Китайские копии смартфонов i9220 плюс. Обзор Haipai i9220 - лучшая копия Galaxy Note

22.02.2019

Генети́чески модифици́рованный органи́зм (ГМО ) - организм , генотип которого был искусственно изменён при помощи методов генной инженерии . Это определение может применяться для растений, животных и микроорганизмов. Всемирная организация здравоохранения даёт более узкое определение, согласно которому генетически модифицированные организмы - это организмы, чей генетический материал (ДНК) был изменен, причём такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации .

Генетические изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутационного процесса.

Основным видом генетической модификации в настоящее время является использование трансгенов для создания трансгенных организмов .

В сельском хозяйстве и пищевой промышленности под ГМО подразумеваются только организмы, модифицированные внесением в их геном одного или нескольких трансгенов .

Специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов как таковых по сравнению с традиционными продуктами .

Цели создания ГМО [ | ]

Использование как отдельных генов различных видов, так и их комбинаций в создании новых трансгенных сортов и линий является частью стратегии FAO по характеризации, сохранению и использованию генетических ресурсов в сельском хозяйстве и пищевой промышленности .

Исследование 2012 года (основанное в том числе на отчётах компаний-производителей семян) использования трансгенных сои, кукурузы, хлопка и канолы в 1996-2011 годах показало, что устойчивые к гербицидам культуры оказываются более дешёвыми в выращивании и в ряде случаев более урожайными. Культуры содержащие инсектицид давали больший урожай, особенно в развивающихся странах, где использовавшиеся до этого пестициды были малоэффективными. Также устойчивые к насекомым культуры оказывались более дешёвыми в выращивании в развитых странах . По данным метаанализа , проведённого в 2014 году, урожайность ГМО-сельхозкультур за счёт снижения потерь от вредителей на 21,6 % выше, чем у немодифицированных, при этом расход пестицидов ниже на 36,9 %, затраты на пестициды снижаются на 39,2 %, а доходы сельхозпроизводителей повышаются на 68,2 % .

Методы создания ГМО [ | ]

Основные этапы создания ГМО:

Методы осуществления каждого из этих этапов составляют в совокупности .

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение [ | ]

В исследованиях [ | ]

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью генно-модифицированных организмов исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера , рак) , процессы старения и регенерации , изучается функционирование нервной системы , решается ряд других актуальных проблем биологии и современной медицины .

В медицине и фармацевтической промышленности [ | ]

Генетически модифицированные организмы используются в прикладной медицине с 1982 года . В этом году зарегистрирован в качестве лекарства генно-инженерный человеческий инсулин , получаемый с помощью генетически модифицированных бактерий . В настоящее время фармацевтическая промышленность выпускает большое количество лекарственных средств на основе рекомбинантных белков человека: такие белки производят генетически модифицированные микроорганизмы, либо генетически модифицированные клеточные линии животных. Генетическая модификация в данном случае заключается в том, что в клетку интродуцируется ген белка человека (например, ген инсулина, ген интерферона, ген бета-фоллитропина). Эта технология позволяет выделять белки не из донорской крови, а из ГМ-организмов, что снижает риск инфицирования препаратов и повышает чистоту выделенных белков. Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы , ВИЧ ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора . Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз .

В сельском хозяйстве [ | ]

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям , обладающих лучшими ростовыми и вкусовыми качествами.

Проходят испытания генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом .

Однако, некоторые компании устанавливают ограничения на использование продаваемых ими генетически модифицированных семян, запрещая высеивание самостоятельно полученных семян. Для этого используются юридические ограничения типа контрактов, патентов или лицензирования семян . Также для подобных ограничений одно время прорабатывались технологии (GURT), которые так и не использовались в коммерчески доступных ГМ-линиях . Технологии GURT либо делают стерильным выращенные семена (V-GURT), либо требуют особых химических веществ для проявления внесённого с помощью модификации свойства (T-GURT). При этом стоит отметить, что в сельском хозяйстве широко применяются гибриды F1 , которые, как и ГМО-сорта, требуют ежегодной закупки семенного материала. Некоторые продукты содержат ген, приводящий к стерильности пыльцы, например, ген барназы , полученный из бактерии Bacillus amyloliquefaciens .

С 1996 года, когда началось выращивание ГМ-растений, площади, занятые ГМ-культурами, выросли до 175 млн гектаров в 2013 году (более 11 % от всех мировых посевных площадей). Такие растения выращиваются в 27 странах, особенно широко - в США, Бразилии, Аргентине, Канаде, Индии, Китае , при этом, начиная с 2012 года, производство ГМ-сортов развивающимися странами превысило производство в промышленно развитых государствах . Из 18 миллионов фермерских хозяйств, выращивающих ГМ-культуры, более 90 % приходится на малые хозяйства в развивающихся странах .

На 2013 год, в 36 странах, регулирующих использование ГМ-культур, было выдано 2833 разрешения на использование таких культур, из них 1321 - для употребления в пищу, и 918 - на корм скоту. Всего на рынок допущено 27 ГМ-культур (336 сортов), основными культурами являются: соя, кукуруза, хлопок, канола , картофель . Из применяемых ГМ-культур подавляющее большинство площадей занимают культуры, устойчивые к гербицидам, насекомым-вредителям или культуры с комбинацией этих свойств .

В животноводстве [ | ]

Методом генного редактирования удалось создать свиней, которые потенциально устойчивы к африканской свиной чуме . Изменение пяти «букв» в коде ДНК гена RELA у выращиваемых на фермах животных, позволило получить вариант гена, который, предположительно защищает их диких сородичей: бородавочников и кустарниковых свиней от этого заболевания .

Другие направления [ | ]

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо .

В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году выходит в продажу ГМ-сорт розы «Applause» с цветами "синего цвета" (на самом деле они сиреневые) .

Безопасность [ | ]

Появившаяся в начале 1970-х годов технология (en:Recombinant DNA) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций .

Первым документом, которым регулировалась деятельность по производству и обращению с гмо-материалами на территории Евросоюза стала Директива 90/219/ЕЕС «Об ограниченном использовании генетически изменённых микроорганизмов» .

На вопрос о безопасности продуктов из генетически модифицированных организмов Всемирная организация здравоохранения отвечает о невозможности общих утверждений об опасности или безопасности таких продуктов, но о необходимости отдельной оценки в каждом случае, так как разные генетически модифицированные организмы содержат разные гены. Также ВОЗ считает, что доступные на международном рынке гм-продукты проходят проверки безопасности и употреблялись в пищу популяциями целых стран без отмеченных эффектов, и соответственно вряд ли могут представлять опасность для здоровья .

В настоящее время специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами, полученными из организмов, выведенных традиционными методами . Как отмечается в докладе 2010 года Генерального Директората Европейской комиссии по науке и информации :

Главный вывод, вытекающий из усилий более чем 130 научно-исследовательских проектов, охватывающих 25 лет исследований и проведённых с участием более чем 500 независимых исследовательских групп, состоит в том, что биотехнологии и, в частности, ГМО как таковые не более опасны, чем, например, традиционные технологии селекции растений

В 2012 году в журнале Nature была опубликована статья о долгосрочном использовании ГМ-культур, производящих инсектицидные белки, и не требующих дополнительной обработки инсектицидами. Это естественным образом увеличивало популяцию хищных насекомых, и значительно сокращало число вредных насекомых .

Обзор 1783 публикаций на тему ГМО с выводом: никаких особенных рисков они не несут .

Регулирование [ | ]

В некоторых странах создание, производство, применение продукции с использованием ГМО подлежит государственному регулированию. В том числе и в России, где исследовано и одобрено к применению несколько видов трансгенных продуктов.

До 2014 года в России ГМО можно было выращивать только на опытных участках, был разрешён ввоз некоторых сортов (не семян) кукурузы, картофеля, сои, риса и сахарной свёклы (всего 22 линии растений). С 1 июля 2014 г. должно было вступить в силу Постановление Правительства Российской Федерации от 23 сентября 2013 г. № 839 «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы» . 16 июня 2014 года Правительством РФ принято постановление № 548 о переносе срока вступления в силу постановления № 839 на 3 года, то есть на 1 июля 2017 года .

В феврале 2015 года в Госдуму внесен законопроект о запрете на выращивание ГМО в России , который был принят в первом чтении в апреле 2015 . Запрет не касается использования генномодифицированных организмов (ГМО) для проведения экспертиз и научно-исследовательских работ. Согласно законопроекту, правительство сможет запрещать ввоз в Россию генно-модифицированных организмов и продукции по результатам мониторинга их воздействия на человека и окружающую среду . Импортёры генно-модифицированных организмов и продукции будут обязаны пройти регистрационные процедуры. За использование ГМО с нарушением разрешённого вида и условий использования предусматривается административная ответственность: штраф на должностных лиц предлагается установить в размере от 10 тысяч до 50 тысяч рублей; на юридических лиц - от 100 до 500 тысяч рублей.

Список ГМО, одобренных в России для использования , в том числе в качестве пищи населением :

Общественное мнение [ | ]

Как показывают опросы общественного мнения, общество в целом не слишком осведомлено об основах биотехнологии. Большинство верит утверждениям типа: Обычные томаты не содержат генов, в отличие от трансгенных томатов .

По мнению молекулярного биолога Энн Гловер , противники ГМО страдают «формой умственного помешательства». Выражения А. Гловер привели к её отставке с поста главного научного консультанта Европейской Комиссии .

В 2016 году более 120 нобелевских лауреатов (большинство из которых медики, биологи и химики) подписали письмо с призывом к Greenpeace , Организации Объединённых Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами .

ГМО и религия [ | ]

В соответствии с заключением иудаистского Ортодоксального Союза, генетические модификации не влияют на кошерность продукта .

См. также [ | ]

Примечания [ | ]

  1. ВОЗ | Часто задаваемые вопросы по генетически модифицированным продуктам питания (неопр.) . www.who.int. Проверено 24 марта 2017.
  2. genetically modified organism // Glossary of biotechnology for food and agriculture: a revised and augmented edition of the glossary of biotechnology and genetic engineering. Rome, 2001, FAO, ISSN 1020-0541
  3. European Commission Directorate-General for Research and Innovation; Directorate E - Biotechnologies, Agriculture, Food; Unit E2 - Biotechnologies (2010) p.16
  4. What is agricultural biotechnology? // The state of food and agriculture 2003-2004: The state of food and agriculture 2003-2004. Agricultural Biotechnology. FAO Agriculture Series № 35. (2004)
  5. Лещинская И. Б. Генетическая инженерия (рус.) (1996). Проверено 4 сентября 2009. Архивировано 21 января 2012 года.
  6. Brookes G, Barfoot P. The global income and production effects of genetically modified (GM) crops 1996-2011.GM Crops Food. 2012 Oct-Dec;3(4):265-72.
  7. Klümper, Wilhelm; Qaim, Matin (2014). “A Meta-Analysis of the Impacts of Genetically Modified Crops” . PLoS ONE . 9 (11): –111629. DOI :10.1371/journal.pone.0111629 . Проверено 2015-12-24 .
  8. Trait Introduction Method: Agrobacterium tumefaciens-mediated plant transformation
  9. Microparticle bombardment of plant cells or tissue
  10. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004)
  11. Jeffrey Green,Thomas Ried. Genetically Engineered Mice for Cancer Research: Design, Analysis, Pathways, Validation and Pre-clinical Testing. Springer, 2011
  12. Patrick R. Hof,Charles V. Mobbs. Handbook of the neuroscience of aging. p537-542
  13. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice//Genes & Dev. 2009. 23: 1183-1194
  14. Инсулин растворимый [человеческий генно-инженерный] (Insulin soluble ): инструкция, применение и формула
  15. История развития биотехнологии (рус.) (недоступная ссылка) . Проверено 4 сентября 2009. Архивировано 12 июля 2007 года.
  16. Zenaida Gonzalez Kotala. UCF professor develops vaccine to protect against black plague bioterror attack (англ.) (30 July 2008). Проверено 3 октября 2009. Архивировано 21 января 2012 года.
  17. Получение препарата против ВИЧ из растений (рус.) (1 апреля 2009, 12:35). Проверено 4 сентября 2009. Архивировано 21 января 2012 года.
  18. Инсулин из растений проходит испытания на людях (рус.) (недоступная ссылка - история ) . Membrana (12 января 2009). Проверено 4 сентября 2009.
  19. Ирина Власова. Американским пациентам сделают козу (рус.) (недоступная ссылка) (11 февраля 2009, 16:22). Проверено 4 сентября 2009. Архивировано 6 апреля 2009 года.
  20. Matt Ridley. Genome: The Autobiography of a Species In 23 Chapters.HarperCollins, 2000, 352 pages
  21. The Mission Impossible of Genetic Redesign For Longevity
  22. Элементы - новости науки: Трансгенный хлопок помог китайским крестьянам победить опасного вредителя
  23. И поросла Россия трансгенными берёзками… | Наука и техника | Наука и технологии России Архивная копия от 19 февраля 2009 на Wayback Machine
  24. Monsanto Seed Saving and Legal Activities
  25. Caleb Garling (San Francisco Chronicle), Monsanto seed suit and software patents // SFGate, February 23, 2013: «company’s genetically modified and pesticide-resistant seeds, which are patent-protected. .. Monsanto uses a similar strategy with its seeds. Farmers license their use; technically, they don’t buy them.»
  26. Are GM plants fertile, or do farmers have to buy new seeds every year? // EuropaBio: "All GM plants commercialized are as fertile as their conventional counterparts."
  27. GM Events with Male sterility
  28. Gene: barnase
  29. ISAAA Brief 46-2013: Executive Summary. Global Status of Commercialized Biotech/GM Crops: 2013 Архивная копия от 22 февраля 2014 на Wayback Machine // ISAAA
  30. Общая площадь посевов генно-модифицированных культур в 1,5 раза превышает территорию США // ИноСМИ, по материалам «Mother Jones», США, 26/02/2013
  31. , slide 4-5
  32. Pigs" genetic code altered in bid to tackle deadly virus
  33. Simon G. Lillico, Chris Proudfoot, Tim J. King, Wenfang Tan, Lei Zhang, Rachel Mardjuki, David E. Paschon, Edward J. Rebar, Fyodor D. Urnov, Alan J. Mileham, David G. McLaren, C. Bruce A. Whitelaw.(2016). Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports,; 6: 21645 DOI :10.1038/srep21645
  34. Super-biofuel cooked up by bacterial brewers - tech - 08 December 2008 - New Scientist
  35. MEMBRANA | Мировые новости | В Японии стартуют продажи настоящих синих роз
  36. Б. Глик, Дж. Пастернак. Молекулярная биотехнология = Molecular Biotechnology. - М. : Мир, 2002. - С. 517. - 589 с. - ISBN 5-03-003328-9 .
  37. Berg P et. al. Science, 185, 1974 , 303 .
  38. Breg et al., Science, 188, 1975 , 991-994 .

Произведенные при помощи генной инженерии. Получение генетически модифицированных организмов (ГМО) связано со "встраиванием" чужого гена в ДНК других растений или животных (производят транспортировку гена, т.е. трансгенизацию) с целью изменения свойств или параметров последних. В результате такой модификации происходит искусственное внедрение новых генов в геном организма.

Первый ГМ-продукт был получен в 1972 году , когда ученый Стэнфордского университета Пол Берг объединил в единое целое два гена, выделенных из разных организмов, и получил гибрид, который не встречается в природе.

Первый ГМ микроорганизм - кишечная палочка с человеческим геном, кодирующим синтез инсулина, появился на свет в 1973 году. В связи с непредсказуемостью результатов ученые Стенли Коэн и Герберт Бойер, сделавшие это изобретение, обратились к мировому научному сообществу с призывом приостановить исследования в области генной инженерии, написав письмо в журнал Science; в числе прочих под ним подписался и сам Пол Берг.

В феврале 1975 года на конференции в Асиломаре (Калифорния), ведущие специалисты в области генной инженерии решили прервать мораторий и продолжить исследования с соблюдением специально разработанных правил.

На отработку методики промышленного производства микробно-человеческого инсулина и его проверку с особым пристрастием понадобилось семь лет: только в 1980 году американская компания Genentech начала продажу нового препарата.

Немецкие генетики в Институте растениеводства в Кельне в 1983 году вывели ГМ-табак , устойчивый к воздействию насекомых-вредителей. Еще через пять лет, в 1988 году, впервые в истории была посажена генномодифицированная кукуруза. После этого развитие началось очень бурными темпами. В 1992 году выращивать трансгенный табак начали в Китае.

В 1994 году американская компания Monsanto представила свою первую разработку генной инженерии - помидор под названием Flavr Savr, который мог в полузрелом состоянии месяцами храниться в прохладном помещении, однако стоило плодам оказаться в тепле - они тут же краснели. Такие свойства модифицированные помидоры получили благодаря соединению с генами камбалы. Затем ученые скрестили сою с генами некоторых бактерий, и эта культура стала устойчивой к гербицидам, которыми обрабатывают поля от вредителей.

Производители стали ставить очень разные задачи перед учеными. Кто-то хотел, чтобы бананы не чернели на протяжении всего срока хранения, другие требовали, чтобы все яблоки и клубничины были одинакового размера и не портились по полгода. В Израиле, к примеру, вывели даже помидоры кубической формы, чтобы их проще было упаковывать.

Впоследствии в мире было выведено около тысячи генномодифицированных культур , однако из них только 100 разрешены к промышленному производству. Наиболее распространенные - помидоры, соя, кукуруза, рис, пшеница, арахис, картофель.

Единого законодательства об использовании ГМ-продукции сегодня не т ни в США, ни в Европе, поэтому точных данных относительно оборота такого товара не существует. Рынок ГМО пока до конца не сформировался. В одних странах эти продукты запрещены полностью, в других - частично, в-третьих вообще разрешены.

По итогам 2008 года, площадь посевов ГМ-культур превысила 114,2 млн гектар. Генномодифицированные культуры выращивают около 10 млн фермеров в 21 стране мира. Лидером в производстве ГМ-культур являются США, следом идут Аргентина, Бразилия, Китай и Индия. В Европе к генномодифицированным культурам относятся настороженно, а в России высаживать ГМ-растения вовсе запрещено, но в некоторых регионах этот запрет обходится - посевы генномодифицированной пшеницы есть на Кубани, в Ставрополе и на Алтае.
Впервые мировое сообщество всерьез задумалось о целесообразности использования ГМО в 2000 году. Ученые громко заговорили о возможном негативном влиянии таких продуктов на здоровье человека.

Технология получения ГМО относительна проста. Специальными методиками в геном конечного организма внедряются так называемые "целевые гены" - по сути, те особенности, которые нужно привить одному организму от другого. После этого проводят несколько стадий отбора при разных условиях и отбирают самый жизнеспособный ГМО, который при этом будет вырабатывать нужные вещества, за производство которых и отвечает измененный геном.

После этого полученный ГМО подвергают всесторонней проверке на возможную токсичность и аллергенность, и ГМО (и продукты ГМО) готов к продаже.

Несмотря на безобидность ГМО, технология содержит в себе несколько проблем. Одно из основных опасений специалистов и экологической общественности в связи с использованием ГМО в сельском хозяйстве - риск разрушения естественных экосистем.

Среди экологических последствий использования ГМО наиболее вероятны следующие: проявление непредсказуемых новых свойств трансгенного организма из-за множественного действия внедренных в него чужеродных генов; риски отсроченного изменения свойств (через несколько поколений), связанные с адаптацией нового гена и с проявлением как новых свойств ГМО, так и с изменением уже декларированных; возникновение незапланированных организмов-мутантов (например, сорняков) с непредсказуемыми свойствами; поражение нецелевых насекомых и других живых организмов; появление устойчивости к трансгенным токсинам у насекомых, бактерий, грибов и других организмов, питающихся ГМ-растениями; влияние на естественный отбор и др.

Другая проблема вытекает из недостаточности изученности воздействия ГМ-культур на организм человека. Ученые выделяют следующие основные риски употребления в пищу ГМ-продуктов: угнетение иммунитета, возможность острых нарушений функционирования организма, таких как аллергические реакции и метаболические расстройства, в результате непосредственного действия трансгенных белков. Влияние новых белков, которые продуцируют встроенные в ГМО гены, неизвестно. Человек их ранее никогда не употреблял, и поэтому неясно, являются ли они аллергенами. К тому же есть научные данные, говорящие о том, что, в частности, Bt-токсин, который производят многие сорта трансгенных кукурузы, картофеля, свеклы и пр., в пищеварительной системе разрушается медленнее, чем ожидалось, а значит - может являться потенциальным аллергеном.

Также может появиться устойчивость микрофлоры кишечника человека к антибиотикам, так как при получении ГМО до сих пор используются маркерные гены устойчивости к антибиотикам, которые могут перейти в микрофлору кишечника человека.
Среди возможных опасностей упоминается еще и токсичность, и канцерогенность ГМО (свойство вызывать и содействовать развитию злокачественных новообразований).

В тоже время в 2005 году Всемирная организация здравоохранения (ВОЗ) опубликовала доклад, основной вывод которого можно сформулировать так: употребление генномодифицированных растений в пищу абсолютно безопасно.

Пытаясь защититься от ГМ-культур многие страны ввели маркировку на продуктах с ГМО. В мире существуют разные подходы к этикетированию продуктов с ГМО. Так, в США, Канаде, Аргентине эта продукция не маркируется, в странах ЕЭС принят 0,9 % порог, в Японии и Австралии - 5 %.

В России первая межведомственная комиссия по проблемам генно-инженерной деятельности была создана еще в 1993 году . 12 декабря 2007 года в РФ вступили в силу поправки к Федеральному закону "О защите прав потребителей" об обязательной маркировке продуктов питания, содержащих генетически модифицированные организмы, в соответствии с которыми потребитель имеет право получить необходимую и достоверную информацию о составе продуктов питания. Закон обязывает всех производителей информировать потребителей о содержании в продукте ГМО, если его доля составляет более 0,9 %.

С 1 апреля 2008 года в России была введена новая маркировка пищевых продуктов, содержащих генно-модифицированные микроорганизмы (ГММ). Согласно постановлению главного санитарного врача России Геннадия Онищенко, ГММ должны быть разделены на живые и неживые. Так, на этикетках продуктов, содержащих живые ГММ, должно быть написано: "Продукт содержит живые генно-инженерно-модифицированные микроорганизмы". А на этикетках продуктов с нежизнеспособными ГММ - "Продукт получен с использованием генно-инженерно-модифицированных микроорганизмов". Порог содержания ГММ при этом остается на прежнем уровне - 0,9%.

Документом предусмотрена обязательная государственная регистрация в Роспотребнадзоре продуктов с ГММ растительного происхождения, изготовленных в России, а также впервые ввезенных в РФ. Зарегистрированы продукты будут только в том случае, если пройдут медико-биологическую оценку их безопасности.

В случае нарушения правил маркировки товара в соответствии со статей 14.8 Кодекса Российской Федерации об административных правонарушениях" (КоАП РФ) нарушение права потребителя на получение необходимой и достоверной информации о реализуемом товаре (работе, услуге) влечет наложение административного штрафа на должностных лиц в размере от пятисот до одной тысячи рублей; на юридических лиц - от пяти тысяч до десяти тысяч рублей.

Материал подготовлен на основе информации открытых источников

ГМО - за и против Зачем нужны такие продукты и организмы? Может быть, они только нанесут вред человечеству, нарушив и наши,...
  • ГМО бактерии уничтожают... Большинство раковых опухолей имеют центральную зону, где существенно понижено содержание кислорода (область...
  • Задумывались ли Вы о том, что находится в красивых и не дешевых баночках с детскими питанием? Кажется,...
  • В Англии научились разводить трансгенных кур, яйца которых имеют важное медицинское значение. Дело в...
  • Американский научный журнал сообщает о том, что в Соединенных Штатах успехом закончились испытания препарата...
  • Ученые Вашингтонского Университета вывели сорт ГМО-тополя, который может деструктурировать определенные...
  • ГМО. Может все не так... Чтобы перестать падать в обморок при слове генетически модифицированные продукты, обратимся немного к...
  • Как ГМ-продукты влияют... Любые продукты, появляющиеся в нашей тарелке легко могут оказаться генетически модифицированными. Споры...
  • Научные факты против... Существует принципиальная разница между генной инженерией и селекцией. При вмешательстве в генную структуру...
  • Сообщество американских ученых решило запатентовать первый в истории искуственно синтезированный живой...
  • Генетически модифицированный организм или сокращенно ГМО - это живой или растительный организм, генотип которого был изменён при помощи методов генной инженерии с целью создания новых свойств организма. Подобные изменения сегодня производятся практически повсеместно в области создания продуктов питания в хозяйственных целях, реже в научных целях.

    Генетическая модификация отличается целенаправленным конструированием генотипа организма, что в отличие от случайного, характерного для природного и искусственного мутагенеза.

    Распространенным видом генетического изменения на сегодняшний день является внедрение трансгенов с целью трансгенных организмов.

    Ввиду генетических модификаций корни кассавы (Manihot esculenta, семейство молочайных), главнейшего сырья для приготовления пищи многих миллионов африканцев, увеличились примерно в 2,6 раза. Американские генетики, проделав вышеуказанную модификацию, рассчитывают, что модифицированная маниока (кассава) будет решением проблемы голода в десятках стран Африки.
    Профессор Р. Сайр и его команда - молекулярные биологи из университета Огайо - изъяли ген кишечной палочки, который регулирует синтез крахмала, и вживили его трём побегам кассавы.
    Сэйр комментирует: маниока обладает практически таким же геном, но его бактериальная версия приблизительно в 100 крат активнее.
    В итоге модифицированная маниока, которая была взращена в оранжерее, обладает укрупненными клубневидными корнями (200 г., тогда как у обычной кассавы 75 г.). Также увеличилось количество корней (с 7 до 12) и листьев (с 90 до 125).
    Как корни так и листья кассавы можно употреблять в пищу. Маниока служит главнейшим сырьем для приготовления пищи у 40% африканцев, а ее корень регулярно употребляют в пищу около 600 млн. человек.
    Однако, Сэйр заметил, что крупные размеры не обеспечивают соразмерную энергетическую ценность продукта. И ГМ-растения пока еще необходимо быстро перерабатывать сразу же после извлечения из земли, т.к. корни и листья не переработанной должным образом кассавы обладают веществом, которое провоцирует синтез цианида.

    Ученые Калифорнийского университета в Окленде получили специфическую фотопленку из ГМО -бактерий.

    New Scientist пишет, что в ходе исследований группа ученых Криса Войта, использовала кишечную палочку (Escherichia coli), которой для выживания не нужен солнечный свет. Для придания Escherichia coli необходимых свойств, исследователи внедрили в мембрану клетки кишечной палочки генетический материал сине-зеленой водоросли. В итоге Escherichia coli стала реагировать на красный свет.

    После этого колонию бактерий с генетически модифицированным геномом поместили в среду со специфическими молекулами-индикаторами. При воздействии на данную "биофотопленку" красным светом дезактивируется один из генов Escherichia coli, что провоцирует изменение цвета молекул-индикаторов. В итоге, изменяя состояние микроорганизмов на конкретных местах фотопленки, можно получить монохромное изображение. При этом ввиду микроскопических размеров микроорганизмов, рисунок обладает невероятным разрешением - около 100 000 000 пикселей на дюйм в квадрате. Однако на получение квадратного дюйма рисунка затрачивается около 4 часов.

    Ученые полагают, что их достижение скорее всего не будет применяться в области обычной фотографии. Однако данные опыты могут спровоцировать появление нанофактур, способных создавать какие-либо вещества конкретно на тех участках, куда падает свет.

    Сообщество американских ученых решило запатентовать первый в истории искуственно синтезированный живой организм. Люди не первый раз пытаются переиграть природу, на этот раз начав с получения патента.

    Исследователи из института Вентера много лет предпринимали попытки создания искуственной бактерии с наименьшим из допустимых количеством генов на базе структуры бактерии Mycoplasma genitalium, в которой они зарегистрировали 250-350 генов, необходимых для выживания. Синтетический организм должен был называться Mycoplasma laboratorium (микоплазма лабораторная). Опыты осуществлялись в секретном режиме. В 2004 году учредитель института Крейг Вентер утверждал, что искуственный микроорганизм будет создан к концу года, но он ошибся.

    А сегодня поступило прошение о получении патента и на саму искуственную бактерию, и на ее генетический код, говорит World Science. На ГМО и раньше приобретали патенты, но сейчас, как говорят ученые института Вентера, дело касается целиком искуственного генома, синтезированного руками человека. В заявке на патент указано, что искуственный микроорганизм обладает 382-387 генами.

    Искуственный микроорганизм создали путем изъятия из бактерии , служащей основой, ее генетического материала, и вживления искуственных генов, синтезированных лабораторными методами. Трудноразрешимой проблемой служит не только синтезирование генов, но и их внедрение в бактерию и регулировка действий.

    Майкл Сайберт, сотрудник американской лаборатории NREL и его коллеги из University of Illinois разрабатывают модификацию морских водорослей на молекулярном уровне, с целью производства ими водорода в больших количествах.
    До этого ученые уже продемонстрировали метод производства водорода посредством прирученных бактерий. Помимо этого, предлагалась занятная идея по производству водорода из масла подсолнечника.
    Исследователи обнаружили, что водород - один из элементов, участвующих в реакции фотосинтеза у водорослей. Но для того, чтобы его можно было получать в производственных объемах, необходимо определить нужные для образования водорода процессы и ферменты гидрогеназа, а также реакции получения кислорода.
    Для расшифровки этих цепочек связей ученые применяют мощные компьютеры и уже намечают, каким образом необходимо модифицировать водоросли. После нужной модификации, они будут производить водород в 10 раз быстрее, чем природные водоросли - говорит Сайберт.
    Как рассчитали ученые-разработчики, на специализированной ферме (или нескольких фермах), площадью приблизительно 20 тыс. км2, можно было бы производить водород для всех легковых автомобилей Соединенных Штатов, даже если бы они все были оборудованы топливными элементами, а не двигателями внутреннего сгорания.
    Но даже если подобная добыча топлива не станет столь глобальной практикой, все равно вклад ГМО-водорослей принесет большую пользу для экологии.

    Неприхотливый к насекомым генетически модифицированный рис на Китайских фермах: выгода и отражение на здоровье людей.

    До сих пор ни в одном государстве урожай зерновых, употребляемых в пищу, не выращивали большей частью из ГМО. Но практика в Китае, в котором генетически модифицированный рис выращивается во все более растущих количествах, подтверждает то, что это приносит выгоду мелким фермерам и, вероятно, приносит пользу народу.

    Китай находится на пороге глобального распространения выращивания и производства генетически модифицированного риса. В Китае было осуществлено исследование двух из 4-х сортов, которые испытывают фермеры. Одним словом такой рис находится на завершающей ступени перед разрешением на глобальное использование.

    Были исследованы взятые случайным образом фермы, разрабатывающие неприхотливые к вредоносным насекомым сорта риса, причем самостоятельно, не прибегая к помощи профессионалов в этой области. Было определено, что сравнительно с фермами, на которых выращивали традиционный рис, мелкие и небогатые фермы получали выгоду от использования генетически модифицированных организмов, так как собирали более объемный урожай при небольшом расходе пестицидов. Уменьшение количества применяемых пестицидов также служит весьма положительным фактором для сохранения здоровья народа.

    Определение ГМО

    Цели создания ГМО

    Методы создания ГМО

    Применение ГМО

    ГМО - аргументы за и против

    Плюсы генномодифицированных организмов

    Опасность генетически модифицированных организмов

    Лабораторные исследования ГМО

    Последствия употребления ГМ продуктов для здоровья человека

    Исследования безопасности ГМО

    Как регулируется производство и продажа ГМО в мире?

    Список международных производителей, замеченных в использовании ГМО

    Генетически модифицированные пищевые добавки и ароматизаторы

    Заключение

    Список использованной литературы


    Определение ГМО

    Генетически модифицированные организмы – это организмы, в которых генетический материал (ДНК) изменен невозможным в природе способом. ГМО могут содержать фрагменты ДНК из любых других живых организмов.

    Цель получения генетически измененных организмов – улучшение полезных характеристик исходного организма-донора (устойчивость к вредителям, морозостойкость, урожайность, калорийность и другие) для снижения себестоимости продуктов. В результате сейчас существует картофель, который содержит гены земляной бактерии, убивающей колорадского жука, стойкая к засухам пшеница, в которую вживили ген скорпиона, помидоры с генами морской камбалы, соя и клубника с генами бактерий.

    Трансгенными (генномодифицированными) могут называться те виды растений , в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться.

    Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

    Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи.

    Кстати, не надо путать термины "модифицированный" и «генномодифицированный ». Например, модифицированный крахмал, входящий в состав большинства йогуртов, кетчупов и майонезов, к продуктам с ГМО отношения не имеет. Модифицированные крахмалы - это крахмалы, которые человек усовершенствовал для своих нужд. Это может быть сделано либо физическим (воздействие температуры, давления, влажности, радиации), либо химическим способом. Во втором случае используются химреагенты, которые разрешены Минздравом РФ как пищевые добавки.

    Цели создания ГМО

    Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид.

    Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи.

    Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.

    Виды ГМО

    Истоки генной инженерии растений лежат в открытии 1977 года, позволившем использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения потенциально полезных чужих генов в другие растения.

    Первые полевые испытания генетически модифицированных сельскохозяйственных растений, в результате которых был выведен помидор, устойчивый к вирусным заболеваниям, были проведены в 1987 году.

    В 1992 году в Китае начали выращивать табак, который «не боялся» вредных насекомых. В 1993 году генетически измененные продукты были допущены на прилавки магазинов мира. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

    На сегодняшний день продукты с ГМО занимают более 80 млн. га сельхозугодий и выращиваются более чем в 20 странах мира.

    ГМО объединяют три группы организмов:

    oгенетически модифицированные микроорганизмы (ГММ);

    oгенетически модифицированные животные (ГМЖ);

    oгенетически модифицированные растения (ГМР) – наиболее распространенная группа.

    На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок. Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

    В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%). Более 30% всей выращиваемой в мире сои, более 16% хлопка, 11% канолы (масличное растение) и 7% кукурузы произведены с использованием достижений генной инженерии.

    На территории РФ нет ни одного гектара, который был бы засеян трансгенами.

    Методы создания ГМО

    Основные этапы создания ГМО:

    1. Получение изолированного гена.

    2. Введение гена в вектор для переноса в организм.

    3. Перенос вектора с геном в модифицируемый организм.

    4. Преобразование клеток организма.

    5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

    Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

    Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

    Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекации.

    Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

    Применение ГМО

    Использование ГМО в научных целях.

    В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.

    Использование ГМО в медицинских целях.

    Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.

    Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

    Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.

    Текст: Карина Сембе

    Что такое ГМО

    Генетически модифицированный организм (ГМО) - это растение, животное или микроорганизм, генотип которого был изменён с помощью методов генной инженерии . Продовольственная и сельскохозяйственная организация ООН (FAO) рассматривает использование методов генной инженерии для создания трансгенных сортов растений как неотъемлемую часть развития сельского хозяйства. Прямой перенос генов , отвечающих за полезные признаки, - естественный этап развития работ по селекции животных и растений, эта технология расширяет наши возможности по части управляемости создания новых сортов и в частности передачи полезных признаков между нескрещивающимися видами.

    На сегодняшний день подавляющее большинство генетически модифицированных продуктов - это соя, хлопок, рапс, пшеница, кукуруза, картофель. Три четверти всех модификаций направлены на повышение устойчивости растений к пестицидам - средствам против сорняков (гербицидов) или насекомых (инсектицидов). Другое важное направление - создание растений, устойчивых к самим насекомым, а также различным вирусам, которые они переносят. Форму, цвет и вкус сельскохозяйственных культур учёные изменяют реже, зато активно занимаются выведением растений с повышенным количеством витаминов и микроэлементов - например, модифицированной кукурузы с содержанием витамина C в 8 раз и бета-каротина в 169 раз выше обычного.

    При всём неоднозначном отношении к явлению в обществе, научно обоснованных свидетельств вреда ГМО для человека, растений и окружающей среды на сегодняшний день не существует. Недавно более 100 лауреатов Нобелевской премии подписали открытое письмо в защиту применения генной инженерии в сельском хозяйстве, в котором призвали Greenpeace не выступать против использования ГМО. Использование генов различных видов и их комбинаций в создании новых сортов и линий входит в стратегию FAO по сохранению и использованию генетических ресурсов планеты в сельском хозяйстве и пищевой промышленности. Как бы там ни было, часть общественности пока не готова доверять научным выводам и считает, что генетически модифицированные продукты могут быть опасны для здоровья. Похоже, за последние годы стало несколько яснее, какие из предполагаемых рисков - преувеличение, а то и вовсе манипуляция, а какие в самом деле обнажают «превратности метода».


    В чём польза ГМО
    для сельского хозяйства

    Что такое генная инженерия и насколько тернистым может сделать её путь институционализация предрассудков, даёт понять один наглядный и изрядно нашумевший случай. В середине 90-х годов прошлого века гавайские фермеры столкнулись с серьёзной проблемой: урожай папайи, важнейшего продукта региона, был поражён вирусом кольцевой пятнистости, переносимым насекомыми. После множества тщетных попыток спасти фрукты - от селекции до карантина - был найден неожиданный способ: поместить ген безвредной составляющей вируса - белка из капсидов - в ДНК папайи и таким образом сделать её устойчивой к вирусу.

    В силу второстепенной роли папайи на глобальном рынке американская сельскохозяйственная компания Monsanto , гигант в области внедрения генной инженерии, и две другие компании выдали лицензию на технологию одному из союзов гавайских фермеров и снабдили их бесплатными семенами. Cегодня генетически модифицированная папайя - вполне доказанный триумф: новая технология спасла индустрию. Вместе с тем гавайская история - это современная притча: переборов вирус, папайя еле пережила кампанию протеста и в какой-то момент оказалась под угрозой изгнания из родного штата.

    Департамент сельского хозяйства США изучил испытательные посевы и доложил, что технология не оказывает «никакого пагубного эффекта на растения, нецелевые организмы или окружающую среду», а Агентство по защите окружающей среды обратило внимание на то, что люди уже давно потребляют вирус вместе с обычной инфицированной папайей. По свидетельствам организации, частицы вируса кольцевой пятнистости, включая безвредные белки из оболочки, использованные в генной модификации, были обнаружены во фруктах, листьях и стеблях большинства немодифицированных растений.

    Эти аргументы не удовлетворили борцов против ГМО. В 1999 году, через год после того, как фермерам стали выдавать модифицированные семена, критики метода заявили, что вирусный ген может вступать во взаимодействие с ДНК других вирусов и создавать ещё более опасные патогены . Через год активисты Greenpeace уже крушили деревья папайи на научно-исследовательской базе Гавайского университета, обвиняя учёных в неточных и случайных опытах, противоречащих воле природы. Борцы против ГМО редко учитывают, что в природе происходит куда более «случайная» мутация , а традиционная селекция , предшественник генной инженерии, тоже производит на свет вполне «модифицированные» организмы и в значительно большей степени грешит «неточностью».

    Генная инженерия способна не только защитить продукты от воздействия окружающей среды, но и, возможно, укрепить наше здоровье

    Хотя за всё время, что папайя с ГМО находилась в продаже, она не успела никому навредить, на протяжении нулевых многострадальному фрукту не давали покоя. Только в мае 2009 года в результате нескольких лет испытаний авторитетная Комиссия по продовольственной безопасности Японии одобрила выращивание генетически модифицированной папайи и через два года открыла для неё свой рынок. Американские учёные, проводившие испытания под контролем японских коллег, удостоверились в том, что, вопреки убеждениям лагеря противников, у модифицированного белка не совпадают генетические последовательности ни с одним из известных аллергенов и что обычная инфицированная папайя содержит в восемь раз больше вирусного белка , чем генно-модифицированный вариант.

    Генная инженерия способна не только защитить продукты от воздействия окружающей среды, но и, возможно, укрепить наше здоровье. Сегодня около 250 миллионов детей дошкольного возраста по всему миру страдают от дефицита витамина А в организме. Каждый год от 250 до 500 тысяч таких детей полностью теряют зрение, и половина ослепших умирает в течение года. Проблема особенно распространена в Юго-Восточной Азии: основой рациона там является рис, а он не покрывает потребности в бета-каротине - веществе, которое при переваривании преобразуется в витамин А и играет важнейшую роль в поддержании зрения. Как известно, витамины в виде добавок не являются полноценными заменителями питательных веществ, которые мы получаем из пищи, к тому же во многих уголках планеты витаминов попросту нет в продаже или жители не могут их себе позволить.

    Группа учёных под руководством Инго Потрикуса из Швейцарского федерального института технологий задалась целью решить эту проблему, вырастив рис , содержащий достаточное количество бета-каротина. Золотистые зёрна, полученные в 1999 году при помощи введения генов цветов нарциссов и бактерий, в научном сообществе были восприняты как прорыв, учёные даже получили поощрение американского президента Клинтона . Однако Greenpeace возмутился: по их мнению, «золотой рис» стал троянским конём генной инженерии (с ним даже связывали риск рака) и не содержал достаточного количества бета-каротина, чтобы покрыть потребность в витамине. В последнем экоактивисты оказались правы, но уже в 2005 году Потрикус и коллеги исправились и произвели рис, содержащий в 20 раз больше бета-каротина, чем обычный.

    Несмотря на эффективность технологии, противники ГМО продолжали осуждать инициативу Потрикуса и советовали наладить выращивание обычных каротиносодержащих продуктов вместо «искусственного» риса, игнорируя особенности климата и экономики ряда азиатских стран, которые в первую очередь были заинтересованы в эксперименте. Негодование активистов достигло предела, когда во время клинических испытаний в Китае в 2008 году 24 детям дали попробовать золотой рис. Каша, полученная из 50 граммов крупы, покрыла 60 процентов дневной потребности детей в витамине А, и по содержанию бета-каротина была равна капсуле с провитамином, которую получила вторая группа испытуемых, или небольшой моркови.


    Почему маркировка «без ГМО» не гарантия безопасности

    Озабоченность некоторыми аспектами генной инженерии в сельском хозяйстве, например связью ГМО с использованием гербицидов или получением патентов , имеет основания. Но ни один из действительно важных вопросов не касается научного аспекта генной инженерии и тем более моральной составляющей этой практики. Генная инженерия - это технология, которую можно использовать различными способами, и для ясной постановки вопроса важно понимать разницу между целями применения метода и подробно изучать каждый частный случай. Если вас беспокоят пестициды и прозрачность в вопросах происхождения продуктов, вам нужно узнать о составе и количестве токсинов, воздействию которых подвергается ваша пища. Разумеется, пометка «без ГМО» не означает, что в хозяйстве обошлось без пестицидов, а информация о содержании ГМО, напротив, не даст понять, зачем были проведены генные манипуляции - возможно, ради спасения культур от вируса или для повышения питательных свойств. По сути, выбирая продукцию без ГМО, мы никогда не знаем, правильный ли делаем выбор, ведь генетически модифицированная альтернатива может оказаться безопаснее.

    Пока ГМО атакуют со всех сторон, индустрия биопестицидов процветает. При покупке продуктов «без ГМО» нам кажется, что мы получаем полезную пищу без токсинов, в то время как на самом деле, возможно, потребляем больше вредных веществ. Выходит, что отметки о содержании ГМО не дают понять, чтó же на самом деле мы едим, а только обеспечивают иллюзию безопасности.


    О каких последствиях всё же стоит задуматься

    За последние двадцать лет были проведены сотни исследований и съедены тонны генетически модифицированных продуктов. Среди них не только растения, но и, например, рыба: лосось , модифицированный с целью ускорения роста, или карп , устойчивый к бактериям Aeromonas. Никакого количества исследований не будет достаточно, чтобы убедить скептиков в безопасности ГМО. В свою очередь, потребителям остаётся только полагаться на здравый рассудок и уповать на беспристрастность многочисленных учёных, чьи исследования говорят в защиту генной инженерии.

    Впрочем, безопасность ГМО для человеческого организма не единственный повод для беспокойства. Ещё одну проблему нужно искать в одной из самых распространённых сфер использования генной инженерии - в произведении сельскохозяйственных культур, толерантных к гербицидам. В США, где эта технология распространена, три четверти выращиваемого хлопка и кукурузы генетически модифицируются, чтобы противостоять насекомым, и до 85 % этих растений модифицируются c целью формирования устойчивости к гербицидам, в частности глифосату . К слову, одним из лидеров продаж глифосата является упомянутая компания Monsanto, специализирующаяся на генной инженерии.

    В то время как ГМО, устойчивые к насекомым-вредителям, приводят к использованию меньшего количества инсектицидов, инженерно-модифицированные растения, толерантные к гербицидам, влекут за собой ещё более активное использование этих веществ. Логика фермеров такова: раз глифосат не убивает культуры, значит, можно распылять гербициды как можно щедрее. При увеличении «дозы» сорняки тоже постепенно вырабатывают толерантность к пестицидам, и требуется всё больше вещества. Несмотря на дебаты вокруг безопасности глифосата, большинство экспертов утверждают, что он относительно безопасен . Но есть важная косвенная связь: толерантность сорняков к глифосату заставляет фермеров применять другие, более токсичные гербициды.

    Чего ожидать в ближайшем будущем

    Чем больше узнаёшь о ГМО, тем сложнее кажется общая картина. Сначала приходит осознание того, что генная инженерия вовсе не зло, но затем понимаешь, что у использования ГМО могут быть совсем не радостные последствия. Пестицид против пестицида, технология против технологии, риск против риска - всё относительно, потому в каждом частном случае важно здраво оценивать возможные альтернативы, выбирать меньшее из зол и не питать слепого доверия к маркировке «без ГМО».