Линейно независимые строки матрицы. Линейная независимость

12.02.2019

Банки предлагают своим потенциальным вкладчикам разные виды депозитных вкладов, но их все можно поделить на две группы по способам расчета прибыли. Это начисление процентов по депозиту без капитализации, и начисление с использованием сложного процента. Чтобы посчитать прибыль во втором случае, вам пригодится формула сложного процента для банковских вкладов.

Мы расскажем, как посчитать сложный процент самостоятельно, и использовать эту формулу для грамотного инвестирования капитала. Вы поймете, по какому принципу банки начисляют вам проценты. Это поможет легко ориентироваться среди массы разных предложений по депозитам.

Как рассчитать сложный процент: формула и примеры

Начнем от простого к сложному. Типичный банковский депозит с простым процентом не предусматривает возможность капитализации прибыли. Вы получаете выплаты по процентам ежемесячно, ежеквартально или в конце вместе с основной суммой, в зависимости от условий банка. Деньги вы можете снимать и использовать по собственному усмотрению.

Вот пример классического простого депозита. Вы положили в банк 100 000 под 12% годовых. Проценты вам банк выплачивает каждый месяц. Ваша общая прибыль составит:

100 000 * 0,12 = 12 000 рублей

В конце каждого периода вы будете получать примерно 1000 рублей. Формула расчета в банке сложнее, она учитывает количество дней в каждом месяце и количество дней в году. Поэтому в феврале вы получите меньше, чем в апреле, а в апреле – меньше, чем в мае. Но в сумме прибыль составит 12 000 рублей*.

* Для тех, кто любит точность во всем. На самом деле, вы не получите даже 12 000 рублей, поскольку банки используют более сложную формулу для начислений по вкладам. Сумма прибыли рассчитываются так: % = р/(Днпер. / Днгод.). Банки, как правило, не учитывают день оформления вклада, поэтому реально вы получите за год 100 000 * 0,12/(364/365) = 100 000 * 0,119671232 = 11 967, 1232 рублей.

Сложный процент по вкладу предусматривает начисление процентов на период, обозначенный в договоре (месяц, год, квартал), и последующее добавление этой суммы к общей сумме депозита. Проценты за следующий период будут начисляться уже не на первоначальную сумму, а на сумму + проценты. Поэтому доход за новый период будет выше.

Финансовый термин»сложный процент» обозначает общую прибыль, полученную за депозитный вклад, при условии прибавления прибыли за каждый период. Добавление процентов к первоначальной сумме называется капитализацией.

С прибыль = С нач * (1 + %) w — С нач

Пояснения к формуле начисления сложного процента:

  • С прибыль – сумма, которую вы получите после окончания договора, не включая начальный вклад;
  • С нач – сумма, на которую оформлен депозит (первоначальная сумма);
  • % – обозначение процентной ставки. Указывается она в виде десятичной дроби p (10% годовых – это 0,1;
  • 14,5% годовых – 0,145, и рассчитывается на каждый период по формуле: % = р * (Nдн.пер. / Nгод.);
  • w – количество периодов капитализации. Если прибавление к основной сумме вклада осуществляется каждый месяц, тогда w = 12. Упрощенная формула % для примерного подсчета прибыли будет такой: % = р / 12.

Пользуясь такой простой версией, сложный процент посчитать можно очень быстро без дополнительных программ и калькуляторов.

Пример. Вы положили те же 100 000 рублей под 12% годовых, но с капитализацией каждый месяц. Ваша прибыль составит: 100 000 * (1+0,12/12) 12 — 100 000 = 100 000 * (1 + 0,01) 12 – 100 000 = 112 682,503 – 100 000 = 12 682 рублей.

На деле сумма будет отличаться, поскольку точная формула % для каждого месяца будет разной, из-за разного количества дней. Так же не учитывается первый день первого зачетного периода (как и в случае с расчетом простого процента).

Большинство депозитных продуктов банков предлагают сложный процент с капитализацией ежемесячно или ежеквартально. Чем больше периодов капитализации, тем выше будет прибыль. Это легко проверить на первом примере, изменив количество периодов с 12 на 4: 100 000 * (1 + 0,12/4) 4 – 100 000 = 100 000 * (1,03) 4 – 100 000 = 100 000 * 1,1255088 – 100 000 = 12 550, 88 рублей.

Почему у клиентов банков часто возникают трудности со сложным банковским процентом? Чаще всего, потому, что они используют упрощенную формулу для расчета, и не учитывают разную ставку для каждого периода. Но тогда и общую формулу применять нельзя: ведь если в одном квартале у нас получится % = р * (90/365) = р * 0,2466, то уже во втором % = р * (91/365) = р * 0,2493.

Чем такой вклад отличается от стандартного депозита с капитализацией процентов? В данном случае по окончанию первого периода (месяца) к начальной сумме добавляются не проценты за этот период, а определенная фиксированная сумма. Для того чтобы посчитать сложный процент с ежемесячным пополнением, будем использовать другую формулу.

Для расчета сложного процента с пополнением формула выглядит так:

С прибыль = С нач * (1 + %) w + (С доп * (1 +%) w+1 – С доп * (1 + %)) / % — С нач

Пример: вы положили на счет 100 000 рублей под 12% годовых, и каждый месяц добавляете к этому вкладу еще 5 000. При этом проценты мы не учитываем: считаем, что их вы получаете на отдельный счет и используете по-другому.

Вы получите: 100 000 * (1 +0,01) 12 – 100 000 + (5 000 * (1 + 0,01) 13 – 5 000 * 1,01) / 0,01 = 12 682 + 1904 = 14 586 рублей.

Формула для расчета по первому периоду: С1 = С нач * (1 + %). С1 – это не только проценты, но и плюс начальная сумма взноса. Расчет по второму периоду: С2 = С1 * (1 + %). Помните, что значение % в каждом случае будет разным.

Рассчитаем сложный банковский процент для вклада в 100 000 рублей под 12% годовых, с капитализацией каждый квартал. Днем, когда оформлен договор, будем считать 1 января.

С1 = С нач * (1 + %) = 100 000 * (1 + 0,12 * (30 + 28 + 31)/365) = 100 000 * (1 +0,12 * 0,2438356) = 100 000 * (1 + 0,0292603) = 102 926, 03 рублей;

С2 = 102 926,03 * (1 + 0,12 * (30 + 31 + 30)/365) = 102 926,03 * (1 + 0,0299178) = 106 005,35 рублей и т.д. Продолжая эти подсчеты, мы получим 112514,93 рублей. То есть, прибыль составит 12 514, 93 рублей (при подсчете по упрощенной формуле в итоге получалось 12 550 рублей).

Пользоваться такими сложными формулами не обязательно, разве что вы любите точные цифры и хотите проверить свой банк – правильно ли осуществляются начисления по вашим депозитам.

Как выгодно использовать сложный банковский процент

При равных процентных ставках, депозитный вклад с капитализацией принесет больший доход. Но зачастую банк предлагает выбор: депозит со ставкой ниже, но с капитализацией, или обычный депозит с высокой ставкой без капитализации. Чтобы найти лучший вариант, придется использовать приведенную выше формулу для расчета сложных процентов по вкладам.

Пользоваться формулой можно и от обратного. Например, рассчитать процентную ставку, при которой вы получите желаемую прибыль за определенное время. Формула будет выглядеть так: % = (Сжелаемая / Сначальная) 1/n – 1. Например, вы хотите рассчитать, при какой процентной ставке, вложив 10 000 рублей на год с ежеквартальной капитализацией, вы получите в итоге 15 000 рублей. Рассчитываем ставку: % = (15 000 / 10 000) ¼ – 1 = 0,10668. Ставка должна быть 10,668 %.

На протяжении всей истории люди задумывались о своем будущем. Основное их желание защитить себя и своих родственников от финансовых неприятностей, обеспечив тем самым уверенность в завтрашнем дне. Начать постройку своего финансового фундамента можно уже теперь при помощи сравнительно незначительных банковских вложений. Лишь, таким образом, возможно, себе свободу и независимость.

Главным принципом банковских сделок является то, что финансовые ресурсы способные увеличиваться только когда все время находятся в обороте. Для уверенного ориентирования в сфере денежных услуг и правильном подборе наиболее выгодных условий важно знать некоторые простые принципы. Например, правила работы долгосрочных процентов, позволяющие за некоторое количество лет из сравнительно небольшой суммы стартового капитала получать серьезную прибыль.

Но для этого необходимо знать, каким образом работает сложный процент и формулы расчета сложного процента .

Проводить все расчеты следует на основе нижеописанных формул.

Что такое сложный процент по вкладам ? Сложный процент – это распространенный в экономической и финансовой отрасли эффект, когда процентная ставка по прибыли прибавляется к базовому вкладу, а полученный результат в будущем превращается в основу для начисления новых процентов.

Проценты по вложенным средствам могут прибавляться каждый день, 30 дней, квартал или год. Они могут выплачиваться в виде прибыли по окончанию периода, а могут начисляться к основному вкладу. Это значит, что в следующий раз ставка будет высчитываться на большую сумму.

Яркой иллюстрацией использования капитализации процентов является притча из Евангелия об одной бедной женщине, которая лишилась своего мужа. Во времена, когда жил Иисус Христос она принесла в его святилище свои деньги и отдала их в качестве жертвы. У нее было всего две небольшие монетки. Можно представить ситуацию, что в то время уже образовались банковские учреждения, она бы внесла 1 из своих монет в банк. Интересно, какая бы конечная сумма получилась у нее на счету сегодня, если учесть тот факт, что учреждение производит капитализацию процентов от средства, например 5% в год?

Расчеты, которые будут произведены, показывают на примере вариант применения сложного процента. Возьмем для примера ставку в 5% в год, уже после первого года хранения средств в банке вклад женщины вырастет в (1 + 0.05) раз. В последующий год расчет будет вестись уже не от копейки, а от конечной величины. Этот результат должен увеличиться еще в (1+0.05) раз. Получается, что вклад по сравнению с первоначальной суммой должен вырасти в (1+0.05)*2 раз. На третий год (1+0.05)*3.

К 2017 году изначальные средства должны увеличить в (1+0.05)*2016 раз. При стартовом капитале всего в 1 копейку уже к 2014 году результат будет больше 52 додециллионов рублей.

Например, человек решил положить средства в банк (200 000 рублей) под ежегодный процент в 10%. Для того, чтобы через 10 лет он смог воспользоваться деньгами, размер которых увеличился благодаря капитализации, нужно вычислить итоговую сумму, используя формулы расчета сложного процента.

Важно! Формула сложного процента подразумевает, что при вычислении, в конце каждого временного отрезка (месяц, год и др.) к вкладу нужно прибавлять полученную от денег прибыль. Конечное число является основой для последующих операций с увеличением средств.

Для осуществления расчетных действий можно использовать формулу:

Пояснение:

S – полная объем (сам вклад и проценты) средств, которые должны быть возвращены вкладчику по окончанию срока действия договора;

P – изначальный размер вклада;

N – сумарное количество действий по капитализации ставки за весь период использования (в этом случае оно ровно числу лет);

I – объем годовой ставки.

Если подставить выбранные значения в указанную формулу, то получается следующий пример:

Уже спустя пять лет сумма будет равна 200 000*(1+10/100)5 = 322102 рублей

Через десятилетний отрезок объем средств будет равен 200 000*(1+10/100)10 = 518748,492 рублей.

Если используется формула сложного процента с капитализацией за маленький отрезок времени, то нужные значения удобней рассчитывать по примеру:

Пояснения:

K – число дней в выбранном году;

J – число дней в отрезке, по результатам которого банковское учреждение будет проводить капитализацию начисленных процентов;

Другие переменные не изменились.

Помесячное начисление и увеличениепроцентов наиболее выгодно для клиентов. И именно этот метод многие рассматривают всерьез. Для того чтобы правильно рассчитать разработана такая формула сложных процентов .

Указаннаяn и в этом случае означает количество всех операций. Но теперь она выражается в месяцах. Показатель процентов следует разделить на 12, потому как в одном году 12 месяцев. Благодаря этому можно легко высчитать ежемесячную процентную ставку.

Эту же формулу, но с некоторыми изменениями можно отнести и к начислениям вкладов в поквартальный период. Изменения состоят в том, что процент, высчитываемый за год нужно делить не на 12, а на 4. А вышеупомянутый показатель nравняется не количествувсех операций, а совокупностикварталов. С такой же логикой можно отнестись и к начислениям процента по полугодиям. Общая формула сложных процентов по вкладам будет та же, но процентная ставка должна делиться на 2. А на количество полугодий указывает показатель n.

Например, клиент сделал вклад на сумму 100000,00 рублей. Капитализация процентов в этом случае выбрана ежемесячная. Учитывая это, по прошествии пяти лет сумма вклада вырастет до цифры в 172891,57 рублей. Если бы при первоначальном вкладе клиент выбрал ежегодную капитализацию процентов, то итоговая сумма через пять лет была бы на 10000 рублей меньше. Формула сложных процентов с капитализацией ежемесячно следующая.

Через десять лет вложенная клиентом сумма достигнет 298914,96 рублей. Если бы капитализация процентов была годовой, то указанная итоговая сумма за десять лет была бы уже на 15000 рублей меньше. Вот как рассчитывается итоговая сумма начисления ежемесячных процентов за десять лет.

Доходы во время начисления ежемесячных процентов намного превышают годовой доход. Если прибыль оставить на счету, то она и дальше будет работать на вкладчика. Вот на наглядном примере можно увидеть график, на котором указан расчет процентов в годах и в месяцах.

Именно поэтому многие граждане отдают предпочтение процентной капитализации, которая высчитывается один раз в месяц.

Вышеперечисленные формулы того как производится расчет сложных процентов по вкладу это скорей наглядный пример доступный для пониманий клиентов. Так они легко смогут осознать весь принцип начисления. В действительности формула сложного процента для банковских вкладов немного труднее.

В данном случае применяется такая мера как коэффициент процентов по вкладам (р). Он высчитывается следующим образом:

Используя сложные проценты формулу, можно высчитать проценты для различных временных периодов.

Сам процент для различного типа вкладов в банк следует рассчитывать по данной формуле:

На базе данной формулы можно на конкретном примере высчитать сложный процент, формула которого представлена выше.

руб. – это полноценная сумма имеющегося вклада, возросшая в течение пяти лет;

Руб. – этот же показатель, но уже в течение десяти лет.

Однако следует понимать, что это лишь примерные расчеты. Для вычисления важно учитывать различное количество дней в месяцах и то, что некоторые года могут быть високосными.

При сравнении показателей из двух вышеописанных примеров сим предшествующими можно будет обнаружить, что они немного меньше. Однако этого будет достаточно, чтобы оценить всю выгоду от процентов. Именно поэтому если есть твердое решение на длительное время положить деньги в банк,то предварительные расчеты лучше делать при использовании банковской формулы. Так можно будет избежать всех неточностей.

Матрица – прямоугольная таблица произвольных чисел, расположенных в определенном порядке, размером m*n (строк на столбцы). Элементы матрицы обозначаются, где i – номер строки, аj – номер столбца.

Сложение (вычитание) матриц определены только для одноразмерных матриц. Сумма(разность) матриц – матрица, элементы которой являются соответственно сумма(разность) элементов исходных матриц.

Умножение (деление) на число – умножение (деление) каждого элемента матрицы на это число.

Умножение матриц определено только для матриц, число столбцов первой из которых равно числу строк второй.

Умножение матриц – матрица, элементы которых задаются формулами:

Транспонирование матрицы – такая матрицаB, строки (столбцы) которой являются столбцами (строками) в исходной матрицеA. Обозначается

Обратная матрица

Матричные уравнения – уравнения видаA*X=B есть произведение матриц, ответом на данное уравнение является матрицаX, которая находится с помощью правил:

  1. Линейная зависимость и независимость столбцов (строк) матрицы. Критерий линейной зависимости, достаточные условия линейной зависимости столбцов (строк) матрицы.

Система строк (столбцов) называется линейно независимой , если линейная комбинация тривиальна (равенство выполняется только приa1…n=0), гдеA1…n – столбцы(строки), аa1…n – коэффициенты разложения.

Критерий : для того, что бы система векторов была линейно зависма, необходимо и достаточно, чтобы хотя бы один из векторов системы линейно выражался через остальные векторы системы.

Достаточное условие :

  1. Определители матрицы и их свойства

Определитель матрицы (детерминанта) – такое число, которое для квадратной матрицыA может быть вычислено по элементам матрицы по формуле:

, где - дополнительный минор элемента

Свойства:

  1. Обратная матрица, алгоритм вычисления обратной матрицы.

Обратная матрица – такая квадратная матрицаX,которая вместе с квадратной матрицей A того же порядка, удовлевторяет условию:, гдеE – единичная матрица, того же порядка что иA. Любая квадратная матрица с определителем, не равным нулю имеет 1 обратную матрицу. Находится с помощью метода элементарных преобразований и с помощью формулы:

    Понятие ранга матрицы. Теорема о базисном миноре. Критерий равенства нулю определителя матрицы. Элементарные преобразования матриц. Вычисления ранга методом элементарных преобразований. Вычисление обратной матрицы методом элементарных преобразований.

Ранг матрицы – порядок базисного минора (rg A)

Базисный минор – минор порядкаr не равный нулю, такой что все миноры порядка r+1 и выше равны нулю или не существуют.

Теорема о базисном миноре - В произвольной матрице А каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.

Доказательство: Пусть в матрицеAразмеров m*n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель, который получен приписыванием к базисному минору матрицы А соответствующих элементов s-й строки и k-го столбца.

Отметим, что при любых иэтот определитель равен нулю. Еслиили, то определительD содержит две одинаковых строки или два одинаковых столбца. Если жеи, то определитель D равен нулю, так как является минором (r+λ)-ro порядка. Раскладывая определитель по последней строке, получаем:, где- алгебраические дополнения элементов последней строки. Заметим, что, так как это базисный минор. Поэтому, гдеЗаписывая последнее равенство для, получаем, т.е. k-й столбец (при любом) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.

Критерий d etA=0 – Определитель равен нулю тогда и только тогда, когда его строки(столбцы) линейно зависимы.

Элементарные преобразования :

1) умножение строки на число, отличное от нуля;

2) прибавление к элементам одной строки элементов другой строки;

3) перестановка строк;

4) вычеркивание одной из одинаковых строк (столбцов);

5) транспонирование;

Вычисление ранга – Из теоремы о базисном миноре следует, что ранг матрицы А равен максимальному числу линейно независимых строк(столбцов в матрице), следовательно задача элементарных преобразований найти все линейно независимые строки (столбцы).

Вычисление обратной матрицы ­ - Преобразования могут быть реализованы умножением на матрицу A некоторой матрицы T, которая представляет собой произведение соответствующих элементарных матриц: TA = E.

Это уравнение означает, что матрица преобразования T представляет собой обратную матрицу для матрицы . Тогдаи, следовательно,

где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

Из (3.3.1) вытекает, что

Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

Пусть, например, в (3.3.3) , тогда .

Определение. Пусть в матрице А выделен некоторый минор r-го порядка и пусть минор (r+1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

Теперь докажем важную лемму.

Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r-го порядка стоит в левом верхнем углу матрицы А= :



.

Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r+1)-го порядка путем добавления к минору k-ой строки () и l -го столбца ():

.

Полученный минор равен нулю при всех k и l. Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

Разложим минор по элементам последнего l -го столбца:

Полагая , получим:

(3.3.6)

Выражение (3.3.6) означает, что k-я строка матрицы А линейно выражается через первые r строк.

Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

Следствие I. Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

Следствие II. Определитель n-го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

Докажем необходимость. Пусть задана квадратная матрица n-го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n, т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

Докажем еще одну теорему о ранге матрицы.

Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

Доказательство. Пусть ранг матрицы А= равен r. Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r+1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r, отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r. Все доказанное для строк справедливо и для столбцов.

В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

Следующая теорема позволяет, однако, внести в этот значительные упрощения.

Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r.

Доказательство. Достаточно показать, что любая подсистема строк матрицы при S>r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

Теперь рассмотрим следующую линейную комбинацию:

или

Используя (3.3.7) и (3.3.8), получаем

,

что противоречит линейной независимости строк .

Следовательно, наше предположение неверно и, значит, любые S>r строк в условиях теоремы линейно зависимы. Теорема доказана.

Рассмотрим правило вычисления ранга матрицы – метод окаймляющих миноров, основанный на данной теореме.

При вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор r-го порядка , отличный от нуля, то требуется вычислить лишь миноры (r+1)-го порядка, окаймляющие минор . Если они равны нулю, то ранг матрицы равен r. Этот метод применяется и в том случае, если мы не только вычисляем ранг матрицы, но и определяем, какие столбцы (строки) составляют базисный минор матрицы.

Пример. Вычислить методом окаймляющих миноров ранг матрицы

.

Решение. Минор второго порядка, стоящий в левом верхнем углу матрицы А, отличен от нуля:

.

Однако все окаймляющие его миноры третьего порядка равны нулю:

; ;
; ;
; .

Следовательно, ранг матрицы А равен двум: .

Первая и вторая строки, первый и второй столбцы в данной матрице являются базисными. Остальные строки и столбцы являются их линейными комбинациями. В самом деле, для строк справедливы следующие равенства:

В заключение отметим справедливость следующих свойств:

1) ранг произведения матриц не больше ранга каждого из сомножителей;

2) ранг произведения произвольной матрицы А справа или слева на невырожденную квадратную матрицу Q равен рангу матрицы А.

Многочленные матрицы

Определение. Многочленной матрицей или -матрицей называется прямоугольная матрица, элементы которой являются многочленами от одного переменного с числовыми коэффициентами.

Над -матрицами можно совершать элементарные преобразования. К ним относятся:

Перестановка двух строк (столбцов);

Умножение строки (столбца) на число, отличное от нуля;

Прибавление к одной строке (столбцу) другой строки (столбца), умноженной на любой многочлен .

Две -матрицы и одинаковых размеров называются эквивалентными: , если от матрицы к можно перейти с помощью конечного числа элементарных преобразований.

Пример. Доказать эквивалентность матриц

, .

1. Поменяем местами в матрице первый и второй столбцы:

.

2. Из второй строки вычтем первую, умноженную на ():

.

3. Умножим вторую строку на (–1) и заметим, что

.

4. Вычтем из второго столбца первый, умноженный на , получим

.

Множество всех -матриц данных размеров разбивается на непересекающиеся классы эквивалентных матриц. Матрицы, эквивалентные между собой, образуют один класс, не эквивалентные - другой.

Каждый класс эквивалентных матриц характеризуется канонической, или нормальной, -матрицей данных размеров.

Определение. Канонической, или нормальной, -матрицей размеров называется -матрица, у которой на главной диагонали стоят многочлены , где р - меньшее из чисел m и n (), причем не равные нулю многочлены имеют старшие коэффициенты, равные 1, и каждый следующий многочлен делиться на предыдущий. Все элементы вне главной диагонали равны 0.

Из определения следует, что если среди многочленов имеются многочлены нулевой степени, то они в начале главной диагонали. Если имеются нули, то они стоят в конце главной диагонали.

Матрица предыдущего примера есть каноническая. Матрица

также каноническая.

Каждый класс -матриц содержит единственную каноническую -матрицу, т.е. каждая -матрица эквивалентна единственной канонической матрице, которая называется канонической формой или нормальной формой данной матрицы.

Многочлены, стоящие на главной диагонали канонической формы данной -матрицы, называются инвариантными множителями данной матрицы.

Один из методов вычисления инвариантных множителей состоит в приведении данной -матрицы к канонической форме.

Так, для матрицы предыдущего примера инвариантными множителями являются

, , , .

Из сказанного следует, что наличие одной и той же совокупности инвариантных множителей является необходимым и достаточным условием эквивалентности -матриц.

Приведение -матриц к каноническому виду сводится к определению инвариантных множителей

, ; ,

где r – ранг -матрицы; - наибольший общий делитель миноров k-го порядка, взятый со старшим коэффициентом, равным 1.

Пример. Пусть дана -матрица

.

Решение. Очевидно, наибольший общий делитель первого порядка , т.е. .

Определим миноры второго порядка:

, и т.д.

Уже этих данных достаточно для того, чтобы сделать вывод: , следовательно, .

Определяем

,

Следовательно, .

Таким образом, канонической формой данной матрицы является следующая -матрица:

.

Матричным многочленом называется выражение вида

где - переменное; - квадратные матрицы порядка n с числовыми элементами.

Если , то S называют степенью матричного многочлена, n – порядком матричного многочлена.

Любую квадратичную -матрицу можно представить в виде матричного многочлена. Справедливо, очевидно, и обратное утверждение, т.е. любой матричный многочлен можно представить в виде некоторой квадратной -матрицы.

Справедливость данных утверждений со всей очевидностью вытекает из свойств операций над матрицами. Остановимся на следующих примерах:

Пример. Представить многочленную матрицу

в виде матричного многочлена можно следующим образом

.

Пример. Матричный многочлен

можно представить в виде следующей многочленной матрицы ( -матрицы)

.

Эта взаимозаменяемость матричных многочленов и многочленных матриц играет существенную роль в математическом аппарате методов факторного и компонентного анализа.

Матричные многочлены одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами. Следует, однако, помнить, что умножение матричных многочленов, вообще говоря, не коммутативно, т.к. не коммутативно умножение матриц.

Два матричных многочлена называются равными, если равны их коэффициенты, т.е. соответствующие матрицы при одинаковых степенях переменного .

Суммой (разностью) двух матричных многочленов и называется такой матричный многочлен, у которого коэффициент при каждой степени переменного равен сумме (разности) коэффициентов при той же степени в многочленах и .

Чтобы умножить матричный многочлен на матричный многочлен , нужно каждый член матричного многочлена умножить на каждый член матричного многочлена , сложить полученные произведения и привести подобные члены.

Степень матричного многочлена – произведения меньше или равна сумме степеней сомножителей.

Операции над матричными многочленами можно осуществлять с помощью операций над соответствующими -матрицами.

Чтобы сложить (вычесть) матричные многочлены, достаточно сложить (вычесть) соответствующие -матрицы. То же относится к умножению. -матрица произведения матричных многочленов равна произведению -матриц сомножителей.

С другой стороны и можно записать в виде

где В 0 – невырожденная матрица.

При делении на существует однозначно определенное правое частное и правый остаток

где степень R 1 меньше степени , или (деление без остатка), а также левое частное и левый остаток тогда и только тогда, когда, где порядка

Пусть

Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

Теорема 5

Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

Теорема 6

Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

Но . Следовательно, все столбцы матрицы линейно зависимы.

Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

Теорема 7

Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

Доказательство.

Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.

Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .