понадобятся: острый нож, наподобие канцелярского или хирургического, качественный прозрачный скотч, какой-нибудь быстротвердеющий клей, не проводящий ток (сойдет так называемый суперклей, который есть на любом блошином лотке), тюбик проводящего ток клея "Контактол", который можно купить в любом приличном магазине автозапчастей, увеличительное стекло (aka лупа) и 40-45 минут свободного от дел и забот времени.

Крайне желательно также наличие мультиметра или тестера. Суперклей вполне можно заменить на любой другой клей, важно только, чтобы он быстро менял агрегатное состояние, то есть становился твердым - мы же не хотим просидеть над процессором 24 часа?

Вместо клея "Контактол" вполне можно использовать любое другое хорошо проводящее ток, смываемое растворителем и достаточно клейкое вещество - например, цапонлак c металлическим наполнителем, который продается в любом уважающем себя магазине, торгующем всякими умными радиодеталями.

Расплавленный припой недопустим: результата вы, конечно, добьетесь, но вот товарный вид процессора потеряете точно.

Безусловно, помимо, так сказать, приобретаемых ресурсов, нам понадобятся еще и некоторые врожденные и благоприобретенные человеческие качества. Какие? Да самые простые: прямые руки, такая же голова, причем желательно находящаяся не где-либо, а на собственных плечах. Не принимайте алкоголь перед тем, как соберетесь свершить со своим процессором описанные тут непотребства - все может плохо кончиться и для него, и для вас. Движения, выполняемые вами, должны быть четкими, быстрыми и уверенными.

Меняем множитель

Итак, мостики L1 никуда не делись. И даже расположены они на XP в том же месте, что и у Thunderbird. Но посмотрите на эти мостики внимательно: между двумя точками, которые, собственно, нам и надо соединить, есть малозаметная такая канавка, в которой, при дальнейшей игре в гляделки, вполне можно увидеть тонкое медное напыление.

Если вы все же попробуете замкнуть мостики карандашом или припоем, то неизбежно не только соедините их между собой, но и замкнете на ту самую медную подложку. Результат будет довольно невеселый: процессор откажется заводиться, и вернуть его к жизни будет весьма сложно.

Как вы уже поняли, наша задача - замкнуть мостики L1, не "заземлив" их при этом на медное напыление. Для этого надо просто заполнить канавки диэлектриком, коим в нашем случае является суперклей или его заменитель. Делать это, несмотря на кажущуюся простоту задачи, надо весьма и весьма аккуратно - ведь диэлектрик не должен попасть на контактные площадки мостиков, но вот канавку надо заполнить по самое некуда - для лучшей изоляции.

Мы должны локализовать канавки с помощью скотча, что мы, собственно, и сделаем. Очистите поверхность подложки процессора с помощью спирта или одеколона. (Только не глотнув и выдохнув на подложку тонким слоем)

Затем наклейте две полоски скотча шириной около 1 см, каждая вдоль мостиков - так, чтобы они закрывали собой контактные площадки, а вот канавки не затрагивали. Ширина получившейся щели не должна превышать 1-2 мм. Если резиновая ножка на подложке вам мешает, оторвите или срежьте ее. После этого еще двумя полосами скотча примерно той же ширины окончательно локализуйте место нанесения клея - иными словами, наклейте их перпендикулярно уже наклеенным полоскам так, чтобы открытыми оставались только канавки мостиков L1, и ничего больше.

Крайне важно, чтобы скотч, используемый вами, имел хорошую прилипчивость и не имел дурной привычки вздуваться где попало. Клеить его на подложку надо плотно, чтобы по шву никаких вздутий не оставалось, - в противном случае в такое вздутие сможет протечь клей, закрыв контактную площадку и загробив тем самым весь первый этап операции "Ъ".

Если вы все сделали правильно, то после высыхания клея и отдирания скотча вы увидите ровненький (или не очень) бугорок клея, лежащий точно поверх тех самых злополучных канавок. Нам этот холмик, кстати, совершенно не нужен: наносить поверх тонкого, неровного и рассыпающегося бугорка из клея нормальные ровные дорожки проводника - занятие куда более неблагодарное, чем делание того же самого, но на гладкой поверхности подложки.

Поэтому берем в руки скальпель и аккуратно, ведя лезвие параллельно подложке и почти касаясь ее, срезаем остатки клея. При этом важно не прикладывать чрезмерных усилий к ножу - можно поцарапать подложку или, например, выковырять диэлектрик из канавки. Также важно, чтобы нож был действительно острый, а не который вы уже год как обещаете подточить, и даже хлеб под ним не режется, а ломается.

Все, можно открыть глаза. Что мы видим? А видим мы идиллическую картину - ровная, чистая поверхность подложки и аккуратно заполненные диэлектриком ненавистные нам канавки. Если мы видим что-то иное - значит, мы что-то делали не так и это "не так" надо немедленно переделать.

Но даже после получения идеально ровной поверхности нельзя применять карандаш - сопротивление графита слишком велико и процессор все равно не будет работать так, как нам хочется. Не оправдано и применение остро заточенного припоя - все же клей, даже затвердевший, имеет свойство крошиться и царапаться, так что ровной дорожки вы все равно не получите. Вот тут-то нам и пригодится наш жидкий проводник: с его помощью, а также с помощью уже сослужившего нам службу скотча мы сможем выполнить ровные и надежные дорожки между контактными площадками.

Опять отрезаем от мотка липкой ленты две полосы шириной около 1 см каждая. Опять наклеиваем их вдоль площадок, но теперь уже оставляем открытыми и их тоже. Затем перпендикулярно этим полосам наклеиваем еще два кусочка скотча таким образом, чтобы открытым остался только первый мостик из пяти. То есть открытым остается только малюсенький прямоугольник.

Если на предыдущем этапе я советовал вам клеить скотч плотно, то тут я вам НАСТОЯТЕЛЬНО РЕКОМЕНДУЮ клеить его ОЧЕНЬ ПЛОТНО - проводник не диэлектрик, его протечка гораздо более опасна, ненужное замыкание может стоить вам процессора.

Наклеили? Теперь глубоко вздохните и каким-нибудь тонким инструментом нанесите на открытый прямоугольник слой проводника. Жалеть его не нужно, переливать - тоже. Вы должны нанести добротный слой, но не каплю - она нам совершенно ни к чему.

Можно выдохнуть. Пока проходит помутнение в глазах, вызванное недостатком кислорода в крови, положите все инструменты на место и ничего больше не трогайте до полного высыхания клея или лака. Подчеркиваю - полного высыхания! То есть такого состояния проводника, когда на него можно будет наклеивать скотч, не боясь того, что от неосторожного нажатия клей расплывется. После того, как сие знаменательное событие произошло, смело отдирайте и выбрасывайте скотч.

И повторяйте процедуру для второго, третьего и так далее мостиков. Самое главное на этом этапе - не допустить какого-либо замыкания мостиков между собой. Конечно, можно потом удалить маленькую "козу" скальпелем, но велик риск поцарапать подложку. Результат обработки всех мостиков - разблокировка множителя процессора. Внимательно осмотрите мостики, лучше под лупой, дабы убедиться, что между ними действительно нет никаких ненужных контактов. После этого крайне желательно померить сопротивление получившихся дорожек, а также прозвонить их на предмет контакта друг с другом.

Вот тут-то нам и пригодится мультиметр. Не прикладывая к щупу никаких усилий, поставьте его на первый мостик и коснитесь вторым щупом другого конца этого же моста. Сопротивление должно приближаться к 0. Если это не так, значит, мостик не наведен - повторите процедуру нанесения проводника. Если же так оно и есть - последовательно коснитесь вторым щупом всех остальных мостов L1. Если на каком-либо измерении вы получите почти нулевое сопротивление между щупами, ищите короткое замыкание.

Если же такого не произошло, переходите к следующему мостику.

Все тесты пройдены успешно? Отлично, теперь один щуп прижмите к маленькой контактной площадке над надписью "Assembled in...", а вторым последовательно пройдите все только что созданные мосты. Сопротивление должно отличаться от нуля во всех случаях. Площадка, к которой прижат первый щуп, очевидно, имеет прямой электрический контакт с медным напылением, и данный тест проверяет надежность нашей клеевой изоляции.

Если где-то имеется пробой - придется разрушать только что наведенный мост, повторно заливать канавку клеем и затем снова восстанавливать разрушенное.

Итак, всё сделано и можно приступать к разгону.

P.S. Будьте предельно осторожны с разлочкой "коричневых" атлонов. Однажды после такой процедуры атлон разогнался до частоты 0Мгц:(. Притом никаких следов того, что проц сгорел, не было, также не было "нечаянно замкнутых мостиков", обращение с процессором было предельно аккуратное. Чтобы заставить подонка работать, я удалил проводящий лак, но это тоже не помогло. Вот и думай после этого: что я сделал не так? У "зелёного" атлона я замыкал между собой все мостики L1, после чего процессор просто не стартовал. При удалении лака всё работало.

AMD Athlon (Thoroughbred)

При выходе процессора на ядре Thorobred AMD пошла навстречу оверклокерам, во-первых, оставила на некоторых моделях не заблокированный множитель (на тех у которых заводской множитель до 12.5), но и остальные разблокировать не составляет особого труда. Во-вторых, сделала хорошо разгоняемый процессор (а это радует). Ну, давайте разберемся, как же разлочить торобред с коэффициентом умножения выше 12.5. А это очень легко, нужно всего лишь замкнуть 5-й мостик группы L3, это возможно сделать двумя способами:

а) Уже традиционный способ: соединить две точки 5-го мостика группы L3 токопроводящим лаком, предварительно заклеив скотчем, либо суперклеем прорезь между точками, и процессор разлочен.

РИС.1 б) Этот способ еще проще: нужно всего-навсего замкнуть две ножки процессора AJ27 и AH28 тоненькой проволокой (рис.2), результат один и тот же. (Про ножки подробней ниже).

РИС.2

При разлочке процессора этими способами можно будет выставлять различные (до 12.5 включительно) множители посредством материнской платы, если в последней есть такая функция. Но что же делать, если такой функции нет, или нужно выставить множитель выше 12.5, то такой способ уже не эффективен. Как это сделать читайте ниже.

Выставлять различные множители от 5 до 18.5 можно выставлением различных комбинаций (open, closed) 5-и мостиков L3. Например, у вас торобред 1700+ его родной множитель 11 положение всех мостиков closed (они все замкнуты), а нам нужно поставить множитель 13 для этого необходимо разрезать 3-й и 5-й мостики группы L3, а для того, чтобы вернуть множитель 11 нам их нужно замазать токопроводящим лаком.

Подробней о комбинациях мостиков L3:

РИС.3

Резать мостики нужно двумя батарейками по 1.5 вольта, один контакт на одну из точек мостика, а второй нужно подсоединить к иголке и водить между точек и мостик разрежется. Однако мостики можно и не резать, а просто изолировать определенные ножки процессора которые связаны с верхними точками мостиков L3.

Делается это так - вытягивается из сетевого кабеля (витая пара UTP) проводок, из изоляции вытаскивается провод и эту (можно какую другую) изоляцию натягиваем на ноги - при этом надо совсем чуть-чуть рассверлить (вручную) дырки на подвижной части сокета, чтобы потом при вынимании проца изоляция там не оставалась:

Мостики L3

Ножки процессора

Изолирование этих ног процессора будет равноценно перерезанию мостиков L3. Также с помощью этих же ног можно и восстановить ранее разрезанные мостики L3. Всего лишь нужно подвести сигнал GND на ножку, соответствующую верхней точке мостика L3 – это будет равноценно замыканию мостика:

РИС.5

Обеспечение стабильности при разгоне.

Напряжение

Напряжение возможно повышать/понижать на CPU, RAM, AGP, IO. Обычно поднятие напряжения на процессор даёт больше стабильности, с его помощью можно получить более высокие результаты разгона. Правда при поднятии напряжения на CPU/RAM/NorthBridge, они начинают больше греться. Для этого необходимо обеспечить хорошее охлаждение. С обзором кулеров для процессоров можно ознакомиться практически на любом железячном сайте. Кулер на чипсете мат. Платы желательно заменить, к примеру, на кулер от Pentium I. Памяти достаточно будет прикреплённых к её чипам радиаторов. Сделать их можно распилом радиатора от старой мат. платы или процессора. Затем приклеить термоклеем (не суперклеем!), который можно купить на любом радиорынке.


РИС. 6

Рекомендую повышать напряжение максимум на 15% от номинала. Выше – не безопасно! С разгоном CPU необходимо поднять напряжение на память, так как большинство мат. Плат работают в синхронном режиме FSB/RAM. Поднимать напряжение на AGP нет необходимости, так как современные видеокарты могут работать на частотах AGP, намного больше номинальных. Эта опция актуальна для владельцев видеокарт компании Matrox, чьи продукты издавна славятся своей нелюбовью к разгону. Напряжение на IO (Input/Output) можно поднять для повышения общей стабильности системы.

Соотношение FSB/PCI/AGP

Для того, чтобы при разгоне не страдало другое оборудование (винчестер, PCI устройства, видеокарта и тд.), были придуманы делители. К примеру: Intel Celeron I работает на 66MHz FSB, при синхронном режиме частота PCI/AGP составит также 66MHz. У AGP номинальная частота 66MHz, а вот у PCI – 33MHz. При повышении частоты в 2 раза винчестер вообще откажется работать. Табличка, показывающая зависимость частот PCI/AGP от частот FSB:

Из этой таблички видно, что существуют делители FSB/PCI/AGP: 1:2:1; 1:3:2/3; 1:4:2; 1:5:2/5; 1:6:3. При этом мат. плата с поддержкой делителя, к примеру, 1:6:3, имеет набор предыдущих делителей. Притом может выбирать нужный в зависимости от частоты FSB, а вот понижать номинальные частоты для PCI/AGP мат. платы не умеют (к примеру: плата Intel 815 при частоте FSB 95MHz выберет делитель 1:2:1, а не 1:3:2/3.

Вывод: при разгоне лучше использовать официально поддерживаемые частоты (см. таблицу выше). То есть: у вас AMD Athlon XP, работающий на 133Мгц FSB. Уговорить его работать на 166Мгц (при наличии мат. платы с делителем 1:5:2/5) будет проще, чем на 159Мгц.

Охлаждение

Как вы уже догадались: для эффективного разгона необходим хороший кулер. Помните: с помощью кулера охлаждается не только процессор, поэтому необходимо обеспечить качественное охлаждение практически всем компонентам.

Конструкция корпуса

Лучше выбирать корпуса с горизонтальным расположением блока питания (расположен он так, чтобы свободно пропускать воздух к кулеру процессора), к счастью такая конструкция присутствует практически во всех последних корпусах.

Описания процессоров

Вот то, что многие начинающие оверклокеры очень хотят узнать. Описание процессоров, возможности разгона и тд.:

AMD Duron (Spitfire/Morgan(Duron XP)):

Частоты: От 600 до 900MHz для Spitfire и от 900 до 1300MHz для Duron XP

Morgan является урезанным Athlon`ом ХР (урезан, как всегда, кэш второго уровня и FSB=100MHz, а не 133).

Технические характеристики:

Технология 0,18; 0,13 мкм, напряжение ядра 1,6-1,7В, рассеиваемая мощность от 26 до 45Вт – Spitfire, от 46 до 57Вт - Morgan, оба ядра включают в себя около 25млн. транзисторов. Шина у обоих 100х2=200MHz, реальная частота 100MHz, просто данные передаются по обоим фронтам сигнала. Пропускная способность шины 1,6 Гб/с. Кэш первого уровня – 128кб (64кб на данные и 64кб на инструкции), кэш второго – 64кб. Оба кэша хранят данные, которые между собой не пересекаются и дополняют друг друга, так что эффективный объём равняется 192кб. Благодаря такой системе кэширования, процессорам AMD удаётся быть быстрее аналогичных процессоров Intel.

Упаковка:) :

Разъём – Socket-462 (Socket – A). Изготавливается Socket-A-PGA462. Кристалл процессора вынесен на поверхность для лучшего охлаждения. Процессор достаточно хрупок, поэтому будьте осторожны при установке кулера, для этого по краям установлены четыре прокладки, смягчающие нагрузку. Покупая процессор, проверьте ядро на сколы (обычно по краям кристалла), чтобы не пришлось проделывать процедуру возврата по гарантии сразу же после покупки. В процессоры серии Athlon XP/Duron XP встроен термодатчик, позволяющий наиболее точно снимать данные о температуре процессора. Правда только самые последние боарды поддерживают эту функцию.

Наборы команд:

Spitfire: MMX расширенный (+19 доп. Инструкций) и Enhanced 3DNow!, с 5-ю доп. инструкциями. Используется 3 суперскалярных полностью конвейеризованных блока вычислений с плавающей точкой с возможностью изменения последовательности выполнения команд и 3 суперскалярных полностью конвейеризованных блока адресных вычислений возможностью изменения последовательности выполнения команд. Это позволяет добиться впечатляющего быстродействия в приложениях, использующих в большом объёме сложные математические и геометрические вычисления, в частности, в играх.

Morgan: Те же инструкции, что и в Spitfire+3DNow!Professional, который включает в себя 107 SIMD инструкций, что на 52 больше чем в 3DNow! Enhanced. Благодаря этому новшеству набор команд 3DNow! Professional совместим с набором команд SSE, использующихся в процессорах Intel. Также изменения постигли механизм предсказания используемых инструкций, благодаря чему новое ядро пытается заблаговременно загружать в кэш процессора инструкции, которые могут потребоваться при дальнейших вычислениях. Благодаря такой технологии удаётся сократить количество холостых тактов процессора, связанных с ожиданием поступления необходимых данных из оперативной памяти. Использование увеличенного буфера быстрого преобразования адреса (TLB-буфер), ответственного за кэширование данных основной памяти.

Быстродействие:

Процессор опережает: Intel Celeron Mendocino (20-30%), Coppermine (10-20%). Отстаёт от: Intel Pentium III (3-5%), Intel Pentium III Tualatin (10-20%), Intel Celeron Tualatin (5-15%), AMD Athlon/XP (5-20%). Разница между Spitfire и Morgan примерно 2-5%. С ростом коэффициента процессоров Duron увеличивается отставание от Athlon из-за меньшего объёма кэша. Разница в процентах зависит от частот системной шины, типа используемой памяти, тестовых приложений.

Разгон:

Хорошо поддаются разгону младшие процессоры с частотами 600-650, однако они уже сняты с производства и найти их в продаже весьма сложно. Они обычно разгоняются вплоть до 1Ггц. Потолком их частоты является примерно 1100Мгц (из-за 0.18мкм технологии). Поэтому старшие модели разгоняются плохо. Новые модели процессоров на ядре Morgan, выпущенные по технологии 0.13мкм разгоняются достаточно хорошо. Разгон зависит от объёма кэш-памяти (чем меньше – тем лучше для разгона), а на Duron её всего 64кб. Для разгона необходимо позаботиться о хорошем охлаждении, так как тепловыделение этих процессоров оставляет желать лучшего.

Плюсы:

  1. Достаточно высокое быстродействие.
  2. Самая низкая цена среди конкурентов.

Минусы:

  1. Сильный нагрев при работе.
  2. Достаточно хрупок.

Невысокие тактовые частоты (не считаю минусом, так как процессор позиционируется для недорогих офисных и домашних компьютеров).

Резюме: Отличный процессор для дома и офиса. Отличное соотношение цена/производительность.

AMD Athlon (Thunderbird/Palomino/Thoroughbred)

Thunderbird: От 700 до 1300 на 100Мгц FSB и от 1000 до 1400 на 133Мгц FSB

Palomino: От 1333 до 2000Мгц (от 1500ХР до 2400ХР) на 133Мгц FSB

Thoroughbred: От 1466 до 2167Мгц (от 1700ХР до 2700ХР) на 133Мгц FSB

Технические характеристики:

Thunderbird: Те же, что и у Duron Spitfire, за исключением: FSB 100 и 133Мгц. Кэш-память второго уровня (L2) - 256кб. Рассеиваемая мощность от 50 до 90Вт.

Palomino: 37.5 млн. транзисторов, 0.18мкм, рассеиваемая мощность от 60 до 90Вт. Остальное как у Thunderbird.

Thoroughbred: 0.13мкм, рассеиваемая мощность от 60 до 90Вт. Остальное как у Thunderbird.

Упаковка:

Thunderbird: Та же, что и у Duron Spitfire. Только корпус окрашен в кофейный цвет. Ранние версии процессоров, выпускавшиеся под Slot A, были в корпусах SECC2.

Palomino: Та же, что и у Duron. Только производятся в пластиковых Socket-A-OPGA462 (Organic pin grid array) коричневого или зелёного (последние модели) цвета, благодаря чему процессор стал немного ниже.

Thoroughbred: Та же, что и у Athlon XP. Только уменьшилась площадь кристалла и он стал прямоугольной формы.

Наборы команд: Thunderbird: Та же, что и у Duron Spitfire.

Palomino: Та же, что и у Duron XP.

Thoroughbred: Та же, что и у Athlon XP.

Быстродействие:

Thunderbird: Процессор опережает: Duron, Intel Celeron, Intel Pentium III, Intel Pentium 4(есть несколько приложений, например, WinRAR и Quake3, где P4 немного опережает). Отстаёт от: Athlon Palomino/Thoroughbred, AMD Athlon Barton. Наравне с Intel Pentium III Tualatin (Зависит от типа используемой памяти и приложений).

Palomino: Процессор опережает: AMD Duron, AMD Athlon Thunderbird, Intel Celeron, Intel Pentium III, Intel Pentium III Tualatin, Intel Pentium 4. Отстаёт: AMD Athlon Barton. Thoroughbred: То же, что и у Athlon Palomino. Разница зависит от частот системной шины, типа используемой памяти, тестовых приложений. Данные получены при равных частотах.

Разгон: Thunderbird: Разгоняется хуже (из-за большего объёма кэша), чем Duron Spitfire. Только потолок частот примерно 1500Мгц. Остальное как у Duron Spitfire.

Palomino: Первые версии в коричневых корпусах разгоняются плохо. Версии в зелёных корпусах разгоняются хорошо (связано, скорее всего, с технологическими нормами). Лучше всех разгоняются зелёные камни с маркировкой 1500ХР и 1600ХР. Обычно при хорошем охлаждении удаётся выставить коэффициент 12.5 и сделать их 2000ХР или посадить оных на 166Мгц FSB. Последнее даёт большую прибавку производительности. На некоторых мат. платах (KT333, KT400 и др.) можно выставлять асинхронный режим работы FSB и памяти, но это даёт мизерный прирост производительности. Потолок частот примерно 2Ггц.

Thoroughbred: За счёт 0.13мкм технологии процессоры младших рейтингов разгоняются просто круто. Камень 1700ХР (1466Мгц) является королём разгона. Заслуженные оверклокеры РФ:) на сайте www.. Достаточно много процессоров гонится до рейтинга 2700ХР. Потолок примерно 2.4Ггц.

Плюсы:

  1. Отличное соотношение цена/производительность.
  2. Хорошие возможности разгона (для Athlon XP).

Минусы:

  1. Сильный нагрев при работе.
  2. Большая потребляемая мощность (требовательность к блоку питания).

Резюме: Отличный процессор для домашних/профессиональных/игровых/видео/графических систем.

AMD Athlon XP (Barton)

Частоты: от 1833 до 2167+MHz

Технические характеристики:

Используется 166(333)MHz FSB. Кэш L1 – 128kb, L2 – 512kb (на частоте процессора). Технология: 0.13мкм. Напряжение: 1.65В, тепловыделение: 55 – 74 Вт.

Упаковка:

Разъём – Socket-462 (Socket – A). Изготавливается Socket-A-PGA462. Кристалл процессора вынесен на поверхность для лучшего охлаждения. По краям установлены четыре прокладки, смягчающие нагрузку. Кристалл процессора имеет прямоугольную форму (большие рёбра имеют большую длину, чем у Thoroughbred). В процессоры встроен термодатчик, позволяющий наиболее точно снимать данные о температуре процессора. Правда только самые последние боарды поддерживают эту функцию. Barton поддерживает достаточно большое количество материнских плат на самых разных чипсетах (иногда даже те, которые официально не поддерживают 166MHz FSB). Со списком можно ознакомиться в конце статьи.

Наборы команд:

Многие надеялись на добавление в ядро Barton набора инструкций SSE2, но, к сожалению, этого не произошло. Процессор поддерживает всё тот же "джентльменский набор": 3DNow! Pro, MMX, SSE.

Быстродействие:

К сожалению кэш L2 512кб не даёт желаемый прирост быстродействия (примерно 5-10% в сравнении с Thoroughbred). Да и цена на процессоры пока оставляет желать лучшего, но всё равно Barton лидер по быстродействию на сегодняшний день. Обгоняет: Всех. Отстаёт: Нет.

Разгон:

Несмотря на вдвое увеличенный объём кэш-памяти, процессор довольно неплохо разгоняется (греется, правда, как сковородка). Примерный разгон сопоставим с Athlon Palomino. Правда для этого необходимо иметь современную мат. плату. Пока к наилучшим "изделиям" для этих целей относятся только nVidia nForce2 и VIA KT400A CE, так как способны стабильно работать на частотах FSB выше 200MHz.

Плюсы: Лидер по быстродействию.

Минусы:

  1. Достаточно высокая цена (на момент выхода)
  2. Сильный нагрев при работе.
  3. Необходима мат. плата, корректно работающая с 166MHz FSB.
  4. Требуется качественный и мощный блок питания.

Резюме: Процессор найдёт своё применение в высокопроизводительных компьютерах класса Hi-end. На данный момент мало подходит для домашнего игрового компьютера из-за высокой цены.

Intel Celeron I (Mendocino)

Частоты: от 300 до 533Мгц.

Технические характеристики:

Используется 66Мгц FSB. Кэш L1 – 32kb (по 16кб на инструкции и данные), кэш L2 – 128kb интегрирован в ядро и работает на тактовой частоте процессора (первые версии Celeron (от 266 до 333Мгц) для Slot1 кэша L2 не имели, а их производительность была достаточно низка). Технология: 0.25 мкм. Напряжение: 2В, рассеиваемая мощность: 18 - 30 Вт. Упаковка:

Корпус PPGA с крышкой, защищающий кристалл от повреждений. Разъём Socket-370. Некоторые младшие модели были выпущены в Slot1 исполнении. Если у вас мат. плата под Slot1, то процессоры под Socket-370 могут быть установлены при наличии специального переходника Slot1->F-PGA или FC-PGA.

Наборы команд:

Имеет два модуля ММХ, конвейерный блок вычислений с плавающей точкой (благодаря которому оказывался в играх быстрее чем аналогичные модели AMD K6/K6-2). Поддерживает выполнение команд с изменением последовательности выполнения.

Быстродействие:

Имеет низкое по сегодняшним меркам быстродействие (66Мгц FSB, малый размер кэша, нет поддержки SSE). Такой процессор как нельзя лучше подходит для офисных ПК. Отстаёт: от всех остальных, рассматриваемых в этой статье. Обгоняет: AMD K6/K6-2 (30-40%), VIA/Cyrix (40-50%) в играх. Наравне с AMD K6/K6-2 в офисных приложениях.

Разгон:

266 MHz Celeron без кеша L2 практически всегда разгонялся до 400Мгц (100Мгц FSB). Младшие модели CeleronA (300, 333MHz) обычно разгонялись до 400-450Мгц. Иногда удавалось, с поднятием напряжения на 0.2-0.3В, заставить работать 400Мгц Celeron на 100Мгц FSB (600MHz). Потолок у Celeron I – 600MHz, поэтому, к примеру, 500 МГц процессор не хотел садиться даже на 75Мгц FSB.

Плюсы:

  1. Низкая цена.
  2. Совместимость со старыми платами на Slot1, PPGA, FCPGA.

Минусы:

  1. Низкое быстродействие.
  2. Невысокие тактовые частоты.

Резюме: Недорогой процессор для выполнения несложных офисных задач.

Intel Celeron II (Coppermine128/Tualatin)

Тактовые частоты: От 533 до 766Мгц – 66MHz FSB, от 800 до 1100MHz – 100MHz FSB для Coppermine128. От 1200 до 1500Мгц для Tualatin

Технические характеристики:

Coppermine128: 32kb cache L1, 128kb cache L2. 0.18мкм, напряжение зависит от частоты: от 1.5 до 1.75В. Рассеиваемая мощность: от 11Вт до 30Вт. Tualatin: 32кб cache L1, 256kb cache L2. 0.13мкм, напряжение: 1.475В. Рассеиваемая мощность: от 30 до 38Вт.

Упаковка:

Coppermine128: FC-PGA корпус, зелёного цвета. Процессор может быть установлен в мат. плату с разъёмом Slot1 при наличии переходника. О его поддержке мат. платой можно узнать на сайте производителя, возможно придётся перешивать БИОС. Связано это с тем, что не все старые мат. Платы под Slot1 умеют выставлять напряжение 1.75В.

Tualatin: FC-PGA2 корпус, зелёного цвета со специальной защитной крышкой-распределителем тепла (Integrated Heat Spreader), способствующей более лучшему охлаждению ядра, а также защитой от механических повреждений. Процессор нельзя установить в старую мат. Плату без вмешательства паяльника (старые мат.платы не поддерживают питание 1.475В и прошивкой нового БИОСа ситуацию не исправишь).

Наборы команд:

Имеет два модуля ММХ, конвейерный блок вычислений с плавающей точкой, 8 дополнительных регистров и 70 дополнительных инструкций SIMD (SSE). Tualatin дополнительно имеет улучшенный блок предсказания и кэширования данных, которые могут потребоваться процессору для текущих операций, что даёт прирост производительности на несколько процентов.

Быстродействие:

Coppermine128: Отстаёт от: Intel Pentium III, AMD Duron/Athlon. Опережает: Intel Celeron I, AMD K6/K6-2, VIA/Cyrix. Tualatin: Отстаёт от: AMD Athlon. Опережает: Intel Celeron I/Pentium4, AMD K6/K6-2, VIA/Cyrix. Наравне с Intel Pentium III, AMD Duron.

Разгон:

Coppermine128: Потолок примерно 1200Мгц. Младшие модели относительно хорошо разгоняются (к примеру, 600Мгц разгонялся до 900-950Мгц). Tualatin: Потолок примерно 1700-1750 МГц. За счёт применения 0.13мкм технологии процессоры разгоняются неплохо, мешает разгону увеличенный кэш L2.

Плюсы:

  1. Неплохое быстродействие (для Tualatin).

Минусы:

  1. Низкое быстродействие (для Coppermine).
  2. Относительно высокая цена.
  3. Нет версий с FSB 133MHz.

Резюме: Coppermine достаточно медленный процессор. Предназначен для модернизации старых систем. Покупать компьютер на базе Celeron Coppermine считаю экономически нецелесообразным. Celeron Tualatin – неплохой процессор, который может занять почётное место в машине не очень требовательного геймера.

Intel Pentium III (Coppermine/Tualatin)

Тактовые частоты: От 533 до 1133Мгц для Coppermine (Индекс Е означает 100Мгц FSB, EB – 133MHz FSB). От 1133 до 1266Мгц для Tualatin cache L2 256kb, от 1133 до 1266Мгц для Tualatin L2 512kb

Технические характеристики:

Версия Tualatin с 512кб кэш-памяти первоначально задумывалась как серверный вариант процессора, и называлась Pentium III-S. Никаких отличий от версии с 256кб КЭШа, кроме чуть пониженного напряжения, нет.

Coppermine выпускается по 0.18мкм, а Tualatin по 0.13мкм технологии. Частота FSB может быть 100 или 133Мгц. Кэш L1 – 32kb. Напряжение для Coppermine – 1.65-1.7В, для Tualatin L2 256kb – 1.475B, для Tualatin L2 512kb – 1.45B. Мобильные версии процессоров всегда оснащаются 512-ю килобайтами КЭШа L2. Рассеиваемая мощность – от 20 до 35Вт.

Упаковка:

Версии процессоров для разъёма Slot1 уже не выпускаются. Сейчас процессоры имеются в двух видах корпусов: FC-PGA ((Coppermine) небольшой чёрный кристалл на зелёном пластиковом корпусе для разъёма Socket370) и FC-PGA2/Socket370 ((Tualatin) зелёный пластиковый корпус со специальной защитной крышкой-распределителем тепла). В Slot1 можно устанавливать процессоры в корпусах FC-PGA через переходник. Процессоры на ядре Tualatin установить в старую мат. Плату не удастся без перепайки.

Наборы команд: Те же, что и в Celeron на аналогичных ядрах.

Быстродействие:

Coppermine: Отстаёт от AMD Athlon, AMD Athlon Barton, Pentium III Tualatin. Опережает Intel Celeron/Pentium4, AMD Duron. Tualatin: Отстаёт от AMD Athlon. Опережает Intel Celeron/PentiumIII/Pentium4, AMD Duron.

Разгон:

Процессоры Coppermine обычно разгоняются на 150-200Мгц. Наиболее подходящие для разгона процессоры с частотой FSB 100MHz. Tualatin L2 256kb разгоняются на 200-300Мгц. Tualatin L2 512kb обычно разгоняется на 100-150Мгц. Для Coppermine потолок примерно 1250Мгц, для Tualatin – 1700Мгц.

Плюсы:

  1. Отлично подходит для модернизации (для Coppermine).
  2. Небольшая рассеиваемая мощность.
  3. Хорошее быстродействие (для Tualatin).

Минусы:

  1. Невысокое быстродействие (для Coppermine).
  2. Относительно высокая цена.
  3. Невысокая предельная частота.

Резюме: достойный процессор для домашнего ПК/работы с аудио/видео данными (для Tualatin). Процессор больше всего подойдёт для модернизации компьютера на базе Celeron (для Coppermine).

Intel Pentium 4 (Willamette/Northwood)/Intel Celeron

Тактовые частоты: Celeron: От 1700 до 2000Мгц. Willamette: От 1.3 до 2Ггц. Northwood: От 1.6 до 3.06Ггц

Технические характеристики:

Используется 400Мгц FSB, пропускная способность 3.2 Гб/с. Кэш L1 – 12000 инструкций (8кб), кэш L2 – 256kb (512кб для Northwood) работает на частоте процессора. Технология изготовления 0.18мкм для Celeron и Willamette, 0.13мкм для Northwood. Рассеиваемая мощность – 50 – 70Вт.

Упаковка: Socket423 для Willamette, Socket478 для Celeron и Northwood. Напряжение – 1.7-1.75В для Willamette, 1.475В для Celeron и Northwood.

Наборы команд:

Блок целочисленных операций работает на удвоенной частоте ядра. Добавлены 144 новых SIMD инструкции – набор SSE2 (всего 214 инструкций). Использует новый конвейер – Hyper Pipelined Technology с глубиной на 20 стадий. Улучшенное предсказание переходов и исполнение команд с изменением порядка их следования – Advanced Dynamic Execution.

Быстродействие:

Celeron: Отстаёт: Intel Pentium III/Celeron Tualatin, AMD Duron/Athlon. Опережает: Intel Celeron Coppermine, Via/Cyrix. Pentium 4: Отстаёт: Intel Pentium III/Celeron Tualatin, AMD Duron/Athlon. Опережает: Intel Celeron Coppermine, Via/Cyrix. В зависимости от типа используемой памяти отрыв может уменьшаться.

Разгон:

Celeron гонится достаточно хорошо. Некоторые экземпляры с частотой 2Ггц можно разогнать до 3Ггц при наличии хорошего охлаждения. Объясняется этот факт наличием малого объёма кэш-памяти. Pentium 4 Willamette не лучший объект для разгона. Он по номиналу работает на довольно высоких частотах. 200Мгц средний результат разгона. Pentium 4 Northwood благодаря 0.13мкм технологии гонится довольно неплохо. Для младших моделей средний результат 400Мгц.

Плюсы:

  1. Лидер по тактовой частоте (для Pentium 4).
  2. Набор SSE2.

Минусы:

  1. Не пригоден для модернизации.
  2. Большая рассеиваемая мощность.
  3. Высокая цена.

Резюме:

Pentium 4 хороший процессор для профессиональных высокопроизводительных систем, который, к сожалению, мало подходит для домашних игровых систем из-за плохого соотношения цена/производительность.

Celeron мне трудно рекомендовать в какую-нибудь систему. Сегодняшний Celeron ничего общего не имеет с Celeron-ами предыдущих версий, которые в своё время сочетали отличные характеристики по доступной цене. Процессор абсолютно не нужный по сегодняшним меркам.

Остальные процессоры я не рассматриваю, так как они актуальны только для офисных приложений и очень малому количеству пользователей эта информация будут интересна. В пункте "РЕЗЮМЕ" высказано моё личное заключение. Если кто-то не согласен, пишите.

То же самое, только в таблицах:

Процессор Поддерживаемые чипсеты
Athlon 100FSB VIA KT133/A, KM133/A, KL133/A, KLE133/A, KT266/A, KM266, KT333, KT400, Ali Magik 1, SiS730/733/735/740/745, nVidia nForce/2
Athlon 133FSB Ali Magik 1, VIA KT133/A, KM133, KT266/A, KT333, KT400, AMD760, SiS730/735
Athlon XP 133FSB VIA KT133A, KM133A, KL133A, KT266/A, KM266, KT333, KT400, Ali Magik 1, SiS730/733/735/740/745, nVidia nForce/2
Athlon XP 166FSB Практически все платы на КТ333\400 и nForce2 (на данный момент полный список мне не доступен)
Duron 100FSB VIA KT133/A, KM133/A, KL133/A, KLE133/A, KT266/A, KM266, KT333, KT400, Ali Magik 1,SiS730/733/735/740/745, nVidia nForce/2
Celeron 66FSB
Celeron 100FSB i440BX, i810, i815, VIA PRO 133A/PM133/PL133/PLE133/266, Ali Alladin TNT2, Ali Alladin Pro5, SiS630/633/635
CeleronT 100FSB Как и Celeron128, только в конце модели добавляется Т или В (в Intel мат.платах). Пример: i815B или VIA PRO 133T
CeleronW 400FSB
Pentium IIIC 100/133FSB i440BX, i810, i815, VIA PRO 133A/PM133/PL133/PLE133/266, Ali Alladin TNT2, Ali Alladin Pro5, SiS630/633/635
Pentium IIIT 133FSB
Pentium IIIS 133FSB Как и Celeron128, только в конце модели добавляется Т или В(в Intel мат.платах). Пример: i815B или VIA PRO 133T
Pentium 4W 400FSB Intel845GL/845D/845A/I850/I845PE/I845E/I845G/I845GL, SiS645/645DX/648/650, VIA P4X266A
Pentium 4N 400/533FSB Intel845GL/845D/845A/I850/I845PE/I845E/I845G/I845GL, SiS645/645DX/648/650, VIA P4X266A

В заключение…

Спасибо, что дочитали статью до конца. Надеюсь из неё вы узнали что-нибудь новое. Статья получилась не совсем маленькой:), и, к сожалению:), она будет постоянно дополняться (пока для себя, а если будет у народа интерес, то выложится в инет). Прошу строго не судить, так как это моя первая статья, на написание которой у автора, то бишь меня, ушло немало времени (1.5 месяца). Но как бы то ни было, написанное пригодилось не только мне, но и моим друзьям и знакомым. Значит уже время не было потрачено впустую... Несколько вещей меня подтолкнули к написанию этой статьи:

  1. Вспоминаю себя, когда у меня появился компьютер (~5 лет назад) ... Сначала была просто увлечённость играми и тд. Потом захотелось чего-то новенького... Начал интересоваться разгоном: сначала спалил БИОС у своей видеокарты при попытке изменить начальную заставку с помощью блокнота:), потом память начала плохо работать при переразгоне моего Селерона, потом убил (а может он сам убился:)) Атлон моего соседа... Вот так, методом проб и ошибок, прочтения кучи статей (которые я замучивался искать в инете) и тд. Научился выжимать соки из компьютера (в том числе процессора). И вот решил всё это свести в одну заметку:) для начинающих.
  2. Второй пункт тесно связан с первым: для друзей, знакомых, товарищей и тд., которые засыпают меня вопросами, связанными с разгоном чего-нибудь в их машинках.
  3. Алексея Ф aka finа, которая мне показалась очень интересным материалом, несмотря на то, что всё это я уже знаю. Захотелось сделать нечто похожее, только про другую, не менее значимую часть компьютера.
  4. Конечно же хочу увидеть свою работу на страницах www.сайт. Главное участие, а призы – это уж не мне решать.

В статье постарался совместить FAQ с "учебником по разгону для начинающих". Автор статьи обладает слишком малым количеством скромности, поэтому признаётся: зовут меня Алексей, живу в городе Минске, Беларусь, учусь в БГУ на юридическом факультете. Увлекаюсь девушками, деньгами, авто, компьютерами и тд. В далёком будущем планирую создание сайта по разгону, где будет размещена вся известная мне информация про те компоненты компьютера, которые можно разогнать:). Конфигурация домашнего компьютера:

  • AMD Athlon XP (Palomino) 1600XP@1920MHz (167FSBx11.5@Vcore=2В)
  • Volcano IX+КПТ8 4000RPM
  • Gigabyte 7VAX KT400
  • 256Mb DDR PC2100 CL2.5@167MHz CL2, 2.5.2., 1CMD.
  • Elsa Gladiac 920 (GeForce3) 200/460MHz@250/560MHz
  • HDD 80Gb IBM 120GXP 7200RPM UDMA100
  • CD-RW Teac W54E 4x/4x/32x
  • SB Live! Value
  • Lucent 56K Modem
  • Realtek 8139AS net
  • 15` Monitor Samtron 55B:) Антиквариат

10062 попугайчика в 3DMark 2001SE если кому интересно:). Для всего этого потребовалось: 1. Поменять радиатор с кулером на видеокарте на кулер от PIII, посадить всё это дело на КПТ8+Суперглюк. Прилепить таким же образом радиаторы на памяти (они там вообще, по-моему, были просто приклеены). 2. Повесить вентилятор от корпуса возле видеокарты для дополнительного обдува чипа и памяти. 3. На обратную сторону чипа видеокарты положить кулер от первого пентиума. 4. Поменять радиатор с кулером на северном мосте мат. Платы. Так же, как я это сделал с чипом на видюхе. 5. Посадить радиатор от Р3 на южный мост материнки (до этого был достаточно горячим на ощупь). 6. Поставить вентилятор на корпус для забора воздуха в корпус. 7. Смазать Volcano IX синтетическим моторным маслом Castrol:).

После всего этого можно было подразогнать систему и сбить пыл ревущего вулкана так, чтобы он был не громче остальных кулеров в системе, которых получилось 6+1 на блоке питания. Если будет цифровой фотоаппарат, то выложу фотки:).

Ещё раз напоминаю: почти всё написанное в этой статье проверено мною лично (тем, кто мне не доверяет, могут дальше не читать:)), но использование этих указаний/советов в разгоне своего компьютера производится на ваш страх и риск. Поэтому: (сейчас последует отмазка:)) автор статьи не несёт никакой ответственности за сломанное/спаленное оборудование.

Благодарности и неблагодарности:

Большое спасибо моим соседям - Немцеву Егору и Левину Дмитрию за помощь в оформлении. Сергею Бучину и сайту www.upgrade.ru за избавление меня от написания статьи на тему мостиков Athlon XP (Palomino), по той же причине благодарю Tyl`a, любезно предоставившего мне на пользование статью о мостиках и ногах Thoroughbred`a.

Неблагодарности: моей девушке Ане и моим соседям и друзьям, которые, сами того не зная, отвлекали меня от написания статьи путём подстрекания к пьянкам, барам, кино и тд. Их старания ушли напрасно:). Заранее благодарю тех, кто окажет мне помощь и сделает замечания или дополнения. Не убивайте в себе критика!

Резюме: если не понятны какие-либо слова или выражения, пишите мне на e-mail. С удовольствием растолкую, но я не думаю что какие-нибудь слова вызовут затруднения.

(с) Лисок Алексей

Эта статья была прислана на наш второй конкурс.

  • GTX 1070 ASUS по старой цене в Ситилинке, УСПЕЙ!">Последние GTX 1070 ASUS по старой цене в Ситилинке, УСПЕЙ!

Не секрет, что большинство процессоров, чипсетов системной платы и микросхем памяти работают на средних показателях производительности. Таким образом, в наших системных блоках, возможно, имеется еще достаточно большой запас неиспользованного потенциала .

Теоритически разогнать процессор очень просто, нужно подобрать максимальную частоту и напряжение. При этом оперативная память и другие устройства должны продолжать стабильно работать, не перегреваясь. Проще всего это сделать из BIOS.

Если не знаете, как зайти в BIOS прочтите этот материал . Многие BIOS современных материнских плат уже содержат разделы для разгона системы. Это может быть пункт MB Intelligent Tweaker, M.I.B, Quantum BIOS, Ai Tweaker и т. п. Невозможно в формате статьи описать все варианты.

В более ранних версиях настройки частот процессора и оперативной памяти находятся в разделе Frequency/Voltage Control , на закладке Advanced или JumperFree Configuration . При любой конфигурации нам необходим раздел содержащий управление частотой системной шины и оперативной памяти, а также напряжением процессора.


В этих разделах можно повысить производительность, просто установив одно из фиксированных значений – Colonel , Genera l (по аналогии со званиями в армии) у пункта
Dynamic Overclock . При версиях BIOS, в которых нет этих разделов, нужно провести предварительную подготовку .


Сначала установим нижние значения частоты оперативной памяти (Memory Frequency, Timing Mode, Memory Timing) и зафиксируем частоту шины AGP/PCI также на нижней цифре. Если в закладке есть пункт HyperTransport Frequency (НТ Frequency или LDT Frequency), его значение тоже нужно уменьшить, наполовину, установив множитель х3 . Не устанавливайте значения Auto , укажите конкретные цифры. Эти установки расширят диапазон разгона. Дело в том, что частота на шинах будет расти вместе с частотой процессора, поэтому запас поможет добиться максимального разгона при стабильной работе других элементов материнской платы. Также отключите управление вентилятором (Fan Control), пусть охлаждение будет максимальным.

Сделать это можно изменив множитель (CPU Ratio) или повысив частоту FSB (CPU Bus). Частота процессора это значение FSB умноженное на CPU Ratio, например 18 Х 133 МГц = 2.4 ГГц. Множитель в большинстве случаев заблокирован производителем процессора, а изменение частоты FSB доступно практически в каждой версии BIOS, поэтому пойдем этим путем. Чтобы поднять частоту FSB нужно увеличивать значение пункта FSB Frequency (CPU Frequency, CPU Speed, External Clock) на одну цифру, каждый раз сохраняя изменения и перезагружаясь . Таким образом, будет найдена максимальная частота, при которой система запускается.

Если после установки очередного значения компьютер не загружается, достигнут порог. Чтобы запустить компьютер после достижения порогового значения нужно сбросить установки BIOS к исходным значениям. Для этого выключите компьютер и замкните перемычку Clear CMOS (обычно она расположена рядом с батарейкой), или просто снимите на 5-10 секунд батарейку . Затем установите последнее значение FSB, при котором компьютер запускался.


Здесь еще можно немного увеличить напряжение питания процессора (CPU Voltage) и питание памяти (DDR Voltage).

Изменяя эти настройки, будьте предельно осторожны!

Повышение напряжений приводит к резкому повышению температуры элементов . Эти настройки вы меняете на свой страх и риск при полной последующей ответственности. Постоянно контролируйте значение в разделе PC Health Status , температура должна быть не выше 70 градусов после 20-30 минут работы в BIOS. Подберите такой режим, при котором система запускается с максимальными значениями FSB, при этом, не перегревая процессор и другие элементы. Вообще при разгоне желательно использование усиленных систем охлаждения .

Далее нужно проверить стабильность работы, загружаем операционную систему. При загрузке могут, не определится диски или другие устройства, например звук, сеть. Также загрузка может закончиться «синим экраном ». Это означает, что частота системной шины (AGP/PCI) слишком высока. Тогда значение FSB нужно еще уменьшить. Если загрузка прошла нормально, проверьте, какая температура у процессора и других элементов. Для этого используйте программу ОССТ. Пусть компьютер поработает 30 минут , если температура превысила 70 градусов , разгон нужно уменьшать, есть опасность выхода элемента из строя. Если сбоев нет, проведите полное тестирование OCCT или стресс тестом S&M , контролируя значение нагрева элементов системы.

Если тесты прошли удачно, поздравляем с первым разгоном!