Основные характеристики эвм

25.01.2019

Классификация и области применения ЭВМ различных классов.

Сегодня в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящихся к раз­личным поколениям, типам, классам; отличающихся своими областя­ми применения, техническими характеристиками и вычислительными возможностями. Традиционно электронную вычислительную техни­ку подразделяют на аналоговую и цифровую.

В аналоговых вычислительных машинах (АВМ) обрабатываемая информация представляется соответствующими значениями анало­говых величин: тока, напряжения, угла поворота какого-то механиз­ма и т.п. Эти машины обеспечивают приемлемое быстродействие, но

не очень высокую точность вычислений (0,001 - 0,01). Подобные машины распространены не очень широко. Οʜᴎ используются в ос­новном в проектных и научно-исследовательских учреждениях в со­ставе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализиро­ванные вычислительные машины.

Сегодня под словом ЭВМ обычно понимают цифровые вычислительные машины, в которых информация кодируется двоич­ными кодами чисел. Именно эти машины благодаря универсальным возможностям и являются самой массовой вычислительной техникой.

Рынок современных компьютеров отличается разнообразием и динамизмом, каких еще не знала ни одна область человеческой дея­тельности. Каждый год стоимость вычислений сокращается пример­но на 25-30%, стоимость хранения единицы информации - до 40%. Практически каждое десятилетие меняется поколение машин, каждые год-два - основные типы микропроцессоров, определяющих харак­теристики новых ЭВМ. Такие темпы сохраняются уже многие годы.

То, что 10-15 лет назад считалось современной большой ЭВМ, в настоящее время является устаревшей техникой с очень скромными возможностями. Современный персональный компьютер с быстродей­ствием в сотни миллионов операций в секунду становится доступ­ным средством для массового пользователя.

В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. К примеру, 8 клас­сификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые сейчас почти исчезли из обихода. Вместе с тем существует целый ряд закономерностей развития вы­числительной техники, которые позволяют предвидеть и предсказы­вать основные результаты этого поступательного движения. Необ­ходимо анализировать традиционные и новые области применения ЭВМ, классы и типы используемых вычислительных средств, сложив­шуюся конъюнктуру рынка информационных технологий и его дина­мику, количество и качество вычислительной техники, выпускаемой признанными лидерами - производителями средств ЭВТ и т.д. Ко­ротко рассмотрим эти основные вопросы, выяснение которых позво­лит понять, какая вычислительная техника необходима для решения определœенных задач.

Академик В.М. Глушков указывал, что существуют три глобаль­ные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.

Первое направление является традиционным - применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всœех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и кос­мическая техника и др.). Отличительной особенностью этого направ­ления является наличие хорошей математической основы, заложен­ной развитием математических наук и их приложений. Первые, а за­тем и последующие вычислительные машины классической структу­ры в основном и создавались для автоматизации вычислений.

Вторая сфера применения ЭВМ связана с использованием их в си­стемах управления. Она зародилась примерно в шестидесятые годы, когда ЭВМ стали интенсивно внедряться в контуры управления ав­томатических и автоматизированных систем. Математическая база этой новой сферы практически отсутствовала, в течение последую­щих 15-20 лет она была создана.

Новое применение вычислительных машин потребовало видоиз­менения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределœение результатов обработки.

Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользователь­скими. Для исключения взаимных помех между программами пользо­вателœей в структуру машин были введены средства разграничения: блоки прерываний и приоритетов, блоки защиты, средства измерения времени и т,п. Для управления разнообразной периферией стали ис­пользоваться специальные процессоры ввода-вывода данных или ка­налы. Как раз в тот самый момент и появился дисплей как средство оперативного человеко-машинного взаимодействия пользователя с ЭВМ.

Новой сфере работ в наибольшей степени отвечали мини-ЭВМ. Именно они стали использоваться для управления отраслями, пред­приятиями, корпорациями. Машины нового типа удовлетворяли сле­дующим требованиям:

* были более дешевыми по сравнению с большими ЭВМ, обеспечи­вающими централизованную обработку данных;

* были более надежными, особенно при работе в контуре управления; ʼʼ обладали большой гибкостью и адаптируемостью настройки на конкретные условия функционирования;

* имели архитектурную прозрачность, ᴛ.ᴇ. структура и функции

ЭВМ были понятны пользователям.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто мате­матических расчетов постоянно сокращалась, и на сегодняшний день она составляет около 10% от всœех вычислительных работ. Машины всœе больше стали использоваться для новых видов обработки: тек­стов, графики, звука и др.
Размещено на реф.рф
Для выполнения этих работ в настоящее время применяются в основном ПЭВМ.

Третье направление связано с применением ЭВМ для решения за­дач искусственного интеллекта. Напомним, что задачи искусственкого интеллекта предполагают получение не точного результата͵ а чаще всœего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказатель­ства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогно­зов, моделирования сложных процессов и явлений и т.д. Это направ­ление постепенно набирает силу. Во многих областях науки и техни­ки создаются и совершенствуются базы данных и базы знаний, экс­пертные системы, Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителœей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место слож­нейшим вычислительным системам.

Даже это краткое перечисление областей применения ЭВМ пока­зывает, что для решения различных задач нужна соответственно и разная вычислительная техника. По этой причине рынок компьютеров посто­янно имеет широкую градацию классов и моделœей ЭВМ. Фирмы-про­изводители очень внимательно отслеживают состояние рынка ЭВМ. Οʜᴎ не просто констатируют отдельные факты и тенденции, а стре­мятся активно воздействовать на них и опережать потребности по­требителœей. Так, к примеру, фирма IBM, производящая примерно 80% мирового машинного парка, в настоящее время выпускает в основ­ном четыре класса компьютеров, перекрывая ими широкий класс за­дач пользователœей.

Большие ЭВМ (mainframe), которые представляют из себямного­пользовательские машины с центральной обработкой, с больши­ми возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось бы, что с появлением бы­стро прогрессирующих ПЭВМ большие ЭВМ обречены на выми­рание, однако они продолжают развиваться, и выпуск их снова стал увеличиваться, хотя их доля в общем парке постоянно снижа­ется. По оценкам IBM, около половины всœего объёма данных в информационных системах мира должно храниться именно на боль­ших машинах. Новое их поколение предназначено для использова­ния в сетях в качестве крупных серверов. Начало этого направле­ния было положено фирмой IBM еще в 60-е годы выпуском машин IBM/360, IBM/370. Эти машины получили широкое распростране­ние в мире.

Развитие ЭВМ данного класса имело и имеет большое значение для России. В 1970-1990 гг, основные усилия нашей страны в об­ласти вычислительной техники были сосредоточены на программе ЕС ЭВМ (Единой системы ЭВМ), заимствовавшей архитектуру IBM 360/370. Было выпущено несколько десятков тысяч ЭВМ этой сис­темы. Более 5000 ЭВМ серии ЕС еще продолжают работать в раз­личных учреждениях и на производствах. Большинство АСУ верхнего уровня государственного управления в РФ (в силовых струк­турах, банках, на транспорте, в связи и т.д.) оснащены этими маши­нами. Накоплен громадный программно-информационный задел, который следует рассматривать как элемент национального досто­яния (по стоимости) и элемент национальной безопасности (по стра­тегической значимости). По этой причине принято решение и дальше разви­вать это направление, После подписания соглашения с фирмой IBM в марте 1993 ᴦ. Россия получила право производить 23 новейшие модели-аналоги ЭВМ IBM S/390. По расходам на управление и эк­сплуатацию эти машины оказываются эффективнее других вычис­лительных средств.

‣‣‣ Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400 (Advanced Portable Model 3) - ʼʼбизнес-компьютерыʼʼ, 64-разрядные). В этих маши­нах особое внимание уделяется сохранению и безопасности дан­ных, программной совместимости и т.д. Используются в качестве серверов локальных сетей и сетей корпораций, успешно конкури­руют с многопроцессорными серверами других фирм. Компьютеры на платформе микросхем фирмы Intel. IBM-совмес­тимые компьютеры этого класса составляют примерно 50% рын­ка всœей компьютерной техники. Более половины их поступает в сферу малого бизнеса. Несмотря на столь внушительный объём выпуска персональных компьютеров этой платформы, фирма IBM проводит большие исследования и развивает собственную альтер­нативную платформу, получившую название Power PC. Это на­правление, по мнению фирмы, позволило бы значительно улучшить структуру аппаратных средств ПК, а значит, и эффективность их применения. При этом новые модели этой платформы пока не вы­держивают конкуренции с IBM PC. Немаловажным здесь являет­ся и неразвитость рынка программного обеспечения, в связи с этим у массового пользователя это направление не находит спроса, и доля" компьютеров с процессорами Power PC пока еще незначительна. Кроме перечисленных типов вычислительной техники, необходи­мо отметить класс вычислительных систем, получивший название суперЭВМ. С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объёмов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперимен­ты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численнего уровня государственного управления в РФ (в силовых струк­турах, банках, на транспорте, в связи и т.д.) оснащены этими маши­нами. Накоплен громадный программно-информационный задел, который следует рассматривать как элемент национального досто­яния (по стоимости) и элемент национальной безопасности (по стра­тегической значимости). По этой причине принято решение и дальше разви­вать это направление, После подписания соглашения с фирмой IBM в марте 1993 ᴦ. Россия получила право производить 23 новейшие модели-аналоги ЭВМ IBM S/390. По расходам на управление и эк­сплуатацию эти машины оказываются эффективнее других вычис­лительных средств.

‣‣‣ Машины RS/6000 - очень мощные по производительности, пред­назначены для построения рабочих станций для работы с графи­кой, UNIX-серверов, кластерных комплексов. Первоначально эти машины предполагалось применять для обеспечения научных ис­следований.

‣‣‣ Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400 (Advanced Portable Model 3) - ʼʼбизнес-компьютерыʼʼ, 64-разрядные). В этих маши­нах особое внимание уделяется сохранению и безопасности дан­ных, программной совместимости и т.д. Используются в качестве серверов локальных сетей и сетей корпораций, успешно конкури­руют с многопроцессорными серверами других фирм.

‣‣‣ Компьютеры на платформе микросхем фирмы Intel. IBM-совмес­тимые компьютеры этого класса составляют примерно 50% рын­ка всœей компьютерной техники. Более половины их поступает в сферу малого бизнеса. Несмотря на столь внушительный объём выпуска персональных компьютеров этой платформы, фирма IBM проводит большие исследования и развивает собственную альтер­нативную платформу, получившую название Power PC

Необходимо отметить и еще один класс наиболее массовых средств ЭВТ - встраиваемые микропроцессоры. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Οʜᴎ находят всœе большее применение в бытовой технике (телœефонах, телœевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робото­технике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, всœе больше изменяя среду обитания человека.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их раз­делœение по быстродействию:

‣‣‣ суперЭВМ для решения крупномасштабных вычислительных за­дач, для обслуживания крупнейших информационных банков дан­ных;

‣‣‣ большие ЭВМ для комплектования ведомственных, территориаль­ных и региональных вычислительных центров;

‣‣‣ средние ЭВМ широкого назначения для управления сложными тех­нологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределœенной обработ­кой информации в качестве сетевых серверов;

‣‣‣ персональные и профессиональные ЭВМ, позволяющие удовлет­ворять индивидуальные потребности пользователœей. На базе это­го класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня;

‣‣‣ встраиваемые микропроцессоры, осуществляющие автоматиза­цию управления отдельными устройствами и механизмами. С развитием сетевых технологий всœе больше начинает использо­ваться другой классификационный признак, отражающий место и роль ЭВМ в сети:

‣‣‣ мощные машины и вычислительные системы для управления ги­гантскими сетевыми хранилищами информации;

‣‣‣ кластерные, структуры;

‣‣‣ серверы;

‣‣‣ рабочие станции;

‣‣‣ сетевые компьютеры.

Мощные машины и вычислительные системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. Необходимо отметить, что по своим характеристикам их можно отнести к классу суперЭВМ, но в. отличие от них они являются более специализированными и ориенти­рованными на обслуживание мощных потоков информации.

Кластерные структуры представляют из себямногомашинные распределœенные вычислительные системы, объединяющие несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечи­вая необходимую производительность, надежность, готовность и дру­гие характеристики.

Серверы - это вычислительные машины и системы, управляю­щие определœенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, Web-серверы и др.

Термин ʼʼрабочая станцияʼʼ отражает факт наличия в сетях або­нентских пунктов, ориентированных на работу профессиональных пользователœей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессио­нальных пользователœей, работающих обычно в автономном режиме.

Сетевые компьютеры представляют из себяупрощенные персональ­ные компьютеры, вплоть до карманных ПК. Их основным назначени­ем является обеспечение доступа к сетевым информационным ресур­сам. Вычислительные возможности у них достаточно низкие.

Высокие скорости вычислений, обеспечиваемые ЭВМ различных классов, позволяют перерабатывать и выдавать всœе большее количе­ство информации, что, в свою очередь, порождает потребности в со­здании связей между отдельно используемыми ЭВМ. По этой причине всœе со­временные ЭВМ в настоящее время имеют средства подключения к сетям связи и объединœения в системы.

Перечисленные типы ЭВМ, которые должны использоваться в ин­дустриально развитых странах, образуют некое подобие пирамиды с определœенным соотношением численности ЭВМ каждого слоя и набо­ром их технических характеристик. Распределœение вычислительных возможностей по слоям должно быть сбалансировано.

Классификация и области применения ЭВМ различных классов. - понятие и виды. Классификация и особенности категории "Классификация и области применения ЭВМ различных классов." 2014, 2015.

ЭВМ 4-го поколения

В конце 70-х годов развитие микроэлектроники привело к созданию возможности размещать на одном кристалле тысячи интегральных схем. Так появились большие интегральные схемы и 4-е поколение ЭВМ, для которого характерны создание серий недорогих микро-ЭВМ, разработка супер-ЭВМ для высокопроизводительных вычислений.

Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения. Возникают операционные системы, поддерживающие графический интерфейс, интеллектуальные пакеты прикладных программ. В связи с возросшим спросом на ПО совершенствуются технологии его разработки – появляются развитые системы программирования, инструментальные среды пользователя.

В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.

Каждая ЭВМ имеет свои технические и эксплуатационные характеристики: быстродействие, производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.

Быстродействие - одна из важнейших характеристик ЭВМ, которая характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых “коротких” операций типа “регистр-регистр”). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые миллиардами операций в секунду.

Производительность - объем работ, осуществляемых ЭВМ в единицу времени. Реальное или эффективное быстродействие, обеспечиваемое ЭВМ, значительно ниже, и оно может сильно отличаться в зависимости от класса решаемых задач. Сравнение по быстродействию различных типов ЭВМ, резко отличающихся друг от друга своими характеристиками, не обеспечивает достоверных оценок. Поэтому очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности. Например, можно определять этот параметр числом задач, выполняемых за определенное время. Однако сравнение по данной характеристике ЭВМ различных типов может вызвать затруднения. Поскольку оценка производительности различных ЭВМ является важной практической задачей, были предложены к использованию относительные характеристики производительности, рассчитываемые на основе тестов: наборов типовых задач по работе с целыми числами, с плавающей точкой, графикой, видео. Результаты одного из таких тестов приведены на рис. 1.


Рис. 1. Сравнение процессоров на основе теста SiSoft Sandra

Емкость запоминающих устройств - измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти. Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (восемь бит). Следующими единицами измерения служат 1 Кбайт = 1024 байта, 1 Мбайт = 1024 Кбaйтa, и т.д. 1 Мбайт, 1 Гбайт. При этом отдельно характеризуют емкость собственной памяти процессора (кэш-память), оперативной памяти и емкость внешней памяти.

Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени. Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. В современных ЭВМ хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли), модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность - возможность различать почти равные значения. Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом (2 байта), двойным словом и т.п.). Во многих применениях ЭВМ не требуется большой точности, например, при обрабатывании текстов и документов, при управлении технологическими процессами. В этом случае достаточно использовать 8-и, 16- разрядные двоичные коды. При выполнении сложных расчетов требуется использовать более высокую разрядность (32, 64 и даже более). Поэтому все современные ЭВМ имеют возможность работы с 16- и 32- разрядными машинными словами. С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать еще большей точности.

Основные области применения ЭВМ различных классов

В соответствии с Законом Мура основные характеристики компьютеров улучшаются приблизительно в 2 раза каждые 2 года. В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.

Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ:

1. Применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др.

2. Применение ЭВМ в системах управления. Это направление родилось примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки. Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими.

3. Применение ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.

Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ.

Лекция 1 Дата проведения _____________

Тема занятия: История развития ЭВМ.

Классы ЭВМ по сферам применения и методам использования

Цели: сформировать представление о понятии электронно-вычислительная машина (ЭВМ); познакомить с историей развития вычислительной техники; познакомить с различными поколениями ЭВМ; рассмотреть классификацию ЭВМ по сферам применения.

План занятия:

I. Организационный момент.

II. Лекция 1 по темам:

2.1. История развития ЭВМ.

2.2. Классы ЭВМ по сферам применения и методам использования.

III. Подведение итогов.

Вид урока: урок лекция.

Ход занятия:

I. Организационный момент.

Поприветствовать учащихся. Учет посещаемости (отметить отсутствующих). Подготовить компьютер, проектор, экран, презентацию.

II. Лекция:

ЛЕКЦИЯ 1. ИСТОРИЯ РАЗВИТИЯ ЭВМ. КЛАССЫ ЭВМ ПО СФЕРАМ ПРИМЕНЕНИЕ И МЕТОДАМ ИСПОЛЬЗОВАНИЯ.

Электронная вычислительная машина (ЭВМ) или компьютер (англ. computer - «вычислитель»), комплекс технических (аппаратных) и программных средств для обработки информации, вычислений, автоматического управления.

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Любая задача для компьютера является последовательностью вычислений.

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы , камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты.

В 1642 (XVIII в.) Блез Паскаль

сконструировал устройство (восьмиразрядный суммирующий механизм), которое впервые действительно можно было назвать счетной машинкой (умела складывать). Эта машина была усовершенствована Лейбницем, добавившим функцию умножения. В 1673 г. Лейбниц придумал алгоритмы для выполнения всех четырёх арифметических операций. Два столетия спустя в 1820 француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 английским математиком Чарльзом Бэббиджем.

Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Управление такой машиной должно было осуществляться программным путем.

Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

В 1896 Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. Сразу несколько групп исследователей повторили попытку Бэббиджа, на основе техники 20 века. В 1941 г. немецкий студент Конрад Цузе создал механическую цифровую вычислительную машину с программным управлением и с использованием - впервые в мире - двоичной системы счисления. Однако из – за войны его результаты так и не были опубликованы.

В феврале 1943 на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина «Марк-1». Это был монстр весом около 35 тонн. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо четыре секунды. Данная машина использовалась для военных расчетов. Но электромеханические реле работали недостаточно быстро.

Начала первого поколения ЭВМ принято считать с 1943, когда американцы начали разработку альтернативного варианта - вычислительной машины на основе электронных ламп. В 1946 была построена первая электронная вычислительная машина ENIAC (Эниак). Ее вес составлял 30 тонн, она требовала для размещения 170 квадратных метров площади. Вместо тысяч электромеханических деталей ENIAC содержал 18 тысяч электронных ламп. Считала машина в двоичной системе и производила пять тысяч операций сложения или триста операций умножения в секунду.

Машина на электронных лампах работала существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин, Уолтер Браттейн и Уильям Брэдфорд Шокли предложили использовать изобретенные ими стабильные переключающие полупроводниковые элементы - транзисторы, что послужило рождению второго поколения компьютеров.

Совершенствование первых образцов вычислительных машин привело в 1951 к созданию компьютера UNIVAC, предназначенного для коммерческого использования. UNIVAC стал первым серийно выпускавшимся компьютером, а его первый экземпляр был передан в Бюро переписи населения США.

Один транзистор был способен заменить 40 электронных ламп. В результате быстродействие машин возросло в 10 раз при существенном уменьшении веса и размеров. В компьютерах стали применять запоминающие устройства из магнитных сердечников, способные хранить большой объем информации.

Третье поколение : в 1959 были изобретены интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволяет сократить пути прохождения тока при переключениях, и скорость вычислений повышается в десятки раз. Существенно уменьшаются и габариты машин.

К началу 1960-х годов компьютеры нашли широкое применение для обработки большого количества статистических данных, производства научных расчетов, решения оборонных задач, создания автоматизированных систем управления. Высокая цена, сложность и дороговизна обслуживания больших вычислительных машин ограничивали их использование во многих сферах. Однако процесс миниатюризации компьютера позволил в 1965 американской фирме Digital Equipment выпустить миникомпьютер PDP-8 ценой в 20 тысяч долларов, что сделало компьютер доступным для средних и мелких коммерческих компаний.

В 1970 сотрудник компании Intel Эдвард Хофф создал первый микропроцессор, разместив несколько интегральных микросхем на одном кремниевом кристалле. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. С микропроцессом появляются микрокомпьютеры - компьютеры четвертого поколения , способные разместиться на письменном столе пользователя.

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера - вычислительной машины, предназначенной для частного пользователя. Во второй половине 1970-х годов появляются наиболее удачные образцы микрокомпьютеров американской фирмы Эпл (Apple), но широкое распространение персональные компьютеры получили с созданием в августе 1981 фирмой Ай-Би-Эм (IBM) модели микрокомпьютера IBM PC. Применение принципа открытой архитектуры, стандартизация основных компьютерных устройств и способов их соединения привели к массовому производству клонов IBM PC, широкому распространению микрокомпьютеров во всем мире.

За последние десятилетия 20 века микрокомпьютеры проделали значительный эволюционный путь, многократно увеличили свое быстродействие и объемы перерабатываемой информации, но окончательно вытеснить миникомпьютеры и большие вычислительные системы - мейнфреймы они не смогли. Более того, развитие больших вычислительных систем привело к созданию суперкомпьютера - суперпроизводительной и супердорогой машины, способной просчитывать модель ядерного взрыва или крупного землетрясения. В конце 20 века человечество вступило в стадию формирования глобальной информационной сети , которая способна объединить возможности различных компьютерных систем, что в свою очередь знаменует собой пятое поколение .

Таким образом, из выше казанного можно сделать вывод, что под поколением понимают все типы и модели ЭВМ, разработанные различными конструкторско-техническими коллективами , но построенных на одних и тех же научных и технических принципах.

Появление каждого нового поколения определялось тем, что появлялись новые базовые элементы, технология изготовления которых принципиально отличалась от предыдущего поколения.

Электронно-вычислительные машины (ЭВМ) классифицируются по различным признакам, в частности, по способам организации вычислительного процесса, функциональным возможностям, способности к параллельному выполнению программ и др. Однако чтобы определить место персональных электронных вычислительных машин (ПЭВМ) в широком разнообразии средств вычислительной техники (СВТ), следует рассмотреть классификацию вычислительных машин по таким показателям, как габариты и производительность.


Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции. В настоящее время применяются большие ЭВМ четвертого поколения и ведутся интенсивные работы по созданию ЭВМ пятого поколения. ЭВМ этого класса, как правило, используются в режиме разделения времени, одновременно обслуживая многих пользователей.

Производительность больших ЭВМ оказалась недостаточной для ряда приложений – таких, как прогнозирование метеообстановки, моделирование и др., что явилось стимулом для создания супер-ЭВМ. Появляются все новые и новые области их применения, а поэтому потребность в машинах данного класса непрерывно растет. Производительность современных ЭВМ не соответствует многим из таких областей, что обуславливает улучшение показателей супер-ЭВМ.

В 70-е гг. появился еще один класс ЭВМ – мини-ЭВМ, что обусловлено, с одной стороны, прогрессом в области элементной базы, а с другой – избыточностью ресурсов больших ЭВМ – для ряда приложений.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супер-миниЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ – микроЭВМ. Именно наличие МП служит определяющим признаком микроЭВМ.

1. Супер ЭВМ (сверхбольшие) .

Под супер-ЭВМ понимают вычислительную систему, относящуюся к классу самых мощных систем в данное время, зародившиеся в 60 – х годах. Они имеют большие габариты, требуют для своего размещения специальных помещений и весьма сложны в обслуживании. Одной из основных проблем проектирования и эксплуатации является эффективный отвод тепла. Производительность супер-ЭВМ в настоящее время составляет десятки и сотни млн. команда/с. Две наиболее известные серии супер-ЭВМ – это Cray (Cray-1, Cray-2 и Cray-3) корпорации Cray Research и Cyber 205 фирмы Control Data Corp (CDC). Cray-3 способна выполнять 16000 млн. команд с плавающей точкой в секунду. Стоимость отдельных супер-ЭВМ достигает десятков млн. долл. Из отечественных ЭВМ к данному классу можно отнести машину с динамической архитектурой (МДА) .

Используются для решения задач, которые требуют сложных вычислений больших объемов (например, изучение космоса, составления прогноза погоды).

Основное назначение: предназначены для высокоскоростного выполнения прикладных процессов.

Основные технические данные:

Имеет скалярные и векторные процессоры. Совместная работа процессоров основывается на различных архитектурах.

2. Супер-мини ЭВМ.

Супер-миниЭВМ – это вычислительная машина, относящаяся по архитектуре, размерам и стоимости к классу мини-ЭВМ, но по производительности сопоставимая с большой ЭВМ. Супер-миниЭВМ используются, как правило, в режиме разделения времени. Наиболее яркими их представителями являются ЭВМ семейства VAX-11 фирмы DEC. Это семейство послужило прототипом отечественной ЭВМ СМ 1700. Кроме того, выпускались следующие супер-мини ЭВМ: «Электроника-82» (СНГ), К1840 (Восточная Германия), СМ52/12 (Чехословакия), ИЗОТ 1055С (Болгария) и др. Все ЭВМ данного класса являются 32-разрядными.

Основные технические данные: мультипроцессорная архитектура, позволяющая подключение до нескольких сот терминалов (наличие наращиваемых запоминающих устройств).

3. Большие ЭВМ (мэйнфреймы).

Мэйнфреймы конструктивно выполнены в виде нескольких стоек, включая устройства ввода-вывода, а также внешние запоминающие устройства на магнитных дисках и лентах. Для установки машин требуется достаточно большое помещение (с комнату), оборудованное средствами обеспечения заданного температурного режима. Обслуживание больших ЭВМ трудоемко, зато их производительность лежит в пределах от нескольких сот тысяч до миллионов команд в секунду.

Они производят централизованную обработку данных больших объемов. Пользователь получает доступ через терминалы (клавиатура + монитор) и/или ПК, в основном предназначенные для ввода и вывода информации. Количество подключаемых терминалов обычно составляет несколько сотен. Они характеризуются высокой надежностью. Обладают высокой скоростью процессов ввода-вывода и увеличенный размер постоянной памяти.

4. Мини ЭВМ.

Мини-ЭВМ используются как в режиме разделения времени, так и для управления технологическими процессами. Они конструктивно выполнены в виде одной или нескольких малогабаритных стоек (без учета устройств ввода-вывода) и имеют более низкие по сравнению с большими ЭВМ быстродействие и стоимость. ЭВМ данного класса не требуют специально оборудованных помещений.

Основное назначение: Системы управления предприятиями.

Основные технические данные: Однопроцессорная архитектура, разветвленная система периферийных устройств (ограниченные возможности, обработка слов меньшей длины и т. д.)

5. МикроЭВМ (ПК).

Персональной называется универсальная однопользовательская микроЭВМ.

Различают стационарные и портативные (ноутбуки). Обязательно наличие монитора и ряда других периферийных устройств. Хорошо расширяемы. К ним легко подключаются различные дополнительные устройства. Можно устанавливать широкий спектр различного программного обеспечения .

Основное назначение: Индивидуальное обслуживание пользователей.

Основные технические данные: Центральный блок с одним или несколькими процессорами, монитор, акустическая система, клавиатура, электронное перо с планшетом, устройство ввода информации, принтеры, жесткие диски, гибкие диски, магнитные ленты, оптические диски и пр.

Эти ЭВМ, в свою очередь, делятся на многопользовательские микроЭВМ, автоматизированные рабочие места (АРМ), встроенные ЭВМ и ПЭВМ

Многопользовательские микроЭВМ – это микроЭВМ, оборудованные несколькими видеотерминалами и работающие в режиме разделения времени. Они выполняются, как правило, в одной малогабаритной стойке и изредка – в настольном варианте.

Рабочие станции или АРМ представляет собой ЭВМ, оборудованную всеми средствами, необходимыми для выполнения работ определенного типа. Различают технические (инженерные) АРМ, графические АРМ, АРМ для автоматизированного проектирования, АРМ для издательской деятельности (настольные издательские системы) и др., как и персональные компьютеры, предназначены для одного пользователя, однако, более мощные могут выполнять более сложные операции.

Основное назначение: Системы автоматизированного проектирования, системы автоматизации эксперимента, индустриальные процессы и др.

Основные технические данные: Высокое быстродействие процессора, емкость оперативного запоминающего устройства 32-64 Мбайт, специализированная система периферийных устройств.

В классе микроЭВМ АРМ наряду с многопользовательскими микроЭВМ имеют самое высокое быстродействие. Существуют как настольные АРМ, так и АРМ, выполненные в виде малогабаритной стойки.

Термин АРМ (рабочая станция) неоднозначен и часто употребляется в других смыслах, а именно:

1. для именования ПЭВМ, снабженной специальным ПО, необходимым для решения задач определенного класса;

2. для именования терминальных узлов вычислительных сетей.

Встроенные ЭВМ представляют собой вычислители, используемые для управления (например, станком или боевым средством) и обработки измерений. Конструктивно они выполняются в виде одной или нескольких плат и не обеспечивают реализацию широкого спектра вычислительных функций, а также стандартного взаимодействия с пользователем.

6. Переносной ПК «наколенник» .

Основное назначение: Индивидуальное обслуживание пользователей. Основные технические данные: Малогабаритный книжного размера портативный вариант стационарного персонального компьютера.

7. Блокнотный ПК, ноутбук.

Основное назначение: Индивидуальное обслуживание пользователей. Основные технические данные: Модели могут иметь процессор, оперативную память до 96 Мбайт, жесткий диск до 9 Гбайт, встроенный компакт-диск и факс-модем, дисплей жидкокристаллический, время работы от собственного источника питания от 2 до 8 ч.

8. Карманный компьютер «наладонник».

Карманные компьютеры похожи на персональные компьютеры, но намного меньше их по размеру. Обычно используются как электронные ежедневники или для чтения электронных книг.

Основное назначение: индивидуальное обслуживание пользователей.

Основные технические данные: Оперативная память выполняет функцию долговременной памяти, размером в несколько Мбайт. Жесткий диск отсутствует. Работает под управлением Windows CE, имеет интерфейс с другими компьютерами, встроенные интегрированные системы, жидкокристаллический дисплей.

III. Подведение итогов.