Печатающая головка для 3d принтера своими руками. Смещение слоев или отсутствие выравнивания

17.02.2019

Экструзионная головка – это модуль, оснащенный металлическим соплом и охлаждающим вентилятором и предназначенный для плавления нити и формирования изделия. Качественные экструдеры для 3d принтера изготавливаются из металлов способных выдержать высокие температуры. Устройство снабжено электронными датчиками контроля и управления процессом.

В модуль подается расходный материал с катушки, который нагревается до заданной температуры и переходить в пластичную фазу. Описываемый экструдер для нити 3d принтера подает полимер на платформу, где происходит моделирование объекта методом послойного наплавления. В некоторых устройствах могут применяться две головки и больше для материалов разного цвета или назначения.

Экструдер для нити 3d принтера, выбор модели и установка

Описываемые модули совместимы с определенными видами установок, которые осуществляют формирование изделий с использованием 3D технологий. Прежде чем попытаться ответить на вопрос, какой экструдер лучше для 3d принтера следует установить его тип. Подобрать головку можно по характеристикам, в частности, модель МК8 имеет следующие параметры:

  • Используемые пластики ABS и PLA.
  • Температура сопла максимальная – 260 ⁰C.
  • Диаметр нити – 1,75 мм.
  • Сечение сопла от 0,2 до 0,4 мм.

Лучший экструдер для 3d принтера имеет стандартные параметры электропитания: ток – постоянный напряжением 12 В. Модуль комплектуется высокочастотным термистором марки NTC, который обеспечивает оптимальные режимы нагрева формующего материала. Наш интернет-магазин 3DIY предлагает купить экструдер для 3d принтера по умеренной цене. Оформить заказ можно по телефону или непосредственно на сайте. Наши сотрудники готовы оказать вам помощь в подборе и приобретении комплектующих. Звоните или подавайте заявки онлайн.

Небольшой обзор по материалам применяемым для изготовления головок 3Д-принтеров и самих головок, чтобы было яснее, почему их так делают, J-Head, Makerbot, Ultimaker.

Это вторая моя статья из цикла-эпопеи о принтерных головках. Шутка - но ещё есть что сказать. Первая статья . Как и все материалы по RepRap - принтерам относится к open-source, значит если нужны какие-то подробности обращайтесь.

Хотэнд - горячая часть головки обычно состоит из трёх частей:

Собственно головка, сопло, nozzle;
- термобарьер, ещё называют nozzle holder, может быть в одном флаконе с радиатором;
- радиатор.

Требования к материалам этих частей существенно разные. Впрочем, я видел в Сети людей, которые всё эти части делали из алюминия. И у них ничего хорошего не получалось. А вот Прюша - тот самый, знаменитый, по имени которого названа модель принтера Prusa, сделал всё из нержавейки. Об этом тоже будет написано.

головка Prusa Nozzle

Итак - головка, сопло, она делается обычно из латуни, иногда из алюминия, слышал упоминания про бронзу и никогда не видел сделанную из меди. Почему так? Вероятно потому что в головке, конечно, имеет значение хорошая теплопроводность материала, но это значение не слишком велико, более важно удобство обработки материала.

Итак, посмотрим значения теплопроводностей для меди, алюминия, латуни и бронзы:

Медь - 395 вт/м К
- алюминий - 220
- латунь - 150
- бронза - 58,7 - это для алюминиевой бронзы, которая заметно прочнее латуни.

Бронза, как видите, имеет почти в три раза меньшую теплопроводность, чем латунь, что в случае использования резистора-нагревателя может иметь значение.

От алюминия отказались, вероятно, по причине излишней мягкости. Есть, конечно и достаточно прочные сплавы алюминия, но их ещё надо найти и отличить… так что…

Медь - наверное, трудно обрабатывать и слишком мягка.

Для меня важным и полезным свойством латуни (бронза - то же самое) является также, то что она хорошо паяется твёрдым серебряным припоем - который для ремонта холодильников. Он очень хорош, им можно припаять бронзу к нержавеющей стали и смачиваемость его просто великолепна, то есть он прекрасно затекает по всему стыку, будучи паяем только в одной точке. Так мы плавно переходим к термобарьеру. Это деталь, которая должна выдерживать механические нагрузки головки и передавать поменьше тепла к корпусу аппарата. Первые модели хотэндов использовали для этого фторопласт - если по-русски, или тефлон, PTFE. Вообще-то прекрасный материал, особенно в силу своей замечательной скользкости. К нему, как бы, вообще ничего не липнет и теплопроводность у него маленькая Однако есть дефект. Прочность. Прочность мала, и даже не это самое плохое, плохо то что у него есть текучесть. Текучесть - значит под нагрузкой, даже при несильном нагреве он начинает изменять свою форму. Всё. Эта особенность оставила ему только функцию вкладышей в головке, которые снижают трение филамента. Там ему течь некуда. Он подпёрт со всех сторон - или металлом или соответствующим пластиком.

Посмотрим теперь на свойства материалов которые мы могли бы поставить в качестве термобарьера. Теплопроводность -в Вт/м К (имеется в виду - ватт, метр, градус, а какой, Кельвина или Цельсия - неважно) и Предельная прочность на разрыв - в мегапаскалях.

Тефлон 0,25 26
- PEEK 0,29 165
- Нерж.Сталь марки 304 9,4 580-600
- Нерж.Сталь марки 316 9,4 680
- Сталь 3, самая простая 55 380

Смотрим, второй строкой идёт PEEK, это довольно экзотический пластик. С впечатляющей ценой. Обратите внимание на прочность, она всего раза в два ниже Стали 3.

При малой теплопроводности, хорошей скользкости и неплохой термоустойчивости он стал популярным материалом для держателей сопел.


Классическая J-Head Nozzle Mk5 B

Минусов два, и серьёзных: - цена и термоустойчивость. 250ºС - это температурный предел, часто хочется большего, терморезисторы(многие) будут работать до температуры 300ºС - есть куда расти.

Теперь посмотрите на нержавеющие стали - их теплопроводность в 5 раз ниже обычной стали! А прочность в почти два раза выше! Это популярные на Западе марки сталей соответствующие нашим 08Х18Н10 и 08Х17Н13М2. Первая - вообще классическая пищевая нержавейка, хромоникелевая. Правда теплопроводность в 40 раз повыше чем у тефлона, но если учесть разницу в прочности, то разница с тефлоном будет всего процентов 30. PEEK, впрочем остаётся недосягаемым конкурентом. Но устойчивость к теплу… и ещё приятная возможность припаять серебрянным припоем латунное сопло к стальной трубочке и забыть про просачивание пластика. Серебряный припой не только имеет температуру плавления 800ºС, но ещё у него прекрасная прочность и он великолепно паяет - очень хорошая текучесть и смачиваемость. 8-12 миллиметров трубочки из нержавейки уже оказываются достаточным барьером для наших нужд. Это в случае трубки диаметром 8мм и со стенками 1мм. Если использовать более тонкостенные трубочки эффект будет ещё лучше. Трубка со стенками 0,3 мм достаточно прочна. Тут главное воздействие будут оказывать уже другие факторы: -нагрев излучением от головки, нагрев конвективными потоками, которые, правда, должны сдуваться вентилятором.

Головка от Прюши - Prusa Nozzle из цельного куска нержавеющей стали, у него правда сталь несколько другого состава -с вдвое большей теплопроводностью, марки 303, вероятно это компромисс между требованиями к термобарьеру и к соплу. Очень трудное в изготовлении получилось изделие, и похоже не очень удачное, хотя и позволяло печатать любыми видами пластика. Жалуются на него люди. Да и купить его сейчас нелегко. Новая модификация - с алюминиевым радиатором, причём, по моему мнению, тоже не должна быть особенно удачной. Низкий градиент температур по термобарьеру.

Классическая J-Head Nozzle Mk5 B Хорошая модель, особенно если была сделана без упрощений и ухудшений, которые добавляли некоторые китайские товарищи. Держатель делается из пластика PEEK. Печатает стабильно. Но не всем. Температурный диапазон ограничен и его лучше не превышать - начинает сочиться пластик через место соединения держателя и сопла. Как нагреватель используется резистор, расчётная мощность около 25 Вт. Тефлоновый вкладыш до латунного сопла.

Мэйкербот - Makerbot Stepstruder MK7 - конструктивно просто, сплошной металл и судя по заявленным параметрам, очень даже хорошо. Термобарьер - из нержавеющей стали, не слишком маленького сечения, сложной конфигурации, внутри держателя фторопластового вкладыша нет. Большой алюминиевый нагревательный блок теплоизолируется от воздуха с помощью керамической ленты. Судя по мощному радиатору, довольно большой тепловой поток идёт с головки. Короткий отрезок термобарьера - значит высокий градиент температур. Почему это хорошо, я постараюсь показать на цифрах в следующем посте.


Головка Makerbot Stepstruder MK7

А Ultimaker HotEnd v2 использует термобарьер изPEEK. Так что ничего удивительного по температурному диапазону не ждите. Использует нагревательный картридж, 40W. Так же как и Stepstruder MK7. Конструкция интересная. Грамотно используется тефлон. Очень большая протяжённость плавящей части. Видимо отсюда рекордная скорость печати. Для подробного анализа нет чертежей и описаний.


Что нашёл по Ultimaker, а он Open source.

Самодельная - BASS - печатает хорошо и быстро. 140 мм/сек при печати капроном/триммерной леской. Трудоёмка в изготовлении. Одна намотка нагревателя чего стоит. Термобарьер из трубки нержавеющей стали 304. Токарная работа - прностая. Используется пайка серебряным припоем. Из-за намотанного радиатора - хорошая однородность нагрева, малый вес и высокая надёжность. До латунного сопла используется тефлоновый вкладыш, 5 последних миллиметров которого, для снижения нагрузки, заменены на кольцо из нержавеющей стали. Мощность - та же, порядка 40 Вт.

В креплении нагрев несильный, вентилятор справляется слабенький.


Можно сказать, что первый период развития FDM-принтеров заканчивается, хорошо работающие головки теперь не редкость. Хотя меня не оставляет ощущение что принципы их проектирования ещё не слишком чётко сформулированы. В следующем посте я хочу рассказать о тепловых расчётах головки принтера, почему их такими делают и как избежать образования пробок. У меня даже сложилось впечатление, что я теперь смогу вполне осознанно выбирать размеры, радиаторов, термобарьеров и прочее. Буду рад если сообщество поучаствует на предмет поиска возможных ошибок и заблуждений. Всем спасибо.

Экструдер - это узел 3D принтера, который непосредственно печатает. Его можно сравнить с печатающей головкой обычного струйного принтера, которая перемещается и распространяет краску. Экструдер, как правило, состоит из двух основных частей: корпус экструдера (англ. - extruder body) и hot end (англ. - хотэнд).

Корпус экструдера может быть различных конфигураций. В большинстве 3D принтеров используется система прямого привода, в которой шаговый мотор экструдера подает (материал для 3D печати) напрямую в хотэнд. В этих экструдерах, как правило, используется филамент диаметром 1.75 мм. Вторая распространненая конструкция экструдеров - это использование зубчатых колес для подачи пластика в хотэнд. Этот вариант конструктивной реализации часто встречается в DIY 3D принтерах, которые используют филамент диаметром более 3 мм.

Хотэнд - это, без преувеличений, основной узел 3D принтера. Как и предполагает название, этот узел нагревается, чтобы расплавить пластик, который подается для печати . Хотэнд состоит из трех основных узлов: сопло, размер которого определяет качество и скорость 3D печати; нагреватель (англ. - heater cartridge), который, собственно, обеспечивает нагрев до нужной температуры; цилиндр (англ. - heating barrel), в котором подается филамент для нагрева.

Второй тип экструдеров - это Боуден (англ. - Bowden) экструдеры. В этой конструкции корпус экструдера и хотэнд разнесены и соединяются PTFE трубкой, по которой подается филамент. Боуден конструкция позволяет устанавливать относительно тяжелый корпус экструдера и двигатель на раме 3D принтера, а не на подвижной каретке. Благодаря этому каретка становится легче и можно увеличить скорость 3D печати. Однако для подачи филамента придется прилагать меньшую силу, а менять материал для 3D Печати становится сложнее. Хороший пример использования Боуден экструдеров - 3D принтеры Ultimaker.

Как выбрать лучший экструдер?

Выбор лучшего экструдера зависит от Вашего 3D принтера. Оптимальный вариант - оценить желаемые возможности вашего 3D принтера и выбрать экструдер в соответствии с этими требованиями. После этого вы сможете определиться с наилучшим вариантом совмещения корпуса и экструдера. Как правило, основными показателями при выборе экструдера являются допустимые скорость и температура 3D печати. В данной статье мы исходим из предположения, что вы не привязаны к конкретной модели 3D принтера, а пытаетесь сконструировать собственный.

После того как вы выбрали подходящий хотэнд, следующий шаг - определиться с методом его установки на принтер. Самый распространенный вариант крепления - J-head.

Корпус экструдера - это вопрос индивидуальный. Корпус можно сделать с прямым приводом или с зубчатыми колесами. Как правило, используют прямой привод, так как его конструкция гораздо проще. Если вы собираетесь печатать с филаментом диаметром 3мм и больше, стоит задуматься о зубчатых колесах, чтобы обеспечить большую силу подачи. Конструкция корпуса е имеет особых ограничений, ее можно менять, особенно если вы используете приводные колеса. Если вам нужна дополнительная информация и идеи, можете поискать примеры конструкций на , где вы найдете огромное количество интересных конструктивных решений.

Еще один момент, который стоит учесть - количество экструдеров, которые вы хотите использовать в вашем 3D принтере. В большинстве используется один, но в последнее время набирают популярность принтеры с двумя. Два экструдера дают возможность печатать двумя цветами или разными материалами. Если вы используете два экструдера, убедитесь, что ваша управляющая плата сможет ими управлять и оба хотэнда хорошо откалиброваны относительно стола для печати.

Хотэнд

Как уже говорилось выше, хотэнд - одна из самых важных деталей 3D принтера. По-сути, без хотэнда вы не сможете ничего напечатать. Самый важные характеристики хотэнда - сопло, максимально допустимая температура нагрева, диаметр филамента и напряжение питания.

Надо проверить, чтобы напряжение питания нагревателя было совместимо с другими узлами вашего 3D принтера. В большинстве случаев используется напряжение питания 12 В, но 24 вольта встречается тоже. Каких-либо преимуществ в том или другом случае нет. Это просто зависит от используемых вами узлов.

Размер филамента определяется в зависимости от того, что вы собираетесь печатать. 1.7 мм - самый распространенный диаметр, но многие используют и 3 мм. Убедитесь, что ваш хотэнд сможет работать с диаметром материала, который вы хотите использовать. Х отэнд для 3 мм не сможет работать с филаментом диаметром 1.75 мм !

Характеристики сопла очень важны, так как сопло определяет сколько пластика можно использовать за единицу времени с одной стороны и, соответственно, уровнем допустимой детализации, котора зависит от максимально допустимой высоты слоя. Самый распространенный размер сопла - 0.4 мм, который является средним между 0.5 мм для быстрой 3D печати и 0.35, который используется для печати с высокой детализацией. Есть и сопла большего/меньшего диаметров, но большинство используют практичные размеры в диапазоне от 0.35 до 0.5 мм. Чаще всего сопло изготавливают из латуни.

Ну и характеристика максимально допустимой температуры нагрева влияет на типы материалов, которые вы сможете использовать. Многие хотэнды рассчитаны на максимальные температуры, которые позволяют печатать , возможно, нейлон. Основной ограничивающий фактор в этих хотэдах - PTFE направляющая. Популярная альтернатива - цельнометаллический хотэнд, в котором не используется PTFE направляющая, а предусмотрена система активного охлаждения с помощью кулеров. Допустимые температуры нагрева цельнометаллических хотэндов значительно выше.

Ниже приведено сравнение некоторых лучших хотэндов и конструкций экструдеров для 3D принтеров на рынке на момент конца 2017 года.

Экструдер Flexion Retrofit

Если вы сталкивались с проблемами забитого экструдера, который портил 3D печать или вам приходилось его менять из-за того, что не получалось печатать определенным не совсем стандартным материалом, то стоит обратить внимание на Flexion Retrofit , который даст вам возможность печатать, совершнно не задумываясь характеристиках используемого материала.

Почему Flexion Retrofit - лучший экстрдер для вашего 3D принтера?

Flexion Retrofit имеет два конструктивных исполнения. Поставляется в виде отдельных узлов со всем необходимым для сборки и монтажа плюс 4 сопла разных диаметров (0.2, 0.3, 0.4 и 0.5 мм). Он весит всего 1 фунт, благодаря чему позволяет печатать с гораздо большими скоростями по сравнению со своими конкурентами в том же ценовом диапазоне. Экструдер оснащен механизмом самоочистки, так что проблем с забитым соплом у вас не будет. Качественный механизм прижима филамента позволяет качественно печатать не только привычными ABS и PLA пластиками, но и гибкими материалами (гибкий PLA, TPU, TPE и другие).

Отличная реализация отдельных деталей

Улучшенная изоляция, специальные щетки для чистки и другие аксессуары облегчают обслуживание, а тот факт, что этот экструдер легко монтируется и демонтируется, позволяет легко произвести замену на сдвоенный, например. Приводное колесо, нагревающий блок и механизм подачи производятся с использованием точного, современного оборудования, что позволяет этому экструдеру работать с различными скоростями 3D печати, режимами подачи материала и давления. В результате, вы можете гибко настроить его под свои нужды для наилучшего качества 3D печати.

Flexion Retrofit поставляется в виде набора отдельных узлов, в коробке. У каждого узла есть точное, исчерпывающее описание. В инструкции расписаны все шаги по сборке и установке экструдера. Кроме того, на Thingiverse лежат stl файлы для крепежа кулера , которые вы можете напечатать самостоятельно и заменить пластиковую пластину, которая идет в большинстве комплектов.

В общем, если у вас возникли проблемы с экструдером, то Flexion Retrokit - это действительно лучший (хотя и не самый дешевый) экструдер, который точно решит все ваши проблемы.

Обзор PTFE хотэндов

Хотэнды с PTFE трубкой, например, 3D CAM’s MG Plus не так распространены как эх цельнометаллические аналоги. В первую очередь это связано с ограничением максимальной температуры нагрева. Хотэды с PTFE трубками дешевле, так как цельнометаллические конструкции требуют специальной обработки при производстве. При этом допустимая скорость 3D печати с PTFE хотэндами выше чем с цельнометаллическими.

Преимущества

  • дешевые;
  • тихие (так как нет отдельного кулера);
  • обычно позволяют большие скорости 3D печати;
  • легко меняется сопло.

Недостатки

  • тяжело найти, устаревшая конструкция;
  • ограничены использованием PLA и ABS пластиков (некоторые модели могут разогреваться до больших температур, но это редко).

Обычно идут в паре с экструдерами с прямым приводом. Модель Wade"s Extruder - одна из самых популярных на DIY 3D принтерах.

Lulzbot Hexagon хотэнд с корпусом TAZ Single Extruder

Lulzbot TAZ экструдер - это цельнометаллический хотэнд, который устанавливается на TAZ и Lulzbot мини принтеры. Этот хотэнд может достигать температур 300C, которой вполне достаточно для печати практически любым филаментом (Lulzbot не рекомендуют использовать филаменты с карбоновой крошкой, так как этот материал может повредить сопло). Lulzbot работают в рамках open-source, так что с документацией и хаками проблем не будет.

Преимущества

  • высокие температуры дают возможность печатать практически любым материалом;
  • этот хотэнд можно найти в виде отдельного узла, совместимого в DIY принтерами;
  • короче других хотэндов, дает возможность печатать более высокие модели;
  • сопло легко меняется.

Недостатки

  • необходимо активное охлаждение

Обычно идет в комплекте с корпусом TAZ экструдера, DIY корпуса.

E3D V6

E3D V6 - это последняя версия популярных цельнометаллических хотэндов E3D. Хотя это не совсем корректное определение, так как E3D идет с PTFE трубкой, которая добавляется для более тонких (1.75 мм) филаментов. Если PTFE трубка не используется, E3D может легко разогреться до 300C И печатать всеми возможными материалами, как и Hexagon.

Преимущества

  • высокие температуры позволяют печатать практически любым материалом;
  • цельнометаллическая конструкция;
  • легко меняющееся сопло.

Недостатки

  • благодаря PTFE трубке улучшается качество 3D Печати, но возникают ограничения по максимальной температуре нагрева;
  • необходимо использовать активное охлаждение.

Обычно используется с любым J-head совместимым корпусом.

Выводы

Экструдер играет очень важную роль в вашем 3D Принтере и его возможностях. Максимальная температура, размер филамента, требования по мощности, управляющая плата и даже высота слоя - все эти параметры напрямую зависят от экструдера. Так что стоит изучить все варианты и выбрать действительно лучший экструдер для вашего 3D принтера.

Технологии аддитивного производства развиваются семимильными темпами, а необозримые возможности этой сферы заставляют создавать и находить применение новым материалам для 3д-печати. Не так давно медицинская отрасль взялась за освоение силикона, с использованием которого связывают огромный толчок медицины в будущем. Сегодня ведется разработка надежной технологии объемной печати для работы с этим материалом. Тем временем, в Германии компания ViscoTec представила новую печатающую головку для 3d-принтера, ориентированную на работу с двухкомпонентными вязкими материалами, в частности, силиконом.

Организация главным образом специализируется на производстве систем, необходимых для дозирования, нанесения, заполнения поверхности высоковязкими жидкостями. В сферу объемной печати ViscoTec пришла в 2014-м году, когда был представлен экструдер для пастообразных материалов с собственной технологией дозирования. Ещё через год компания показала широкой общественности FDD (Fluid Dosing and Deposition – дозирование и нанесение жидкости)Starter Kit – набор инструментов для объемной печати вязкими жидкостями. И вот сейчас немецкой фирмой была представлена печатающая головкаViscoDUO-FDD 4/4.

Для изготовления 3d-моделей обычно используются термопластики и металлы, но в последнее время также начали активно применять вязкие жидкости и пасты на основе двухкомпонентного полимера. Речь идет о силиконах, эпоксидных и полиэфирных смолах, полиуретанах и акрилатах.

Печатающая головка ViscoDUO-FDD 4/4, предназначенная для работы с такими материалами, управляется с помощью встроенных в 3d-принтер программных решений. Софт обеспечивает точное соблюдение соотношения при смешивании двух материалов в процессе печати.

Уделяя особое внимание технологической обработке вязких и пастообразных материалов, ViscoTec берет во внимание принцип бесконечного поршня, на основании которого немецкой компанией были построены все решения для сферы объемной печати. Компания отмечает, что дизайн их продукта определяется порождающим производством, поскольку повторяемость является важным фактором в любой отрасли, где используется технология дозирования ViscoTec.

В основе печатающей головки ViscoDUO-FDD 4/4 лежит принцип вращающегося смещения. Благодаря специальной геометрии, точно определяется камера, в которую материал непрерывно поступает в осевом направлении. При изменении направления вращения, подача материала прекращается – таким путемудается достичь максимально чистой печати.

«Фишка» ViscoDUO-FDD 4/4 состоит в программируемом оттягивании, предназначенном для предотвращения капания материала и обеспечения высокой точности его нанесения. Двухкомпонентная печатающая головка подключается к смесительной головке через два отдельных канала. Сначала смешивание двух материалом происходит в смесительной трубке. После завершения процесса печати, смесительная трубка может быть извлечена. Печатающая головка также может заполняться в течение более длительного периода, поскольку отдельные экструдеры не позволяют материалам затвердевать.

ViscoTec приводит основные преимущества новой разработки:

  1. регулируемое и правильное соотношение смешиваемых материалов;
  2. возможность работы с широким спектром материалов;
  3. отсутствие отверждения в печатающей головке благодаря статической смесительной трубке;
  4. безопасность процесса благодаря контролю давления;
  5. различные способы отверждения материала: УФ-излучение, нагревание и т.д.

По мере того как технологии аддитивного производства продолжают фокусироваться на материалах вроде силикона, повышается точность печати и ее возможности при работе с моделями сложной геометрии.

У меня Anet A6 собирал его сам и полностью доволен. 3D принтер съел уже примерно 5 кг пластика без каких либо проблем и заминок. Оставляю печать на ночь и когда ухожу на работу.

Все экструдеры, печатающие пластиком из прутка, имеют одинаковый принцип действия и правила для anet A6 будут справедливы и для остальных принтеров. Нам понадобятся "нить для герметизации резьбовых соединений" (не для герметизации), термопроводящая паста и собственные

Сразу скажу, что герметизация от утечек расплавленного пластика происходит между соплом и термобарьером, больше нигде.

Если правильно собран этот узел, то никогда не будет протекать расплавленный пластик и выгорать на нагревательном элементе и сопле, а значит не будет и запаха гари.

Начнем по порядку.
Закручиваем сопло в термоблок с нагревателем не полностью, не докручиваем примерно 1 мм как на фото.

Затем вкручиваем термобарьер с уплотнительной нитью до упора в сопло

В точке соприкосновения сопла и термобарьера и происходит уплотнение.
Нить уплотнения резьбы нужна для того, чтобы во время смены сопла нагревательный блок не вращался на резьбе термобрьера, это исключает возможность отхода термопары со своего штатного места. После смены сопла его затяжку производить с усилием примерно 500 грамм на 10 см. Не стоит забывать что сопло упирается не в термоблок, а в термобарьер.

Термопроводящей пастой смазываем сам нагревательный элемент и термопару перед установкой в блок.

Это позволит вашему принтеру поддерживать заданную температуру в пределах + или - 1 градус.
А так же значительно продлит жизнь нагревательного элемента.

Надеюсь эта информация будет вам полезна. Удачи всем.

Некоторые изделия напечатанные на Anet A6