Основные протоколы маршрутизации. Протоколы маршрутизации RIP OSPF BGP

26.03.2019

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Курсовая работа

по дисциплине «Локальные Вычислительные Сети»

на тему

«Внутренние протоколы маршрутизации RIP и OSPF »

Назначение

Протокол маршрутизации RIP (Routing Information Protocol) относится к алгоритмам класса «distance vector» (алгоритм Белмана-Форда). Этот алгоритм является одним из первых алгоритмов маршрутизации, которые были использованы в информационно – вычислительных сетях вообще и в сети Internet – в частности. Однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.

Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей. Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. С 1988 года RIP был повсеместно принят производителями персональных компьютеров для использования в их изделиях передачи данных по сети.

Решение, найденное по алгоритму Белмана-Форда, является не оптимальным, а близким к оптимальному.Преимуществом протокола RIP является его вычислительная простота и простота конфигурирования, а недостатками – увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

В современных сетевых средах RIP – не самое лучшее решение для выбора в качестве протокола маршрутизации, так как его возможности уступают более современным протоколам, таким как EIGRP, OSPF. Присутствует ограничение на 15 хопов, которое не дает применять его в больших сетях.

RIP работает на основе UDP‑протокола и использует порт 520. На каждом хосте, использующем RIP, должно быть установлено программное обеспечение, обрабатывающее RIP‑пакеты. Настроить работу протокола на маршрутизаторе можно с помощью того же HyperTerminal с рабочей станции, имеющей на это право и доступ. Настройки производится с помощью команд в соответствии с документацией к маршрутизатору.

Пример корректной работы протокола

(на рисунке: маршрутизаторы 1-6, сегменты сетей A..F; приведена изначальная информация в маршрутизаторе 2 и информация в нем после двух итераций обмена маршрутными пакетами RIP; после определенного числа итераций маршрутизатор будет знать о расстояниях до всех сегментов, а также альтернативные маршруты)

Пусть сетью назначения является сегмент D.При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).

Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.

Пример неустойчивой работы по протоколу (отслеживание изменений в топологии)

(на рисунке: маршрутизаторы M1..M3; при работоспособном состоянии в таблице маршрутов каждого маршрутизатора есть запись о сети 1 и о соответствующем расстоянии до нее; далее рассмотрим случай обрыва линии связи между сетью 1 и маршрутизатором M1).

При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.

Пример неустойчивой работы по протоколу (возникновение циклических маршрутов – процедура splithorizon).

В исходном состоянии все каналы передачи данных функционируют нормально и, поэтому, маршруты из узлов D и C к сети N лежат через маршрутизатор B и имеют метрику 2.

Предположим, что в некоторый момент времени канал, который связывает маршрутизаторы A и В, выходит из строя. Маршрутизатор B в этом случае перестает принимать update для сети N от маршрутизатора A и по истечении установленного интервала времени маршрутизатор B определяет сеть N в качестве недостижимой и исключает её из своих массивов update.

Однако из-за того, что эти массивы передаются в сети асинхронно вполне возможно, что вскоре после этого маршрутизатор C получит массивов update от маршрутизатора D, который пока ещё считает, что маршрут из B до сети N существует. Получив такую информацию, маршрутизатор C включит в свою таблицу маршрутизации новый маршрут до сети N – через маршрутизатор D с метрикой 3. После того, как истечет время существования исходного маршрута в маршрутизаторе D, эта ситуация повторится совершенно аналогичным образом.

В результате маршрутизатор D скорректирует свою таблицу маршрутизации и внесет в неё маршрут до сети N через шлюз C с метрикой 4. Подобная ситуация будет таким образом возобновляться снова и снова с периодом, который соответствует времени существования маршрута (3 T Update). Этот цикл, который называется «счет до бесконечности», будет продолжаться до тех пор, пока метрика циклического маршрута не достигнет значения 15, после чего он разорвется автоматически.

Правило split horizon (предотвращение возникновения циклических маршрутов)

Алгоритм split horizon является неотъемлемой частью протокола маршрутизации RIP и предназначен для предотвращения появления циклических маршрутов в сети. Для предотвращения возникновения подобных ситуаций достаточно использовать следующее правило:

Маршрутизатор не должен направлять update для маршрутов в адрес их источника.

За этим правилом закрепилось название split horizon – расщепленный горизонт. Маршрутизатор, используя данное правило, разделяет свои маршруты на столько групп, сколько у него есть активных интерфейсов. При использовании правила split horizon, обновления для маршрутов, которые были получены через некоторый интерфейс, не должны передаваться через этот же интерфейс.

Правило split horizon with poisoned reverse

Правило split horizon может быть использовано с незначительной модификацией. Правило split horizon with poisoned reverse «расщепленный горизонт с отравленным обратным путем» – разрешает передачу update для потенциально опасных, с точки зрения возникновения циклов, маршрутов. В данном случае для таких маршрутов устанавливается метрика, которая соответствует бесконечности – 15.

Пример неустойчивой работы по протоколу (процедура triggeredupdate – управляемые модификации)

Использование процедуры Split horizon позволяет избежать появления зацикленного маршрута у двух шлюзов. Однако возможно возникновение ситуации, когда в циклическом маршруте участвуют три шлюза.

На рисунке приведен пример возникновения подобной ситуации. В приведенной сети при выходе из строя канала, который связывает узел А с сетью N, маршрутизатор B может принять от маршрутизатора С несуществующий маршрут до сети N, который якобы проходит через узел C. К тому моменту, когда маршрутизатор C определит, что он не имеет собственного маршрута до сети N, маршрутизатор B уже успеет передать информацию о наличии у него маршрута до этой сети марщрутизатору D.

Использование процедуры Split horizon не сможет предотвратить появление такой петли, поскольку сообщения о маршруте поступают не от того маршрутизатора, которому передаются сообщения update. Следовательно, эта петля будет разорвана только тогда, когда метрика циклического маршрута достигает бесконечности. Для того чтобы уменьшить время переходных процессов в сети, можно использовать процедуру управляемых модификаций ( triggered update ).

Использование данной процедуры предписывает необходимость формирования мгновенных модификаций в том случае, когда происходит изменение состояния сети. Благодаря тому, что управляемые модификации передаются по сети с высокой скоростью, использование этого механизма может предотвратить появление циклических маршрутов. Однако, поскольку процесс передачи управляемых модификаций имеет вполне определенную конченую скорость, сохраняется возможность, что в процессе передачи регулярного update циклический маршрут все-таки возникнет.

Пример неустойчивой работы по протоколу
(счетчик времени timeout – timer)

Возможно возникновение ситуации, когда периодическое обновление будет просто потеряно в сети из-за возникновения краткосрочной перегрузки или временной неработоспособности канала передачи данных. Для того чтобы в этой ситуации маршруты не были ошибочно удалены из таблицы маршрутизации, каждому маршруту ставится в соответствие специальный счетчик времени, который называется timeout – timer . В тот момент времени, когда данный маршрут включается в таблицу маршрутизации, или когда для него приходит очередное обновление значение счетчика timeout – timer устанавливается равным T timeout max. = 180 секунд и этот счетчик начинает обратный отсчет времени. В том случае, если счетчик timeout – timer какого либо маршрута достигнет значения 0, этот маршрут должен быть исключен из числа активных маршрутов.

Маршрутизаторы объединяют сегменты сетей или отдельные локальные сети в составную (распределенную) сеть. Маршрутизаторы функционируют в дейтаграммных сетях с коммутацией пакетов, где все возможные маршруты уже существуют. Поэтому пакету нужно лишь выбрать наилучший путь, на основе метрики протокола маршрутизации. Процесс прокладывания пути производится последовательно от одного маршрутизатора к другому. Этот процесс маршрутизации (routing ) является функцией Уровня 3 модели OSI. При прокладывании пути пакета маршрутизатор анализирует сетевой адрес узла назначения, заданный в заголовке пакета, вычленяет из него адрес сети, чтобы идентифицировать сеть адресата в пределах сети Интернет. Адреса сетей назначения хранятся в таблице маршрутизации. Поэтому маршрутизатор должен создавать и поддерживать таблицы маршрутизации, а также извещать другие маршрутизаторы о всех известных ему изменениях в топологии сети.

Совокупность сетей, представленных набором маршрутизаторов под общим административным управлением, образует автономную систему (рис. 9.1). Автономные системы нумеруются и в некоторых протоколах (IGRP, EIGRP) эти номера используются.

Рис. 9.1. Взаимодействие автономных систем

Маршрутизацию, т.е. прокладывание маршрута внутри автономных систем, осуществляют маршрутизирующие протоколы внутреннего шлюза (Interior Gateway Protocols - IGP s), к которым относятся RIP, RIPv2, IGRP, EIGRP, OSPF, Intermediate System-to-Intermediate System (IS-IS). Маршрутизацию между автономными системами производят протоколы внешнего шлюза (Exterior Gateway Protocols - EGP s). Примером протокола внешнего шлюза является протокол BGP, который работает на граничных маршрутизаторах автономных систем (рис. 9.1).

Маршрутизирующие протоколы, работающие внутри автономных систем, в свою очередь, подразделяются на протоколы вектора расстояния (distance - vector ) и протоколы состояния канала (link - state ). Протоколы distance-vector определяют расстояние и направление, т.е. вектор некоторого соединения в составной сети. Расстояние может быть выражено в количестве маршрутизаторов или переходов (hop count ) в соединении на пути от узла источника к адресату назначения или других значениях метрики. При использовании алгоритма distance-vector маршрутизаторы посылают всю или часть таблицы маршрутизации соседним (смежным) маршрутизаторам через определенные интервалы времени. В таких протоколах как RIP, обмен обновлениями (update ) или модификациями происходит, даже если в сети нет никаких изменений , на что затрачивается довольно большая часть полосы пропускания. Получив обновление маршрутной информации, маршрутизатор может заново вычислить все известные пути и произвести изменения в таблице маршрутизации.

Когда пакет прибывает на входной интерфейс, маршрутизатор должен использовать таблицу маршрутизации, чтобы определить, по какому маршруту направить пакет, т.е. на какой свой выходной интерфейс передать поступивший пакет. Выходной интерфейс связан с наиболее рациональным маршрутом к адресату назначения. Этот процесс называется коммутацией или продвижением пакета. На выходном интерфейсе пакет инкапсулируется в новый кадр, при этом маршрутизатор добавляет информацию для формирования кадра (см. Лекцию 8).

Таким образом, маршрутизатор ретранслирует пакет, используя две основных функции:

- функцию определения пути с использованием сетевой части адреса,

- функцию коммутации , принимая пакет на входной интерфейс и продвигая его на выходной интерфейс, который определяется функцией определения пути.

Определение наиболее рационального (оптимального) пути производится маршрутизатором на основе некоторого критерия – метрики . Значение метрики используется при оценке возможных путей. Метрика может включать разные параметры, например:

Полосу пропускания,

Задержку,

Надежность,

Загрузку,

Обобщенную стоимость и другие параметры сетевого соединения.

Маршрутизаторы могут использовать один какой-то параметр или комбинацию параметров метрики при выборе оптимального маршрута.

Маршрутная информация может быть сконфигурирована сетевым администратором – при этом реализуется статическая маршрутизация . Динамическая маршрутизация реализуется протоколами маршрутизации, когда маршрутная информация собирается в ходе динамического процесса обмена обновлениями (модификациями) между маршрутизаторами, который выполняется в сети.

Таким образом, протоколы маршрутизации (routing protocol) позволяют выбирать маршрутизаторам наилучший путь для данных от источника да устройства назначения. Для этого маршрутизирующие протоколы создают и поддерживают (модифицируют) таблицы маршрутизации путем обмена маршрутной информацией с другими маршрутизаторами в сети. Примерами протоколов маршрутизации являются:

RIP (Routing Information Protocol)

IGRP (Interior Gateway Routing Protocol)

EIGRP (Enhanced Interior Gateway Routing Protocol)

OSPF (Open Shortest Path First).

Маршрутизаторы способны поддерживать много независимых протоколов и таблиц маршрутизации для нескольких сетевых протоколов. Эта способность позволяет маршрутизатору передавать пакеты различных сетевых протоколов по тем же самым каналам связи.

Протоколы и устройства Уровня 2 и Уровня 3 модели OSI постоянно взаимодействуют при передаче данных по сети (рис. 9.2).

Рис.9.2. Взаимодействие протоколов и устройств

Это проявляется в виде взаимодействия таблиц ARP (табл.9.1), функционирующих на Уровне 2, и таблиц маршрутизации протоколов Уровня 3 модели OSI. Каждый компьютер и порт маршрутизатора поддерживает таблицы ARP, каждая строка которых содержит пару соответствующих IP- и MAC-адресов и функционируют только в пределах широковещательного домена, т.е. в пределах сети или подсети.

Таблица 9.1

Таблица ARP маршрутизатора А

МАС адрес

Таблицы маршрутизации позволяют передавать пакеты за пределы широковещательного домена. Строки таблицы маршрутизации (табл.9.2) с меткой С отображают непосредственно присоединенные к маршрутизатору сети, а с меткой R – сети, путь к которым проложен с помощью протокола RIP. В каждой строке также представлены: расстояние до сети назначения, выраженное в количестве переходов между маршрутизаторами (hop); выходной интерфейс маршрутизатора на пути к сети назначения.

Таблица 9.2

Таблица маршрутизации маршрутизатора А

Адрес сети назначения

Число переходов

Интерфейс

На Уровне 2 модели OSI функционируют коммутаторы, которые соединяют сегменты одной локальной сети или подсети, используя МАС-адреса. Для соединения с хостами вне локальной сети коммутатор продвигает кадр на маршрутизатор. Хост использует МАС-адрес входного интерфейса маршрутизатора как адрес назначения. Неизвестный МАС-адрес хост узнает из таблицы ARP. Маршрутизатор cверяет IP-адрес сети назначения с таблицей маршрутизации и продвигает пакет на выходной порт в соответствие с найденной строкой таблицы маршрутизации.

Поскольку коммутаторы не блокируют широковещательные передачи, то сети на коммутаторах могут быть затоплены широковещательными штормами. Маршрутизаторы блокируют широковещательные передачи, поэтому широковещательный шторм может быть только в пределах широковещательного домена (broadcast domain). Поэтому маршрутизаторы по сравнению с коммутаторами обеспечивают большую безопасность и контроль полосы пропускания.

Маршрутизаторы используют протоколы маршрутизации, чтобы создавать и поддерживать таблицы маршрутизации для определения маршрута. При этом таблицы маршрутизаторов разных фирм производителей и разных протоколов маршрутизации могут иметь несколько различающуюся маршрутную информацию. В большинстве случаев таблицы маршрутизации содержат:

    Тип протокола , который идентифицирует протокол маршрутизации, который создавал каждый вход (строку) таблицы.

    Следующий переход (Next-hop) – указывает адрес входного интерфейса следующего маршрутизатора на пути к адресату назначения.

    Метрику , которая различается для разные протоколов.

    Выходной интерфейс , через который данные должны быть отправлены к устройству назначения.

Маршрутизаторы поддерживают таблицы маршрутизации через обмен обновлениями или модификациями (update ). Некоторые протоколы передают обновления периодически, например, протоколы RIP, IGRP. Другие протоколы посылают модификации только когда происходят изменения в сетевой топологии, например, OSPF, EIGRP.

Маршрутизаторы, зная информацию о пути к некоторым сетям, обмениваются этой информацией с другими маршрутизаторами. Следовательно, после таких обновлений или модификаций все маршрутизаторы в сети будут иметь согласованную информацию о маршрутах к доступным сетям. Таким образом, маршрутизирующие протоколы разделяют сетевую информацию между маршрутизаторами .

Различные протоколы маршрутизации используют разные алгоритмы при выборе маршрута, т.е. выходного порта, на который должен быть передан пакет. Алгоритм и метрика определяются целым рядом решаемых задач, таких как простота, устойчивость, гибкость, быстрая сходимость (convergence ). Сходимость это процесс согласования между всеми маршрутизаторами сети о доступных маршрутах. При изменениях состояния сети необходимо, чтобы обмен модификациями восстановил согласованную сетевую информацию.

Каждый алгоритм по своему интерпретирует выбор наиболее рационального пути на основе метрики. Обычно меньшее значение метрики соответствует лучшему маршруту. Метрика может базироваться на одном или на нескольких параметрах пути. В протоколах маршрутизации наиболее часто используются следующие метрики:

    Полоса пропускания (Bandwidth) – способность соединения передавать данные с некоторой скоростью, например, соединения сети Ethernet предпочтительней линии со скоростью 64 кбит/с.

    Задержка (Delay) – это длительность времени прохождения пакета от источника до адресата назначения. Задержка зависит от количества промежуточных соединений и их типов, объема буферных устройств маршрутизаторов, сходимости сети и расстояния между узлами. (Load) – загрузка определяется количеством информации, загружающей сетевые ресурсы (маршрутизаторы и каналы). Чем больше загрузка, тем дольше пакет будет в пути.

    Надежность (Reliability) – надежность определяется интенсивностью ошибок на каждом сетевом соединении.

    Количество переходов (Hop count) – это количество маршрутизаторов, через которые пакет должен пройти на пути к адресату назначения (число переходов от маршрутизатора к маршрутизатору).

    Стоимость (Cost) –это обобщенный параметр затрат на передачу пакета к адресату назначения. Обычно стоимость имеет произвольное значение, назначенное администратором. Часто стоимость базируется на полосе пропускания.

Задача маршрутизации решается на основе таблицы маршрутизации, размещаемой на всех маршрутизаторах и всех конечных узлах сети. Основная работа по созданию этих таблиц выполняется автоматически. Для этого способа построения таблиц маршрутизаторы обмениваются информацией о топологии составной сети в соответствии со специальным служебным протоколом (протоклы маршрутизации или маршрутизирующие протоколы). Пример – RIP (Routing Information Protocol , протокол информации о доступных маршрутах, работающих в соответствии с алгоритмом дистанционно-векторного типа) и OSPF (Open Shortest Path First, приоритет выбора кротчайшего пути).

Указанные протоколы маршрутизации следует отличать от собственно протокола сетевого уровня модели OSI для стека TCP/IP – IP. Протокол IP, выполняя функции сетевого уровня модели OSI, принимает участие в доставке пакетов адресату через разнородную составную сеть. Если протоколы маршрутизации RIP и OSPF собирают и передают по сети сугубо служебную информацию, то IP передает пользовательские данные, как протоколы канального уровня. Протоколы маршрутизации используют сетевой уровень протокола IP как транспортное средство.

Использование транспортных таблиц является тем общим, что есть у маршрутизаторов, что есть у мостов и коммутаторов, однако природа у них различна. Вместо MAC-адресов в таблицах маршрутизации указываются номера (адреса) сетей для TCP/IP это IP-адреса сетей, которые соединяются в составную сеть. Отличием для этих таблиц является их создание. Мост строит свою таблицу, пассивно наблюдая за проходящими через него информационными кадрами, которые посылают конечные узлы сети друг другу (такой же способ построения и у коммутаторов). В отличии от них, маршрутизаторы по своей инициативе обмениваются специальными служебными пакетами, сообщая соседям об известным им сетях в интерсети, маршрутизаторах.

С помощью протоколов маршрутизации маршрутизаторы составляют карту связей сетей. На основании этих кадров для каждого узла сети принимается решение о том, какому следующему маршрутизатору необходимо передать пакет, направляемый в эту сеть, чтобы маршрут оказался рациональным. Результаты этих решений заносят в таблицу маршрутизации. При изменении конфигурации составной сети некоторые записи в таблице становятся не действительными, в это случае пакеты могут зацикливаться и теряться. На сколько быстро протокол маршрутизации приводит в соответствие содержимое таблицы реальному состоянию составной сети зависит ее качество работы.

Протоколы маршрутизации могут быть построены на основе разных алгоритмов. Особенность рассмотренных выше примеров заключалась в том, что каждый маршрутизатор является ответственным за выбор только одного шага маршрута, а окончательный маршрут складывается из работ всех маршрутизаторов через которые проходит данный пакет. Такой алгоритм маршрутизации называют одношаговым. В случае многошагового подхода маршрутизация осуществляется от источника (source routing ). При использовании такого подхода узел-источник задает в отправляемом в составную сеть пакете полный маршрут следования через все промежуточные маршрутизаторы. В этом случае нет необходимости строить и анализировать таблицы маршрутизации, что ускоряет прохождение пакета по составной сети, разгружает маршрутизаторы, но при этом большая нагрузка ложится на конечные узлы. Приведенная схема многошагового подхода в составных сетях применяется гораздо реже, чем одношаговая маршрутизация. Все одношаговые алгоритмы маршрутизации делятся на 3 класса:

1. алгоритмы фиксированной (статической) маршрутизации;

2. алгоритмы простой маршрутизации;

3. алгоритмы адаптивной (динамической) маршрутизации.

В алгоритмах фиксированной маршрутизации все записи в таблице маршрутизации являются статическими. Администратор сети сам решает на какие маршрутизаторы требуется передавать пакеты с теми или иными адресами пунктов назначения и при этом вручную с помощью утилиты route (для UNIX-подобных сетевых ОС и Windows) заносит соответствующие записи в таблицу маршрутизации. Таблица как правило создается в процессе загрузки и остается без изменений до ее ручной корректировки (причинами такой корректировки могут быть, например, отказ одного маршрутизатора сети или когда его функции необходимо возложить на другой маршрутизатор). Различают одномаршрутные (для любого адреса сети назначения задается всегда один путь) и многомаршрутные таблицы (может быть определено несколько путей для каждого адресата). Для крайнего случая должно быть задано правило для выбора одного из указанных маршрутов. Чаще всего – один путь основной, остальные – резервные. Рассматриваемый алгоритм маршрутизации приемлем в небольших сетях с простой топологией (в силу большого количества рутинных операций для сетевого администратора). В алгоритмах простой маршрутизации таблица маршрутизации либо совсем не используется либо строится без участия протоколов маршрутизации. Выделяют 3 типа простой маршрутизации:

1. Случайная маршрутизация (прибывший пакет посылается в первом попавшим в случайном направлении кроме исходного);

2. Лавинная маршрутизация (пакеты широковещательно посылаются по всем возможным направлениям кроме исходного (здесь просматривается аналогия с мостами и коммутаторами кадров в режиме самообучения мостов и коммутаторов при отсутствии в таблице MAC-адреса узла назначения));

3. Маршрутизация по предыдущему опыту (выбор маршрута осуществляется по таблице, но при этом таблица строится по принципу моста или коммутатора путем анализа адресных полей пакетов, появляющихся на входных портах);

На сегодняшний день самыми распространенными являются алгоритмы адаптивной (динамической) маршрутизации. Эти алгоритмы обеспечивают автоматическое обновление таблиц маршрутизации после изменения конфигурации составных сетей. Протоколы, которые построены на основе адаптивных алгоритмов позволяют всем маршрутизаторам собирать всю информацию о топологии связи в составной сети. Оперативно отрабатывать все изменения конфигурации этих связей. В таблицах маршрутизации при адаптивной маршрутизации указывается информация об интервале времени, в течении которого данный маршрут будет действительным, это время называют временем жизни маршрута (TTL , Time To Live). Все адаптивные протоколы маршрутизации должны отвечать следующим требованиям:

1. Должны обеспечивать рациональность маршрута продвижения пакета (здесь речь не идет об оптимальности маршрута)

2. Адаптивные алгоритмы не должны требовать слишком большого объема вычислений и порождать интенсивный служебный траффик.

3. Адаптивные алгоритмы должны обладать свойством сходимости

4. Всегда приводить к однозначному результату за приемлемое время

Все адаптивные протоколы построенные на адаптивных алгоритмах обмена маршрутной информацией делятся на 2 группы: дистанционно-векторные алгоритмы (Distance Vector Algorithms, DVA) и алгоритмы состояния связей (Link State Algorithms, LSA).

В алгоритмах DVA каждый маршрутизатор периодически и широковещательно рассылает по составной сети вектор, компонентами которого являются расстояния от данного маршрутизатора до всех известных ему сетей. Здесь под расстоянием понимается число хопов. При этом возможна и другая метрика: учитывается, на ряду с числом хопов, время, за которое пакет проходит между сетями. При получении векторов от соседа маршрутизатор наращивает расстояние до указанных в векторе сетей на расстояние до данного соседа. Получив вектор от соседнего маршрутизатора каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (т.е. подключены к его портам) или из аналогичных объявлений других маршрутизаторов, и далее рассылает значение вектора по составной сети. В конце концов каждый маршрутизатор узнает информацию обо всех имеющихся в составной сети сетях и о расстояниях через соседние маршрутизаторы. Алгоритмы DVA хорошо работают только в небольших составных сетях. Работа маршрутизатора в соответствии с DVA напоминает работу моста, поскольку точной топологической картины всей составной сети такой маршрутизатор не имеет. Наиболее распространенным протоколом из TCP/IP работа которого основана на DVA является протокол RIP, который работает совместно с протоколом IP, используя его как транспорт.

Алгоритм состояния связей (LSA) обеспечивает каждый маршрутизатор информацией, которая является достаточной для построения точного графа связей составной сети. При этом все маршрутизаторы работают на принципе одинаковых графов. Это делает процесс маршрутизации более устойчивым к изменению конфигурации. Вершинами графа являются как маршрутизаторы, так и объединяемые ими сети. Распространяемая по сети (составной сети) информация состоит из описания связей типов: маршрутизатор-маршрутизатор, маршрутизатор-сеть. Чтобы понять в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами («HELLO») со своими ближайшими соседями. Несомненно, что эти пакеты являясь служебным траффиком, засоряют составную сеть, но не в такой степени как RIP-пакеты, поскольку пакеты «HELLO» имеют куда меньший объем. Примером протокола маршрутизации из TCP/IP, работа которого основана на использовании алгоритма состояния связей (LSA) является протокол OSPF .

Конец работы -

Эта тема принадлежит разделу:

Типы компьютерных сетей

Типы компьютерных сетей.. Стандартизация в компьютерных сетях.. Сетевые топологии Сетевые протоколы физического и канального уровней OSI..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Типы компьютерных сетей
Сеть – соединение между двумя или более компьютерами, позволяющее им разделять ресурсы. Здесь под ресурсами понимаются хранящиеся в компьютере файлы или подключенные к нему устройст

Стандартизация в компьютерных сетях
Суть сети заключается в соединении различного оборудования. В этой ситуации вопросы совместимости этого оборудования являются наиболее важными. В перечень этих вопросов входит: согл

Сетевые топологии
Под физической топологией вычислительной сети понимается конфигурация соединительных устройств в сети и подключенных узлов. Компьютеры (иногда и другое оборудование вроде концентрат

Сетевые протоколы физического и канального уровней OSI
Мир сетей обязан своим успехом развитию стандартов, а в частности тех стандартов, разработанных международным институтом по электричеству и технологии IEEE (Institute of Electrical

Стандарт IEEE 802.3 и строение сетей Ethernet
Стандарт IEEE 802.3 реализован в таком числе вариантов, что для их различия была введена система обозначений – название спецификаций стандарта состоит из 3 частей: 1. Число

Стандарт 10BASE5
………………………………. Узел сети (рабочая станция/сервер) подключается к толстому коаксиалу RJ-11/RJ-8 при помощи приемо-передатчика – трансивера. Трансивер устанавливается непосре

Стандарт 10Base2
Указанный стандарт использует в качестве передающей среды коаксиальный кабель с диаметром центрального медного провода 0,89мм и внешним диаметром 5мм (0,5дюйма – «тонкий» Ethernet).

Стандарт 10BaseT
Сети 10BaseT используют в качестве среды передачи две не экранированные витые пары. Unshielded Twisted Pair, UTP, много парный витой кабель на основе витой пары медный, в отличие от

Физический уровень технологии Token Ring
Стандарт Token Ring фирмы IBM предусматривает построение связей в сети с помощью концентраторов, называемых MAU (Multistation Access Unit), т.е. устройствами многостанционного доступа. В общ

Физический уровень технологии Fast Ethernet
Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Подуровни MAC и LLC модели OSI остались без изменений. Физический уровень технологии Fast Ethernet использует 4

Построение сегментов Fast Ethernet при использовании повторителей
В качестве устройства DTE (Data Terminal Equipment) может выступать любой источник кадров данных для сети: сетевая карта узла сети (устройства DTE), порт моста, пор

Технология 100VG-AnyLan
Кадры данных передаются одновременно по кабелям UTP Cat3, причем, в каждой паре 25 Мбит/с (в сумме 4х25 = 100 Мбит/с). В отличии от Fast Ethernet, в данных сетях нет коллизий

Высокоскоростная технология Gigabit Ethernet
Основная идея стандарта стоит в максимальном сохранении идеи классической технологии Ethernet при достижении скорости передачи 1 000 Мбит/с, поэтому в данной технологии сохранены вс

Особенности метода доступа FDDI
Для передачи синхронных кадров станция всегда имеет право захватить маркер при его поступлении. При этом время удержания маркера имеет заранее заданную фиксированную величину. Если

Отказоустойчивость технологии FDDI
Для реализации отказоустойчивости создаются 2 оптоволоконных кольца: первичное и вторичное. Если узел сети одновременно подключен к двум кольцам, то это называется двойным п

Принципы маршрутизации
Как отмечалось выше, основной задачей сетевого уровня является маршрутизация – передача пакетов информации между двумя конечными узлами составной сети. Рассмотрим принципы маршрутиз

Уровень интерфейсов
На нижнем уровне маршрутизатор, подключенный к узлам составной сети обеспечивает физический интерфейс со средой передачи. Согласование уровней электрических сигналов, оснащение определенным типом р

Уровень сетевого протокола
Сетевой протокол извлекает из пакета содержимое его заголовка (заголовок сетевого уровня) и анализирует содержимое его полей. Проверяется его контрольная сумма и если пакет пришел поврежденным, то

Уровень межсетевого взаимодействия
… С помощью спец пакетов протокол SCNP сообщает о невозможности доставки пакета, о превышении TTL или продолжительности сборки из пакетов. протокол SCNP использует IP в качестве транспорта

Основной (транспортный) уровень
На сетевом уровне не устанавливаются логические соединения и, следовательно, нет никакой гарантии, что все пакеты будут доставлены в место назначения. Задачу обеспечения надежной информационной свя

Прикладной уровень
Объединяет все службы, предоставляемые системой пользовательским приложениям. Прикладной уровень реализуется программными системами, построенными в архитектуре «клиент-сервер», базирующиеся на прот

Уровень сетевых интерфейсов
Идеологическим отличием архитектуры TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня – уровня сетевых интерфейсов. Сеть TCP/IP должна иметь ср

Механизм гнезд и мультиплексирование соединений
Для установления соединения между двумя процессами на различных компьютерах сети требуется знать не только IP-адрес сетевого интерфейса компьютера, но и номер TCP-порта (сокет приложения, например,

Типы адресов стека TCP/IP
В стеке TCP/IP используют 3 типа адресов: · Локальные (аппаратные, физические), IP-адреса и символьные доменные имена В контексте TCP/IP под локальным понимается такой тип адреса,

Маршрутизация IP-пакетов без использования масок
Будем считать, что все узлы (хосты) составной сети имеют IP-адреса, основанные на классах и при этом маски не используются. Модуль (протокол) FTP упаковывает свое сообщение

Адресация с использованием масок
Часто сисадмины испытывают неудобство по причине недостатка выделенных им адресов сетей для того, чтобы структурировать сеть предприятия надлежащим образом, например, разместить все

Структуризация подсети с использованием масок одинаковой длины
Пусть для IP-сети класса «B» 129.44.0.0 сисадмин выбрал маску 255.255.192.0 . После представления IP-адреса сети в двоичном виде и наложении на адрес сети, число двоичных разрядов, интерпретируемых

Маски переменной длины
Процедура поиска маршрута при использовании масок переменной длины аналогично процедуре при использовании масок одинаковой длины. Особенности масок переменной длины определяются при наличи

Суть технологии CIDR
Каждому поставщику интернета должен назначаться непрерывный пул (диапазон) в пространстве IP-адресов. При таком подходе адреса сетей для каждого поставщика услуг имеют общую старшую

Протоколы динамической маршрутизации предназначены для автоматизации процесса построения маршрутных таблиц маршрутизаторов. Принцип их использования достаточно прост: маршрутизаторы с помощью устанавливаемого протоколом порядка рассылают определенную информацию из своей таблицы маршрутизации другим и корректируют свою таблицу на основе полученных от других данных.

Такой метод построения и поддержки маршрутных таблиц существенно упрощает задачу администрирования сетей, в которых могут происходить изменения (например, расширение) или в ситуациях, когда какие-либо маршрутизаторы и/или подсети выходят из строя.

Следует отметить, что использование протоколов динамической маршрутизации не отменяет возможность «ручного» внесения данных в таблицы маршрутизаторов. Внесенные таким образом записи называют статическими, а записи, полученные в результате обмена информацией между маршрутизаторами – динамическими. В любой таблице маршрутизации всегда присутствует, по крайней мере, одна статическая запись – маршрут по умолчанию.

Современные протоколы маршрутизации делятся на две группы: протоколы типа «вектор-расстояние» и протоколы типа «состояние канала».

В протоколах типа «вектор-расстояние» каждый маршрутизатор рассылает список адресов доступных ему сетей («векторов»), с каждым из которых связано параметр «расстояния» (например, количество маршрутизаторов до этой сети, значение, основанное на производительности канала и т.п.). Основным представителем протоколов данной группы является протокол RIP (Routing Information Protocol, протокол маршрутной информации).

Протоколы типа «состояние канала» основаны на ином принципе. Маршрутизаторы обмениваются между собой топологической информацией о связях в сети: какие маршрутизаторы с какими сетями связаны. В результате каждый маршрутизатор имеет полное представление о структуре сети (причем это представление будет одинаковым для всех), на основе которого вычисляет собственную оптимальную таблицу маршрутизации. Протоколом этой группы является протокол OSPF (Open Shortest Path First, «открой кратчайший путь первым»).

Протокол RIP.

Протокол RIP (Routing Information Protocol, протокол маршрутной информации) является наиболее простым протоколом динамической маршрутизации. Он относится к протоколам типа «вектор-расстояние».

Под вектором протокол RIP определяет IP-адреса сетей, а расстояние измеряется в переходах («хопах», hope) – количестве маршрутизаторов, которое должен пройти пакет, чтобы достичь указанной сети. Следует отметить, что максимальное значение расстояния для протокола RIP равно 15, значение 16 трактуется особым образом «сеть недостижима». Это определило основной недостаток протокола – он оказывается неприменимым в больших сетях, где Возможны маршруты, превышающие 15 переходов.

Протокол RIP версии 1 имеет ряд существенных для практического использования недостатков. К числу важных проблем относятся следующие:

  • Оцен ка расстояния только с учетом числа переходов. Протокол RIP не учитывает реальную производительность каналов связи, что может оказаться неэффективным в гетерогенных сетях, т.е. сетях, объединяющих каналы связи различного устройства, производительности, в которых используются разные сетевые технологии.
  • Проблема медленной конвергенции . Маршрутизаторы, спользующие протокол RIP. Рассылают маршрутную информацию каждые 30 с, причем их работа не синхронизирована. В ситуации, когда некоторый маршрутизатор обнаружит, что какая-либо сеть стала недоступной, то в худшем случае (если проблема была выявлена сразу после очередной рассылки) он сообщит об это соседям через 30 с. Для соседних маршрутизаторов все будет происходить также. Это означает, что информация о недоступности какой-либо сети может распространятся маршрутизаторам в достаточно долго, очевидно, что сеть при этом будет находиться в нестабильном состоянии.
  • Широковещательная рассылка таблиц маршрутизации . Протокол RIP изначально предполагал, что маршрутизаторы рассылают информацию в широковещательном режиме. Это означает, что отправленный пакет вынуждены получить и проанализировать на канальном, сетевом и транспортном уровне все компьютеры сети, в которую он направлен.

Частично указанные проблемы решаются в версии 2 (RIP2).

Протокол OSPF

Протокол OSPF (Routing (Open Shortest Path First, «открой кратчайший путь первым») является более новым протоколом динамической маршрутизации и относится к протоколам типа «состояние канала».

Функционирование протокола OSPF основано на использовании всеми маршрутизаторами единой базы данных, описывающей, как и с какими сетями связан каждый маршрутизатор. Описывая каждую связь, маршрутизаторы связы
вают с ней метрику – значение, характеризующее «качество» канала. Например, для сетей Ethernet со скоростью обмена 100 Мбит/с используется значение 1, а для коммутируемых соединений 56 Кбит/с – значение 1785. Это позволяет маршрутизаторам OSPF (в отличие от RIP, где все каналы равнозначны) учитывать реальную пропускную способность и выявлять эффективные маршруты. Важной особенностью протокола OSPF является то, что используется групповая, а не широковещательная рассылка.

Указанные особенности, такие как групповая рассылка вместо широковещательной, отсутствие ограничений на длину маршрута, периодический обмен только короткими сообщениями о состоянии, учет «качества» каналов связи позволяют использовать OSPF в больших сетях. Однако такое использование может породить серьезную проблемубольшое количество циркулирующей в сети маршрутной информации и увеличение таблиц маршрутизации. А поскольку алгоритм поиска эффективных маршрутов является, с точки зрения объема вычислений, достаточно сложным, то в больших сетях могут потребоваться высокопроизводительные и, следовательно, дорогие маршрутизаторы. Поэтому возможность построения эффективных таблиц маршрутизации может рассматриваться и как достоинство, и как недостаток протокола OSPF.

Протоколы маршрутизации предназначены для сбора данных о топологиях межсетевых соединений. Главная задача маршрутизации, или, по-другому, подбора наиболее оптимального маршрута, обычно решается с помощью анализа особых таблиц, которые размещены во всех конечных сетевых узлах и маршрутизаторах.

Для того чтобы автоматически построить требуемые таблицы, маршрутизаторы меняются друг с другом определенной информацией с помощью специально предназначенных служебных протоколов, они и имеют название «протоколы маршрутизации». К ним относятся протоколы NLSP, RIP, OSPF, которые нужно отличать от сетевых, например, таких, как IP.

С помощью соответствующих протоколов маршрутизаторы постепенно составляют карту сетевых связей. Уже на основании этих данных для каждого из номеров сети принимается решение, какому конкретно маршрутизатору необходимо передавать пакеты, которые направляются в эту сеть, чтобы маршрут в итоге оказался наиболее рациональным. Результаты принятых решений записываются в Когда конфигурации сети изменяются, некоторые записи автоматически становятся недействительными. Тогда пакеты, которые отправлены по ложным маршрутам, могут потеряться или зациклиться. От того, как быстро протоколы машрутизации приводят содержимое таблицы к реальному положению в сети, напрямую зависит качество работы таковой.

Протоколы маршрутизации имеют несколько классификаций. Они могут быть как одношаговыми, так и многошаговыми, статическими, динамическими, классовыми, бесклассовыми. Кроме того, такие протоколы могут быть внешними и внутренними. В одношаговых при выборе наиболее рационального маршрута изначально определяется только ближний маршрутизатор, а не вся их последовательность. заносятся вручную. Обычно их используют в небольших сетях, которые отличаются простой и понятной структурой. Плюсом, естественно, является легкость настройки, отсутствие каких-либо потерь трафика на передачу информации о маршрутизации и низкие требования к ресурсам. Но если происходят изменения в конфигурации сети, приходится менять таблицу маршрутизации на всех хостах вручную. Однако большую популярность имеют протоколы динамической маршрутизации.

Протокол BGP - один из основных протоколов маршрутизации в Интернете. Он предназначен для обмена данными о маршрутах между большими автономными системами, поэтому, кроме стандартной информации, переносит данные о маршрутах именно на Протокол BGP выбирает наилучший маршрут исходя из правил, которые приняты в сети, и не использует в своей работе технические метрики. Также использует суммирование маршрутов для того, чтобы уменьшить таблицы маршрутизации. На данный момент действует четвертая версия протокола.

OSPF также является достаточно популярным динамическим протоколом. Он основан на технологии, которая отслеживает состояние канала и использует для своей работы К его преимуществам относится высокая скорость сходимости, наиболее рациональное использование пропускной способности и поддержка переменной длинны.

RIP-протокол - один из самых старых, который, однако, достаточно широко распространен и по сей день. Он используется в маленьких сетях с простой структурой. Протокол прост в эксплуатации и установке. В основе его работы лежат алгоритмы вектора расстояний. При использовании RIP все записи в таблицах маршрутизации содержат либо адрес сети, либо хоста получателя.

Протоколы маршрутизации достаточно разнообразны, их насчитывается большое количество, и каждый имеет как свои достоинства, так и негативные стороны.