Перемещение курсора в начало строки клавиша. Перемещение курсора в тексте

29.03.2019

1.4 Сетевая файловая система

Файловая система CIFS доминирует на рынке сетевых файловых систем для платформы Windows. На платформе UNIX основной является сетевая файловая система (Network File System - NFS). Кроме того, NFS считается первой широко распространенной файловой системой, что произошло еще в середине 1980-х годов. Однако, несмотря на некоторые общие функциональные возможности CIFS и NFS (это сетевые файловые системы, позволяющие клиентам получать доступ к ресурсам серверов), эти системы имеют совершенно различные архитектурные особенности. С выходом NFS версии 4 некоторые различия были пересмотрены.
Протокол CIFS сохраняет сервисные данные, относящиеся к каждому клиенту. До версии 3 файловая система NFS не сохраняла статус клиента, что изменилось в версии 4.
Клиент NFS не "договаривается" с сервером NFS об установлении сеанса. Меры безопасности предпринимаются для всего сеанса или каждой операции обмена данными между клиентом и сервером. Реализация последнего варианта чрезмерно дорогостоящая, поэтому NFS возлагает задачу обеспечения безопасности на клиента. Сервер "предполагает", что идентификаторы поль¬зователя на клиентских и серверной системах совпадают (а клиент проверил личность пользователя перед тем, как дать ему зарегистрироваться под указанным идентификатором). Кроме того, NFS обеспечивает определенный уровень безопасности, контролируя список файловых систем, которые может монтировать клиент. Каждый раз, когда клиент CIFS открывает файл, получает дескриптор файла (т.е. сервисные данные, которые должен сохранять сервер) и использует его для проведения операций чтения или записи на стороне клиента, сервер NFS запрашивает сервер, который возвращает дескриптор файла. Этот дескриптор файла обрабатывается клиентами, поддерживающими стандарты NFS 3 и NFS 2. Клиент кэширует полученный дескриптор файла и ожидает, что дескриптор всегда будет указывать на один и тот же файл.
Для тех, кто знаком с UNIX, можно отметить, что дескриптор файла обычно состоит из номера inode (inode number), счетчика поколения inode (inode generation count) и идентификатора файла, который связан с разделом диска. Достаточно сказать, что inode представляет собой исключительно важную структуру данных, которая используется в файловых системах UNIX. Для удаления дескрипторов, кэшированных клиентами, хранится достаточный объем информации, необходимой, если соответствующий дескриптору файл изменился и дескриптор должен указывать на другой файл. Например, если файл удален и на его место скопирован файл с таким же именем, счетчик поколения inode будет изменен и кэшированный клиентом дескриптор файла окажется недействительным. Файловая система NFS 4 имеет отличия в реализации.
Некоторые клиенты NFS проводят кэширование на стороне клиента, храня данные на дисках, что напоминает кэширование в CIFS. Также некоторые клиенты NFS меняют значение тайм-аутов в зависимости от времени отклика сервера. Чем медленнее отзывается сервер, тем больше значение тайм-аута, и наоборот.
Файловая система NFS проектировалась, как независящая от транспорта и изначально использовала транспортный протокол UDP. Различные типы NFS могут использовать протокол TCP и другие протоколы.

1.4.1 Сетевая файловая система, версия 3

Файловая система NFS 3 позволяет увеличить быстродействие, особенно для больших файлов, разрешая клиенту и серверу динамически выбирать максимальный объем данных, которые передаются в одном логическом элементе пакета при записи или чтении. В файловой системе NFS 2 на размер пакета накладывалось ограничение в 8 Кбайт. Другими словами, клиент мог отправить максимум 8 Кбайт в запросе на запись, а сервер - максимум 8 Кбайт в ответе на запрос чтения. Кроме того, в NFS 3 переопределены смещения в файлах и размеры данных. Теперь это 64-разрядные значения, вместо 32-разрядных в NFS 2.
Далее представлены некоторые особенности NFS 3.
■ В дескрипторах файлов в NFS 3 указан переменный размер; их максимальных размер составляет 64 бит.
■ Файловая система NFS 3 позволяет клиентам и серверам выбирать максимальный размер имен файлов и каталогов.
■ В NFS 3 определяется список ошибок, которые сервер может возвращать клиентам. Сервер должен вернуть одну из определенных ошибок или не возвращать ошибку вообще.
■ В NFS 3 серверу разрешено кэшировать данные, которые клиент отправил вместе с запросом на запись. Сервер может кэшировать данные и отправлять клиенту ответ на запрос еще до того, как данные будут записаны на диск. Также добавлена команда COMMIT, которая позволяет клиенту убедиться, что все отправленные данные были записаны на диск. Это дает возможность соблюсти баланс между повышением производительности и сохранением целостности данных.
■ В NFS 3 сокращено количество операций запрос/ответ между клиентом и сервером. Для этого данные об атрибутах файла отправляются вместе с первоначальным запросом. В NFS 2 от клиента требовалось получение имен файлов и дескриптора для каждого файла, только после этого передавались атрибуты файла.

1.4.2 Сетевая файловая система, версия 4

В NFS 4 полностью пересмотрены основополагающие принципы и реализовано много функций, характерных для CIFS, что весьма расстроило некоторых апологетов NFS. Если посмотреть на историю сетевых файловых систем, то можно увидеть, что NFS получила широкое распространение. Файловая система SMB разрабатывалась с учетом сильных и слабых сторон NFS и теперь, по крайней мере в среде клиентов, CIFS/SMB распространены больше, a NFS развивается, учитывая все недостатки и преимущества CIFS/SMB. Ниже рассматриваются возможности, которые были добавлены в NFS 4 для повышения быстродействия и безопасности, а также для улучшения взаимодействия с CIFS.
■ В NFS 4 появился запрос COMPOUND, который позволяет запаковывать несколько запросов в один запрос и несколько ответов в один ответ. Это нововведение предназначено для повышения производительности за счет снижения нагрузки на сеть и сокращения задержек при передаче запросов и ответов по сети. Если это несколько напоминает функцию CIFS AndX SMB (см. раздел 3.3.5.1), то, возможно, дело не в обычном совпадении.
■ Сетевая файловая система версии 4 заимствовала некоторые возможности у WebNFS, созданной компанией Sun. В частности, в NFS 4 некоторые вторичные протоколы поддерживаются в базовой спецификации, что делает NFS более подходящей для применения вместе с брандмауэрами. В NFS 3 и более ранних версиях использовался специальный протокол для монтирования общего ресурса сервера в дерево локальной файловой системы. Поскольку служба протокола монтирования не имела назначенного порта TCP или UDP, клиент сначала отправлял запрос службе отображения портов (portmapper daemon), предоставляющей номер порта, посредством которого ожидает запросов служба монтирования. Таким образом, кроме NFS, в процессе принимали участие протоколы монтирования и отображения портов. Более того, так как служба монтирования могла использовать произвольный порт, настройка брандмауэра весьма усложнялась. В NFS 4 протоколы монтирования и отображения портов были исключены. Кроме того, блокирование было включено в базовую спецификацию протокола NFS, а протокол NLM (Network Lock Manager), который применялся в более ранних версиях NFS, окончательно устарел.
■ Файловая система NFS 4 требует использования транспортного протокола, который предоставляет возможность обнаружения "заторов" в сети. Это значит, что клиенты и серверы NFS постепенно будут переходить к протоколу TCP вместо UDP, который обычно используется вместе с NFS 3.
■ В NFS 2 и NFS 3 допускалось использование набора символов U.S. ASCII или ISO Latin 1. Это приводило к возникновению проблем, когда клиент, использующий один набор символов, создавал файл и к этому файлу получал доступ клиент с другим набором символов. В NFS 4 используется набор символов UTF-8, который поддерживает компактное сжатие 16- и 32-разрядных символов для их передачи по сети. Кроме того, набор символов UTF-8 содержит достаточный объем информации, чтобы избежать проблем при создании файла посредством одного набора символов и получении доступа к файлу с другим набором.
■ Файловая система NFS 4 требует от клиента отдельной обработки дескрипторов файлов. В NFS 3 клиент мог кэшировать дескриптор в качестве объекта, в то время как сервер заботился о том, чтобы дескриптор всегда указывал на файл. В NFS 4 определены два типа файловых дескрипторов. Один называется постоянные дескрипторы файлов и обладает возможностями дескрипторов файлов из NFS 3. Второй - временные дескрипторы файлов - предполагает истечение срока действия дескриптора после определенного промежутка времени или события. Это функция для серверов, файловые системы которых (например, NTFS) не могут обеспечить постоянного соответствия между отображаемыми файлами и дескрипторами.
■ В NFS 4 добавлена поддержка операций OPEN и CLOSE, семантика которых допускает взаимодействие с клиентами CIFS. Команда OPEN создает данные состояния на сервере.
■ Поддержка запроса OPEN в NFS 4 позволяет клиенту осуществлять запрос на открытие файла, структура которого будет аналогична запросам на открытие приложений Windows. Также поддерживается выбор совместного использования файла с другими клиентами или эксклюзивный доступ к файлу.

1.4.2.1 Безопасность NFS 4

Файловая система NFS 4 позволяет усилить безопасность хранимых данных. В частности, в NFS 4 добавлена поддержка большего количества атрибутов файла. К одному из этих атрибутов относится список управления доступом (ACL) в стиле Windows NT. Это позволяет улучшить взаимодей¬ствие между файловыми системами и укрепить структуру безопасности.
В то время как в NFS 2 и NFS 3 использование возможностей системы безопасности только рекомендовалось, в NFS 4 это стало обязательным. Файловая система NFS 4 требует реализации механизма безопасности с помощью интерфейса RPCSEC_GSS (Generic Security Services) в общем и протоколов Kerberos 5/LIPKEY в частности. Обратите внимание, что RPCSEC_GSS просто выполняет роль интерфейса API и транспортного механизма для меток и данных, связанных с безопасностью. Файловая система NFS 4 позволяет использовать несколько, схем аутентификации и обеспечения безопасности, а также дает возможность выбрать подходящую схему для клиентов и серверов.
Уделим некоторое внимание изучению технологии LIPKEY, использующей комбинацию симметричного и асимметричного шифрования. Клиент шифрует данные о пользователе и пароль, применяя случайно сгенерированный ключ размером 128 бит. Шифрование выполняется с помощью симметричного алгоритма, т.е. для дешифрации должен использоваться тот же ключ. Поскольку серверу необходим этот ключ для дешифрации сообщений, случайно сгенерированный ключ должен быть отправлен серверу. Клиент шифрует ключ (который генерируется случайно) с помощью открытого ключа сервера. Сервер дешифрует данные своим закрытым ключом, извлекает симметричный ключ и дешифрует данные о пользователе и пароль.
Клиенты могут аутентифицировать серверы по серверному сертификату, а для проверки сертификата используются службы сертификационного центра. Одним из популярных методов взлома является перехват "чужих" пакетов данных с их последующей отправкой через некоторый временной промежуток. При использовании Kerberos файловая система NFS добавляет в каждый пакет временную метку. Сервер записывает недавно полученные временные метки и сравнивает их с временными метками новых пакетов RPC. Если временные метки пакетов старше, чем полученные сервером ранее, сервер игнорирует полученные пакеты

1.5 Проблемы доступа при использовании нескольких протоколов

Несколько компаний стали предлагать системы, в которых одновременно реализована поддержка CIFS, NFS и других клиентов сетевых файловых систем. Поставщики проделали немалую работу, пытаясь преодолеть технические проблемы, которые возникают из-за потенциального использования клиентами различных операционных и файловых систем. Обратите внимание, что проблемы возникают не с самими данными, а с метаданными файлов. Простым тестом на наличие подобных проблем будет копирование фай¬ла с сервера на клиент и обратно на сервер (или наоборот). После размещения файла в первоначальном ресурсе метаданные должны содержать базовые значения, т.е. права доступа к файлу и временные метки не должны измениться. Если это не соответствует истине, то проблема обнаружена.
Далее представлены примеры некоторых возможных технических проблем.
■ В различных операционных системах используются разные методы для отслеживания разрешений доступа пользователей и групп.
■ В различных операционных и файловых системах существует разная семантика открытия и блокировки файлов.
■ Соглашения по именованию файлов обрабатываются разными способами. Различные файловые системы по-разному представляют максимальный размер имени файла, значение регистра в имени файла и набор символов, допустимый в именах.
■ Данные и их структура различаются в различных файловых системах; например, одни файловые системы отслеживают две временные метки, в то время как другие - три метки (время последнего доступа к файлу, последней модификации и создания файла). Даже если обе файловые системы отслеживают две временные метки, единицы измерения могут отличаться. Еще одним примером служат единицы измерения смещений в файлах. В некоторых файловых системах поддерживаются 32-разрядные смещения, а в некоторых - 16- или 64-разрядные.
■ Проблемы с адресацией отображаемых блокировок. Сервер CIFS принудительно поддерживает блокировку: если один клиент заблокировал область файла, то любая операция записи в эту область файла со стороны другого клиента приведет к возникновению ошибки. Однако принудительная блокировка не поддерживается серверами NFS. Поэтому необходимо выбрать, будет ли блокировка поддерживаться принудительно, что приведет к отправке сообщения об ошибке клиенту NFS.

Доброго времени, читатели и гости . Очень большой перерыв между постами был, но я снова в бою). В сегодняшней статье рассмотрю работу протокола NFS , а так же настройку сервера NFS и клиента NFS на Linux .

Введение в NFS

NFS (Network File System - сетевая файловая система ) по моему мнению - идеальное решение в локальной сети, где необходим быстрый (более быстрый по сравнению с SAMBA и менее ресурсоемкий по сравнению с удаленными файловыми системами с шифрованием - sshfs, SFTP, etc...) обмен данными и во главе угла не стоит безопасность передаваемой информации. Протокол NFS позволяет монтировать удалённые файловые системы через сеть в локальное дерево каталогов , как если бы это была примонтирована дисковая файловая система. Тем самым локальные приложения могут работать с удаленной файловой системой, как с локальной. Но нужно быть осторожным (!) с настройкой NFS , ибо при определенной конфигурации можно подвесить операционную систему клиента в ожидании бесконечного ввода/вывода. Протокол NFS основан на работе протокола RPC , который пока не поддается моему пониманию)) поэтому материал в статье будет немного расплывчат... Прежде, чем Вы сможете использовать NFS, будь это сервер или клиент, Вы должны удостовериться, что Ваше ядро имеет поддержку файловой системы NFS. Проверить поддерживает ли ядро файловую систему NFS можно, просмотрев наличие соответствующих строк в файле /proc/filesystems :

ARCHIV ~ # grep nfs /proc/filesystems nodev nfs nodev nfs4 nodev nfsd

Если указанных строк в файле /proc/filesystems не окажется, то необходимо установить описанные ниже пакеты. Это скорее всего позволит установить зависимые модули ядра для поддержки нужных файловых систем. Если после установки пакетов, поддержка NFS не будет отображена в указанном файле, то необходимо будет , с включением данной функции.

История Network File System

Протокол NFS разработан компанией Sun Microsystems и имеет в своей истории 4 версии. NFSv1 была разработана в 1989 и являлась экспериментальной, работала на протоколе UDP. Версия 1 описана в . NFSv2 была выпущена в том же 1989 г., описывалась тем же RFC1094 и так же базировалась на протоколе UDP, при этом позволяла читать не более 2Гб из файла. NFSv3 доработана в 1995 г. и описана в . Основными нововведениями третьей версии стало поддержка файлов большого размера, добавлена поддержка протокола TCP и TCP-пакетов большого размера, что существенно ускорило работоспосбоность технологии. NFSv4 доработана в 2000 г. и описана в RFC 3010, в 2003 г. пересмотрена и описана в . Четвертая версия включила в себя улучшение производительности, поддержку различных средств аутентификации (в частности, Kerberos и LIPKEY с использованием протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов). NFS версии v4.1 была одобрена IESG в 2010 г., и получила номер . Важным нововведением версии 4.1, является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в стандарте сетевой файловой системы поможет строить распределённые «облачные» («cloud») хранилища и информационные системы.

NFS сервер

Так как у нас NFS - это сетевая файловая система, то необходимо . (Так же можно почитать статью ). Далее необходимо . В Debian это пакет nfs-kernel-server и nfs-common , в RedHat это пакет nfs-utils . А так же, необходимо разрешить запуск демона на необходимых уровнях выполнения ОС (команда в RedHat - /sbin/chkconfig nfs on , в Debian - /usr/sbin/update-rc.d nfs-kernel-server defaults ).

Установленные пакеты в Debian запускается в следующем порядке:

ARCHIV ~ # ls -la /etc/rc2.d/ | grep nfs lrwxrwxrwx 1 root root 20 Окт 18 15:02 S15nfs-common -> ../init.d/nfs-common lrwxrwxrwx 1 root root 27 Окт 22 01:23 S16nfs-kernel-server -> ../init.d/nfs-kernel-server

То есть, сначала запускается nfs-common , затем сам сервер nfs-kernel-server . В RedHat ситуация аналогичная, за тем лишь исключением, что первый скрипт называется nfslock , а сервер называется просто nfs . Про nfs-common нам сайт debian дословно говорит следующее: общие файлы для клиента и сервера NFS, этот пакет нужно устанавливать на машину, которая будет работать в качестве клиента или сервера NFS. В пакет включены программы: lockd, statd, showmount, nfsstat, gssd и idmapd . Просмотрев содержимое скрипта запуска /etc/init.d/nfs-common можно отследить следующую последовательность работы: скрипт проверяет наличие исполняемого бинарного файла /sbin/rpc.statd , проверяет наличие в файлах /etc/default/nfs-common , /etc/fstab и /etc/exports параметров, требующих запуск демонов idmapd и gssd , запускает демона /sbin/rpc.statd , далее перед запуском /usr/sbin/rpc.idmapd и /usr/sbin/rpc.gssd проверяет наличие этих исполняемых бинарных файлов, далее для демона /usr/sbin/rpc.idmapd проверяет наличие sunrpc, nfs и nfsd , а так же поддержку файловой системы rpc_pipefs в ядре (то есть наличие ее в файле /proc/filesystems ), если все удачно, то запускает /usr/sbin/rpc.idmapd . Дополнительно, для демона /usr/sbin/rpc.gssd проверяет модуль ядра rpcsec_gss_krb5 и запускает демон.

Если просмотреть содержимое скрипта запуска NFS-сервера на Debian (/etc/init.d/nfs-kernel-server ), то можно проследить следующую последовательность: при старте, скрипт проверяет существование файла /etc/exports , наличие nfsd , наличие поддержки файловой системы NFS в (то есть в файле /proc/filesystems ), если все на месте, то запускается демон /usr/sbin/rpc.nfsd , далее проверяет задан ли параметр NEED_SVCGSSD (задается в файле настроек сервера /etc/default/nfs-kernel-server ) и, если задан - запускает демона /usr/sbin/rpc.svcgssd , последним запускает демона /usr/sbin/rpc.mountd . Из данного скрипта видно, что работа сервера NFS состоит из демонов rpc.nfsd, rpc.mountd и если используется Kerberos-аутентификация, то и демон rcp.svcgssd. В краснойшляпе еще запускается демон rpc.rquotad и nfslogd (В Debian я почему-то не нашел информации об этом демоне и о причинах его отсутствия, видимо удален...).

Из этого становиться понятно, что сервер Network File System состоит из следующих процессов (читай - демонов) , расположенных в каталогах /sbin и /usr/sbin:

В NFSv4 при использовании Kerberos дополнительно запускаются демоны:

  • rpc.gssd - Демон NFSv4 обеспечивает методы аутентификации через GSS-API (Kerberos-аутентификация). Работает на клиенте и сервере.
  • rpc.svcgssd - Демон сервера NFSv4, который обеспечивает проверку подлинности клиента на стороне сервера.

portmap и протокол RPC (Sun RPC)

Кроме указанных выше пакетов, для корректной работы NFSv2 и v3 требуется дополнительный пакет portmap (в более новых дистрибутивах заменен на переименован в rpcbind ). Данный пакет обычно устанавливается автоматически с NFS как зависимый и реализует работу сервера RPС, то есть отвечает за динамическое назначение портов для некоторых служб, зарегистрированных в RPC сервере. Дословно, согласно документации - это сервер, который преобразует номера программ RPC (Remote Procedure Call) в номера портов TCP/UDP. portmap оперирует несколькими сущностями: RPC-вызовами или запросами , TCP/UDP портами , версией протокола (tcp или udp), номерами программ и версиями программ . Демон portmap запускается скриптом /etc/init.d/portmap до старта NFS-сервисов.

Коротко говоря, работа сервера RPC (Remote Procedure Call) заключается в обработке RPC-вызовов (т.н. RPC-процедур) от локальных и удаленных процессов. Используя RPC-вызовы, сервисы регистрируют или удаляют себя в/из преобразователя портов (он же отображатель портов, он же portmap, он же portmapper, он же, в новых версиях, rpcbind), а клиенты с помощью RPC-вызовов направляя запросы к portmapper получают необходимую информацию. Юзер-френдли названия сервисов программ и соответствующие им номера определены в файле /etc/rpc. Как только какой-либо сервис отправил соответствующий запрос и зарегистрировал себя на сервере RPC в отображателе портов, RPC-сервер присваивает сопоставляет сервису TCP и UDP порты на которых запустился сервис и хранит в себе ядре соответствующую информацию о работающем сервисе (о имени), уникальном номере сервиса (в соответствии с /etc/rpc) , о протоколе и порте на котором работает сервис и о версии сервиса и предоставляет указанную информацию клиентам по запросу. Сам преобразователь портов имеет номер программы (100000), номер версии - 2, TCP порт 111 и UDP порт 111. Выше, при указании состава демонов сервера NFS я указал основные RPC номера программ. Я, наверно, немного запутал Вас данным абзацем, поэтому произнесу основную фразу, которая должна внести ясность: основная функция отображателя портов заключается в том, чтобы по запросу клиента, который предоставил номер RPC-программы (или RPC-номер программы) и версию, вернуть ему (клиенту) порт, на котором работает запрошенная программа . Соответственно, если клиенту нужно обратиться к RPC с конкретным номером программы, он сначала должен войти в контакт с процессом portmap на серверной машине и определить номер порта связи с необходимым ему сервисом RPC.

Работу RPC-сервера можно представить следующими шагами:

  1. Преобразователь портов должен стартовать первым, обычно при загрузке системы. При этом создается конечная точка TCP и осуществляется открытие TCP порта 111. Также создается конечная точка UDP, которая находится в ожидании, когда на UDP порт 111 прибудет UDP датаграмма.
  2. При старте программа, работающая через сервер RPC создает конечную точку TCP и конечную точку UDP для каждой поддерживаемой версии программы. (Сервер RPC может поддерживать несколько версий. Клиент указывает требуемую версию при посылке RPC-вызова.) Динамически назначаемый номер порта закрепляется за каждой версией сервиса. Сервер регистрирует каждую программу, версию, протокол и номер порта, осуществляя соответствуюoий RPC-вызов.
  3. Когда программе клиента RPC необходимо получить необходимую информацию, она вызывает вызов процедуру преобразователя портов, чтобы получить динамически назначаемый номер порта для заданной программы, версии и протокола.
  4. В ответ на этот запрос север возвращает номер порта.
  5. Клиент отправляет сообщение RPC-запрос на номер порта, полученный в пункте 4. Если используется UDP, клиент просто посылает UDP датаграмму, содержащую сообщение RPC-вызова, на номер UDP порта, на котором работает запрошенный сервис. В ответ сервис отправляет UDP датаграмму, содержащую сообщение RPC отклика. Если используется TCP, клиент осуществляет активное открытие на номер TCP порта требуемого сервиса и затем посылает сообщение вызова RPC по установленному соединению. Сервер отвечает сообщением отклика RPC по соединению.

Для получения информации от RPC-сервера используется утилита rpcinfo . При указании параметров -p host программа выводит список всех зарегистрированных RPC программ на хосте host. Без указания хоста программа выведет сервисы на localhost. Пример:

ARCHIV ~ # rpcinfo -p прог-ма верс прото порт 100000 2 tcp 111 portmapper 100000 2 udp 111 portmapper 100024 1 udp 59451 status 100024 1 tcp 60872 status 100021 1 udp 44310 nlockmgr 100021 3 udp 44310 nlockmgr 100021 4 udp 44310 nlockmgr 100021 1 tcp 44851 nlockmgr 100021 3 tcp 44851 nlockmgr 100021 4 tcp 44851 nlockmgr 100003 2 tcp 2049 nfs 100003 3 tcp 2049 nfs 100003 4 tcp 2049 nfs 100003 2 udp 2049 nfs 100003 3 udp 2049 nfs 100003 4 udp 2049 nfs 100005 1 udp 51306 mountd 100005 1 tcp 41405 mountd 100005 2 udp 51306 mountd 100005 2 tcp 41405 mountd 100005 3 udp 51306 mountd 100005 3 tcp 41405 mountd

Как видно, rpcinfo отображает (в столбиках слева направо) номер зарегистрированной программы, версию, протокол, порт и название. С помощью rpcinfo можно удалить регистрацию программы или получить информацию об отдельном сервисе RPC (больше опций в man rpcinfo). Как видно, зарегистрированы демоны portmapper версии 2 на udp и tcp портах, rpc.statd версии 1 на udp и tcp портах, NFS lock manager версий 1,3,4, демон nfs сервера версии 2,3,4, а так же демон монтирования версий 1,2,3.

NFS сервер (точнее демон rpc.nfsd) получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS работает с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.

Работа протокола Network File System

Монтирование удаленной NFS

Процесс монтирования удаленной файловой системы NFS можно представить следующей схемой:

Описание протокола NFS при монтировании удаленного каталога:

  1. На сервере и клиенте запускается RPC сервер (обычно при загрузке), обслуживанием которого занимается процесс portmapper и регистрируется на порту tcp/111 и udp/111.
  2. Запускаются сервисы (rpc.nfsd,rpc.statd и др.), которые регистрируются на RPC сервере и регистрируются на произвольных сетевых портах (если в настройках сервиса не задан статичный порт).
  3. команда mount на компьютере клиента отправляет ядру запрос на монтирование сетевого каталога с указанием типа файловой системы, хоста и собственно - каталога, ядро отправляет формирует RPC-запрос процессу portmap на NFS сервере на порт udp/111 (если на клиенте не задана опция работать через tcp)
  4. Ядро сервера NFS опрашивает RPC о наличии демона rpc.mountd и возвращает ядру клиента сетевой порт, на котором работает демон.
  5. mount отправляет RPC запрос на порт, на котором работает rpc.mountd. Теперь NFS сервер может проверить достоверность клиента основываясь на его IP адресе и номере порта, чтобы убедиться, можно ли этому клиенту смонтировать указанную файловую систему.
  6. Демон монтирования возвращает описание запрошенной файловой системы.
  7. Команда mount клиента выдает системный вызов mount, чтобы связать описатель файла, полученный в шаге 5, с локальной точкой монтирования на хосте клиента. Описатель файла хранится в коде NFS клиента, и с этого момента любое обращение пользовательских процессов к файлам на файловой системе сервера будет использовать описатель файла как стартовую точку.

Обмен данными между клиентом и сервером NFS

Типичный доступ к удаленной файловой системе можно описать следующей схемой:

Описание процесса обращения к файлу, расположенному на сервере NFS:

  1. Клиенту (пользовательскому процессу) безразлично, получает ли он доступ к локальному файлу или к NFS файлу. Ядро занимается взаимодействием с железом через модули ядра или встроенные системные вызовы.
  2. Модуль ядра kernel/fs/nfs/nfs.ko, который выполняет функции NFS клиента отправляет RPC запросы NFS серверу через модуль TCP/IP. NFS обычно использует UDP, однако более новые реализации могут использовать TCP.
  3. NFS сервер получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS может работать с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.
  4. Когда NFS сервер получает запрос от клиента, он передаётся локальной подпрограмме доступа к файлу, которая обеспечивает доступ к локальному диску на сервере.
  5. Результат обращения диску возвращается клиенту.

Настройка сервера NFS

Настройка сервера в целом заключается в задании локальных каталогов, разрешенных для монтирования удаленными системами в файле /etc/exports . Это действие называется экспорт иерархии каталогов . Основными источниками информации об экспортированных каталогах служат следующие файлы:

  • /etc/exports - основной конфигурационный файл, хранящий в себе конфигурацию экспортированных каталогов. Используется при запуске NFS и утилитой exportfs.
  • /var/lib/nfs/xtab - содержит список каталогов, монтированных удаленными клиентами. Используется демоном rpc.mountd, когда клиент пытается смонтировать иерархию (создается запись о монтировании).
  • /var/lib/nfs/etab - список каталогов, которые могут быть смонтированы удаленными системами с указанием всех параметров экспортированных каталогов.
  • /var/lib/nfs/rmtab - список каталогов, которые не разэкспортированы в данный момент.
  • /proc/fs/nfsd - специальная файловая система (ядро 2.6) для управления NFS сервером.
    • exports - список активных экспортированных иерархий и клиентов, которым их экспортировали, а также параметры. Ядро получает данную информацию из /var/lib/nfs/xtab.
    • threads - содержит число потоков (также можно изменять)
    • с помощью filehandle можно получить указатель на файл
    • и др...
  • /proc/net/rpc - содержит "сырую" (raw) статистику, которую можно получить с помощью nfsstat, а также различные кеши.
  • /var/run/portmap_mapping - информация о зарегистрированных в RPC сервисах

Прим: вообще, в интернете куча трактовок и формулировок назначения файлов xtab, etab, rmtab, кому верить - не знаю Даже на http://nfs.sourceforge.net/ трактовка не однозначна.

Настройка файла /etc/exports

В простейшем случае, файл /etc/exports является единственным файлом, требующим редактирования для настройки NFS-сервера. Данный файл управляет следующими аспектами:

  • Какие клиенты могут обращаться к файлам на сервере
  • К каким иерархиям каталогов на сервере может обращаться каждый клиент
  • Как пользовательские имена клиентов будут отображаться на локальные имена пользователей

Каждая строка файла exports имеет следующий формат:

точка_экспорта клиент1 (опции ) [клиент2(опции) ...]

Где точка_экспорта абсолютный путь экспортируемой иерархии каталогов, клиент1 - n имя одного или более клиентов или IP-адресов, разделенные пробелами, которым разрешено монтировать точку_экспорта . Опции описывают правила монтирования для клиента , указанного перед опциями .

Вот типичный пример конфигурации файла exports:

ARCHIV ~ # cat /etc/exports /archiv1 files(rw,sync) 10.0.0.1(ro,sync) 10.0.230.1/24(ro,sync)

В данном примере компьютерам files и 10.0.0.1 разрешен доступ к точке экспорта /archiv1, при этом, хосту files на чтение/запись, а для хоста 10.0.0.1 и подсети 10.0.230.1/24 доступ только на чтение.

Описания хостов в /etc/exports допускается в следующем формате:

  • Имена отдельных узлов описываются, как files или files.DOMAIN.local.
  • Описание маски доменов производится в следующем формате: *DOMAIN.local включает все узлы домена DOMAIN.local.
  • Подсети задаются в виде пар адрес IP/маска. Например: 10.0.0.0/255.255.255.0 включает все узлы, адреса которых начинаются с 10.0.0.
  • Задание имени сетевой группы @myclients имеющей доступ к ресурсу (при использовании сервера NIS)

Общие опции экспорта иерархий каталогов

В файле exports используются следующие общие опции (сначала указаны опции применяемые по-умолчанию в большинстве систем, в скобках - не по-умолчанию):

  • auth_nlm (no_auth_nlm) или secure_locks (insecure_locks) - указывает, что сервер должен требовать аутентификацию запросов на блокировку (с помощью протокола NFS Lock Manager (диспетчер блокировок NFS)).
  • nohide (hide) - если сервер экспортирует две иерархии каталогов, при этом одна вложенна (примонтированна) в другую. Клиенту необходимо явно смонтировать вторую (дочернюю) иерархию, иначе точка монтирования дочерней иерархии будет выглядеть как пустой каталог. Опция nohide приводит к появлению второй иерархии каталогов без явного монтирования. (прим: я данную опцию так и не смог заставить работать...)
  • ro (rw) - Разрешает только запросы на чтение (запись). (в конечном счете - возможно прочитать/записать или нет определяется на основании прав файловой системы, при этом сервер не способен отличить запрос на чтение файла от запроса на исполнение, поэтому разрешает чтение, если у пользователя есть права на чтение или исполнение.)
  • secure (insecure) - требует, чтобы запросы NFS поступали с защищенных портов (< 1024), чтобы программа без прав root не могла монтировать иерархию каталогов.
  • subtree_check (no_subtree_check) - Если экспортируется подкаталог фаловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск изменений, выполненных этими запросами. Опция async указывает серверу не ждать записи информации на диск, что повышает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна потеря информации.
  • wdelay (no_wdelay) - указывает серверу задерживать выполнение запросов на запись, если ожидается последующий запрос на запись, записывая данные более большими блоками. Это повышает производительность при отправке больших очередей команд на запись. no_wdelay указывает не откладывать выполнение команды на запись, что может быть полезно, если сервер получает большое количество команд не связанных друг с другом.

Экспорт символических ссылок и файлов устройств. При экспорте иерархии каталогов, содержащих символические ссылки, необходимо, чтобы объект ссылки был доступен клиентской (удаленной) системе, то есть должно выполняться одно из следующих правил:

Файл устройства относится к интерфейсу . При экспорте файла устройства экспортируется этот интерфейс. Если клиентская система не имеет устройства такого же типа, то экспортированное устройство не будет работать. В клиентской системе, при монтировании NFS объектов можно использовать опцию nodev, чтобы файлы устройств в монтируемых каталогах не использовались.

Опции по умолчанию в разных системах могут различаться, их можно посмотреть в файле /var/lib/nfs/etab. После описания экспортированного каталога в /etc/exports и перезапуска сервера NFS все недостающие опции (читай: опции по-умолчанию) будут отражены в файле /var/lib/nfs/etab.

Опции отображения (соответствия) идентификаторов пользователей

Для большего понимания нижесказанного я бы посоветовал ознакомиться со статьей . Каждый пользователь Linux имеет свои UID и главный GID, которые описаны в файлах /etc/passwd и /etc/group . Сервер NFS считает, что операционная система удаленного узла выполнила проверку подлинности пользователей и назначила им корректные идентификаторы UID и GID. Экспортирование файлов дает пользователям системы клиента такой же доступ к этим файлам, как если бы они регистрировались напрямую на сервере. Соответственно, когда клиент NFS посылает запрос серверу, сервер использует UID и GID для идентификации пользователя в локальной системе, что может приводить к некоторым проблемам:

  • пользователь может не иметь одни и те же идентификаторы в обеих системах и, соответственно, может получить доступ к фалам другого пользователя.
  • т.к. у пользователя root идентификатор всегда 0, то данный пользователь отображается на локального пользователя в зависимости от заданных опций.

Следующие опции задают правила отображения удаленных пользователей в локальных:

  • root_squash (no_root_squash) - При заданной опции root_squash , запросы от пользователя root отображаются на анонимного uid/gid, либо на пользователя, заданного в параметре anonuid/anongid.
  • no_all_squash (all_squash) - Не изменяет UID/GID подключающегося пользователя. Опция all_squash задает отображение ВСЕХ пользователей (не только root), как анонимных или заданных в параметре anonuid/anongid.
  • anonuid=UID и anongid=GID - Явно задает UID/GID для анонимного пользователя.
  • map_static=/etc/file_maps_users - Задает файл, в котором можно задать сопоставление удаленных UID/GID - локальным UID/GID.

Пример использования файла маппинга пользователей:

ARCHIV ~ # cat /etc/file_maps_users # Маппинг пользователей # remote local comment uid 0-50 1002 # сопоставление пользователей с удаленным UID 0-50 к локальному UID 1002 gid 0-50 1002 # сопоставление пользователей с/span удаленным GID 0-50 к локальному GID 1002

Управление сервером NFS

Управление сервером NFS осуществляется с помощью следующих утилит:

  • nfsstat
  • showmsecure (insecure)ount

nfsstat: статистика NFS и RPC

Утилита nfsstat позволяет посмотреть статистику RPC и NFS серверов. Опции команды можно посмотреть в man nfsstat .

showmount: вывод информации о состоянии NFS

Утилита showmount запрашивает демон rpc.mountd на удалённом хосте о смонтированных файловых системах. По умолчанию выдаётся отсортированный список клиентов. Ключи:

  • --all - выдаётся список клиентов и точек монтирования с указанием куда клиент примонтировал каталог. Эта информация может быть не надежной.
  • --directories - выдаётся список точек монтирования
  • --exports - выдаётся список экспортируемых файловых систем с точки зрения nfsd

При запуске showmount без аргументов, на консоль будет выведена информация о системах, которым разрешено монтировать локальные каталоги. Например, хост ARCHIV нам предоставляет список экспортированных каталогов с IP адресами хостов, которым разрешено монтировать указанные каталоги:

FILES ~ # showmount --exports archiv Export list for archiv: /archiv-big 10.0.0.2 /archiv-small 10.0.0.2

Если указать в аргументе имя хоста/IP, то будет выведена информация о данном хосте:

ARCHIV ~ # showmount files clnt_create: RPC: Program not registered # данное сообщение говорит нам, что на хосте FILES демон NFSd не запущен

exportfs: управление экспортированными каталогами

Данная команда обслуживает экспортированные каталоги, заданные в файле /etc/exports , точнее будет написать не обслуживает, а синхронизирует с файлом /var/lib/nfs/xtab и удаляет из xtab несуществующие. exportfs выполняется при запуске демона nfsd с аргументом -r. Утилита exportfs в режиме ядра 2.6 общается с демоном rpc.mountd через файлы каталога /var/lib/nfs/ и не общается с ядром напрямую. Без параметров выдаёт список текущих экспортируемых файловых систем.

Параметры exportfs:

  • [клиент:имя-каталога] - добавить или удалить указанную файловую систему для указанного клиента)
  • -v - выводить больше информации
  • -r - переэкспортировать все каталоги (синхронизировать /etc/exports и /var/lib/nfs/xtab)
  • -u - удалить из списка экспортируемых
  • -a - добавить или удалить все файловые системы
  • -o - опции через запятую (аналогичен опциям применяемым в /etc/exports; т.о. можно изменять опции уже смонтированных файловых систем)
  • -i - не использовать /etc/exports при добавлении, только параметры текущей командной строки
  • -f - сбросить список экспортируемых систем в ядре 2.6;

Клиент NFS

Прежде чем обратиться к файлу на удалённой файловой системе клиент (ОС клиента) должен смонтировать её и получить от сервера указатель на неё . Монтирование NFS может производиться с помощью или с помощью одного из расплодившихся автоматических монтировщиков (amd, autofs, automount, supermount, superpupermount). Процесс монтирования хорошо продемонстрирована выше на иллюстрации.

На клиентах NFS никаких демонов запускать не нужно, функции клиента выполняет модуль ядра kernel/fs/nfs/nfs.ko , который используется при монтировании удаленной файловой системы. Экспортированные каталоги с сервера могут монтироваться на клиенте следующими способами:

  • вручную, с помощью команды mount
  • автоматически при загрузке, при монтировании файловых систем, описанных в /etc/fstab
  • автоматически с помощью демона autofs

Третий способ с autofs в данной статье я рассматривать не буду, ввиду его объемной информации. Возможно в следующих статьях будет отдельное описание.

Монтирование файловой системы Network Files System командой mount

Пример использования команды mount представлен в посте . Тут я рассмотрю пример команды mount для монтирования файловой системы NFS:

FILES ~ # mount -t nfs archiv:/archiv-small /archivs/archiv-small FILES ~ # mount -t nfs -o ro archiv:/archiv-big /archivs/archiv-big FILES ~ # mount ....... archiv:/archiv-small on /archivs/archiv-small type nfs (rw,addr=10.0.0.6) archiv:/archiv-big on /archivs/archiv-big type nfs (ro,addr=10.0.0.6)

Первая команда монтирует экспортированный каталог /archiv-small на сервере archiv в локальную точку монтирования /archivs/archiv-small с опциями по умолчанию (то есть для чтения и записи). Хотя команда mount в последних дистрибутивах умеет понимать какой тип файловой системы используется и без указания типа, все же указывать параметр -t nfs желательно. Вторая команда монтирует экспортированный каталог /archiv-big на сервере archiv в локальный каталог /archivs/archiv-big с опцией только для чтения (ro ). Команда mount без параметров наглядно отображает нам результат монтирования. Кроме опции только чтения (ro), возможно задать другие основные опции при монтировании NFS :

  • nosuid - Данная опция запрещает исполнять программы из смонтированного каталога.
  • nodev (no device - не устройство) - Данная опция запрещает использовать в качестве устройств символьные и блочные специальные файлы.
  • lock (nolock) - Разрешает блокировку NFS (по умолчанию). nolock отключает блокировку NFS (не запускает демон lockd) и удобна при работе со старыми серверами, не поддерживающими блокировку NFS.
  • mounthost=имя - Имя хоста, на котором запущен демон монтирования NFS - mountd.
  • mountport=n - Порт, используемый демоном mountd.
  • port=n - порт, используемый для подключения к NFS серверу (по умолчанию 2049, если демон rpc.nfsd не зарегистрирован на RPC-сервере). Если n=0 (по умолчанию), то NFS посылает запрос к portmap на сервере, чтобы определить порт.
  • rsize=n (read block size - размер блока чтения) - Количество байтов, читаемых за один раз с NFS-сервера. Стандартно - 4096.
  • wsize=n (write block size - размер блока записи) - Количество байтов, записываемых за один раз на NFS-сервер. Стандартно - 4096.
  • tcp или udp - Для монтирования NFS использовать протокол TCP или UDP соответственно.
  • bg - При потери доступа к серверу, повторять попытки в фоновом режиме, чтобы не блокировать процесс загрузки системы.
  • fg - При потери доступа к серверу, повторять попытки в приоритетном режиме. Данный параметр может заблокировать процесс загрузки системы повторениями попыток монтирования. По этой причине параметр fg используется преимущественно при отладке.

Опции, влияющие на кэширование атрибутов при монтировании NFS

Атрибуты файлов , хранящиеся в (индексных дескрипторах), такие как время модификации, размер, жесткие ссылки, владелец, обычно изменяются не часто для обычных файлов и еще реже - для каталогов. Многи программы, например ls, обращаются к файлам только для чтения и не меняют атрибуты файлов или содержимое, но затрачивают ресурсы системы на дорогостоящие сетевые операции. Чтобы избежать ненужных затрат ресурсов, можно кэшировать данные атрибуты . Ядро использует время модификации файла, чтобы определить устарел ли кэш, сравнивая время модификации в кэше и время модификации самого файла. Кэш атрибутов периодически обновляется в соответствии с заданными параметрами:

  • ac (noac) (attrebute cache - кэширование атрибутов) - Разрешает кэширование атрибутов (по-умолчанию). Хотя опция noac замедляет работу сервера, она позволяет избежать устаревания атрибутов, когда несколько клиентов активно записывают информацию в общию иерархию.
  • acdirmax=n (attribute cache directory file maximum - кэширование атрибута максимум для файла каталога) - Максимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 60 сек.)
  • acdirmin=n (attribute cache directory file minimum - кэширование атрибута минимум для файла каталога) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 30 сек.)
  • acregmax=n (attribute cache regular file maximum - кэширование атрибута максимум для обычного файла) - Максимаьное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 60 сек.)
  • acregmin=n (attribute cache regular file minimum - кэширование атрибута минимум для обычного файла) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 3 сек.)
  • actimeo=n (attribute cache timeout - таймаут кэширования атрибутов) - Заменяет значения для всех вышуказаных опций. Если actimeo не задан, то вышеуказанные значения принимают значения по умолчанию.

Опции обработки ошибок NFS

Следующие опции управляют действиями NFS при отсутствии ответа от сервера или в случае возникновения ошибок ввода/вывода:

  • fg (bg) (foreground - передний план, background - задний план) - Производить попытки монтирования отказавшей NFS на переднем плане/в фоне.
  • hard (soft) - выводит на консоль сообщение "server not responding" при достижении таймаута и продолжает попытки монтирования. При заданной опции soft - при таймауте сообщает вызвавшей операцию программе об ошибке ввода/вывода. (опцию soft советуют не использовать)
  • nointr (intr) (no interrupt - не прерывать) - Не разрешает сигналам прерывать файловые операции в жестко смонтированной иерархии каталогов при достижении большого таймаута. intr - разрешает прерывание.
  • retrans=n (retransmission value - значение повторной передачи) - После n малых таймаутов NFS генерирует большой таймаут (по-умолчанию 3). Большой таймаут прекращает выполнение операций или выводит на консоль сообщение "server not responding", в зависимости от указания опции hard/soft.
  • retry=n (retry value - значение повторно попытки) - Количество минут повторений службы NFS операций монтирования, прежде чем сдаться (по-умолчанию 10000).
  • timeo=n (timeout value - значение таймаута) - Количество десятых долей секунды ожидания службой NFS до повторной передачи в случае RPC или малого таймаута (по-умолчанию 7). Это значение увеличивается при каждом таймауте до максимального значения 60 секунд или до наступления большого таймаута. В случае занятой сети, медленного сервера или при прохождении запроса через несколько маршрутизаторов или шлюзов увеличение этого значения может повысить производительность.

Автоматическое монтирование NFS при загрузке (описание файловых систем в /etc/fstab)

Подобрать оптимальный timeo для определенного значения передаваемого пакета (значений rsize/wsize), можно с помощью команды ping:

FILES ~ # ping -s 32768 archiv PING archiv.DOMAIN.local (10.0.0.6) 32768(32796) bytes of data. 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=1 ttl=64 time=0.931 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=2 ttl=64 time=0.958 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=3 ttl=64 time=1.03 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=4 ttl=64 time=1.00 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=5 ttl=64 time=1.08 ms ^C --- archiv.DOMAIN.local ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4006ms rtt min/avg/max/mdev = 0.931/1.002/1.083/0.061 ms

Как видно, при отправке пакета размером 32768 (32Kb) время его путешествия от клиента до сервера и обратно плавает в районе 1 миллисекунды. Если данное время будет зашкаливать за 200 мс, то стоит задуматься о повышении значения timeo, чтобы оно превышало значение обмена в три-четыре раза. Соответственно, данный тест желательно делать во время сильной загрузки сети

Запуск NFS и настройка Firewall

Заметка скопипсчена с блога http://bog.pp.ru/work/NFS.html, за что ему огромное спасибо!!!

Запуск сервера NFS, монтирования, блокировки, квотирования и статуса с "правильными" портами (для сетевого экрана)

  • желательно предварительно размонтировать все ресурсы на клиентах
  • остановить и запретить запуск rpcidmapd, если не планируется использование NFSv4: chkconfig --level 345 rpcidmapd off service rpcidmapd stop
  • если нужно, то разрешить запуск сервисов portmap, nfs и nfslock: chkconfig --levels 345 portmap/rpcbind on chkconfig --levels 345 nfs on chkconfig --levels 345 nfslock on
  • если нужно, то остановить сервисы nfslock и nfs, запустить portmap/rpcbind, выгрузить модули service nfslock stop service nfs stop service portmap start # service rpcbind start umount /proc/fs/nfsd service rpcidmapd stop rmmod nfsd service autofs stop # где-то потом его надо запустить rmmod nfs rmmod nfs_acl rmmod lockd
  • открыть порты в
    • для RPC: UDP/111, TCP/111
    • для NFS: UDP/2049, TCP/2049
    • для rpc.statd: UDP/4000, TCP/4000
    • для lockd: UDP/4001, TCP/4001
    • для mountd: UDP/4002, TCP/4002
    • для rpc.rquota: UDP/4003, TCP/4003
  • для сервера rpc.nfsd добавить в /etc/sysconfig/nfs строку RPCNFSDARGS="--port 2049"
  • для сервера монтирования добавить в /etc/sysconfig/nfs строку MOUNTD_PORT=4002
  • для настройки rpc.rquota для новых версий необходимо добавить в /etc/sysconfig/nfs строку RQUOTAD_PORT=4003
  • для настройки rpc.rquota необходимо для старых версий (тем не менее, надо иметь пакет quota 3.08 или свежее) добавить в /etc/services rquotad 4003/tcp rquotad 4003/udp
  • проверит адекватность /etc/exports
  • запустить сервисы rpc.nfsd, mountd и rpc.rquota (заодно запускаются rpcsvcgssd и rpc.idmapd, если не забыли их удалить) service nfsd start или в новых версиях service nfs start
  • для сервера блокировки для новых систем добавить в /etc/sysconfig/nfs строки LOCKD_TCPPORT=4001 LOCKD_UDPPORT=4001
  • для сервера блокировки для старых систем добавить непосредственно в /etc/modprobe[.conf]: options lockd nlm_udpport=4001 nlm_tcpport=4001
  • привязать сервер статуса rpc.statd к порту 4000 (для старых систем в /etc/init.d/nfslock запускать rpc.statd с ключом -p 4000) STATD_PORT=4000
  • запустить сервисы lockd и rpc.statd service nfslock start
  • убедиться, что все порты привязались нормально с помощью "lsof -i -n -P" и "netstat -a -n" (часть портов используется модулями ядра, которые lsof не видит)
  • если перед "перестройкой" сервером пользовались клиенты и их не удалось размонтировать, то придётся перезапустить на клиентах сервисы автоматического монтирования (am-utils , autofs)

Пример конфигурации NFS сервера и клиента

Конфигурация сервера

Если вы хотите сделать ваш разделённый NFS каталог открытым и с правом записи, вы можете использовать опцию all_squash в комбинации с опциями anonuid и anongid . Например, чтобы установить права для пользователя "nobody" в группе "nobody", вы можете сделать следующее:

ARCHIV ~ # cat /etc/exports # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя 99 с gid 99 /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99)) # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя 99 с gid 99 /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99))

Это также означает, что если вы хотите разрешить доступ к указанной директории, nobody.nobody должен быть владельцем разделённой директории:

man mount
man exports
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/nfs_perf.htm - производительность NFS от IBM.

С Уважением, Mc.Sim!

Каждый знает, что в UNIX-системах файловая система логически представляет собой набор физических файловых систем, подключенных к одной точке. Одна из самых основных прелестей такой организации, на мой взгляд, состоит в возможности динамически модифицировать структуру существующей файловой системы. Также, благодаря усилиям разработчиков, мы на сегодняшний день имеем возможность подключить ФС практически любого типа и любым удобным способом. Говоря «способом», я прежде всего хочу подчеркнуть возможность работы ядра ОС с файловыми системами посредством сетевых соединений.

Множество сетевых протоколов предоставляют нам возможность работы с удаленными файлами, будь то FTP, SMB, Telnet или SSH. Благодаря способности ядра, в конечном итоге, не зависеть от типа подключаемой ФС, мы имеем возможность при помощи программы mount подключать что угодно и как угодно.

Сегодня мне хочется рассказать об NFS — Network File System. Эта технология позволяет подключать отдельные точки ФС на удаленном компьютере к файловой системе локального компьютера. Сам протокол NFS позволяет выполнять операции с файлами достаточно быстро, безопасно и надежно. А что нам еще нужно? :-)

Что необходимо для того, чтобы это работало

Чтобы долго не разглагольствовать на тему версий NFS и их поддержку в различных ядрах, сразу сделаем допущение, что версия вашего ядра не ниже 2.2.18. В официальной документации разработчики обещают полную поддержку функционала NFS версии 3 в этом ядре и более поздних версий.

Установка

Для запуска сервера NFS в моей Ubuntu 7.10 — the Gutsy Gibbon понадобилось установить пакеты nfs-common и nfs-kernel-server. Если же нужен только клиент NFS, то nfs-kernel-server устанавливать не нужно.

Настройка сервера

После того, как все пакеты успешно установлены, необходимо проверить, запущен ли демон NFS:

/etc/init.d/nfs-kernel-server status

Если демон не запущен, его нужно запустить командой

/etc/init.d/nfs-kernel-server start

После того, как все успешно запустилось, можно приступать к экспорту файловой системы. Сам процесс очень прост и занимает минимум времени.

Основной файл конфигурации NFS-сервера располагается в /etc/exports и имеет следующий формат:

Directory machine1(option11,option12) machine2(option21,option22)

directory — абсолютный путь к каталогу ФС сервера, к которому нужно дать доступ

machineX — DNS-имя или IP-адрес клиентского компьютера, с которого разрешается доступ

optionXX — параметры экспорта ФС, наиболее часто используемые из них:

  • ro — доступ к файлам разрешается только для чтения
  • rw — доступ предоставляется на чтение/запись
  • no_root_squash — по умолчанию, если вы подключаетесь к ресурсу NFS от имени root, сервер, безопасности ради, на своей стороне будет обращаться к файлам от имени пользователя nobody. Однако, если включить эту опцию, то обращение к файлам на стороне сервера будет будет производиться от имени root. Аккуратней с этой опцией.
  • no_subtree_check — по умолчанию, если вы на сервере экспортируете не весь раздел, а только часть ФС, демон будет проверять, является ли запрошенный файл физически размещенным на том же разделе или нет. В случае, если вы экспортируете весь раздел или точка подключения экспортируемой ФС не затрагивает файлы с других физических томов, то можно включить эту опцию. Это даст вам увеличение скорости работы сервера.
  • sync — включайте эту опцию, если есть вероятность внезапного обрыва связи или отключения питания сервера. Если эта опция не включена, то очень повышается риск потери данных при внезапной остановке сервера NFS.

Итак, допустим, нам нужно дать доступ компьютеру ashep-desktop к каталогу /var/backups компьютера ashep-laptop. Доступ к каталогу необходим для копирования резервных копий файлов с ashep-desktop. У меня файл получился следующим:

/var/backups ashep-desktop(rw,no_subtree_check,sync)

После добавления строки в /etc/exports необходимо перезапустить сервер NFS для вступления изменений в силу.

/etc/init.d/nfs-kernel-server restart

Вот и все. Можно приступать к подключению экспортированной ФС на клиентском компьютере.

Настройка клиента

На клиентской стороне удаленная файловая система монтируется так же, как и все остальные — командой mount. Также, никто не запрещает вам использовать /etc/fstab в случае, если подключать ФС нужно автоматически при загрузке ОС. Итак, вариант с mount будет выглядеть так:

Mount -t nfs ashep-laptop:/var/backups/ /mnt/ashep-laptop/backups/

Если все прошло успешно и вам необходимо выполнять подключение к удаленной ФС автоматически при загрузке — просто добавляем строку в /etc/fstab:

Ashep-laptop:/var/backups /mnt/ashep-laptop/backups nfs auto 0 0

Что еще

Вот и получился практический, малюсенький обзор возможностей NFS. Конечно, это всего лишь малая часть того, что умеет NFS. Этого достаточно для использования дома или в небольшом офисе. Если же вам этого недостаточно, рекомендую в первую очередь прочесть

Ко мне это умение пришло лишь спустя несколько лет постоянной работы за компьютером, хотя в этом нет ничего тайного и сложного. Горячие клавиши для перемещения по тексту описываются в любой более-менее подробной справке к любому мало-мальски серьезному приложению. Просто никто и никогда не описывает такие «мелочи» подробно, поскольку подразумевается что пользователь сам в состоянии разобраться с ними. И еще меньше находится людей которые о них читают. А знать о них стоит.

Перемещение курсора

Единственные клавиши, которые оказываются интуитивно понятными, и используются для перемещения в тексте абсолютно любым пользователем — это клавиши-стрелки перемещения курсора — up, down, left, right(arrow).

Но посимвольное перемещение курсора согласитесь довольно неудобно использовать для перехода с начала в конец строки. Да что там говорить, иногда раздражает перемещение курсора между словами, или даже от начала до конца слова. Например когда нужно вернуться по тексту и исправить сделанную опечатку.

Курсор в начало и конец строки.

Научитесь пользоваться клавишами Home и End — и вы сразу же заметите насколько удобнее стало работать с текстом. Эти клавиши позволяют осуществлять переход в начало и конец текущей строки соответственно. Работают они абсолютно везде, где только вам доведется иметь дело с текстом: редакторы Microsoft Word или LibreOffice Writer, блокнот, поля форм регистрации на сайтах, адресная строка браузера, онлайн-редакторы комментариев и постов. И все остальные клавиши перемещения курсора о которых речь будет вестись будут работать везде.

Клавиши home и end всегда находятся справа от основной клавиатуры, поэтому нажимать их нужно однозначно правым мизинцем, хотя это будет для вам сложным. Тренируйтесь, старайтесь нажимать их именно правым мизинцем, на освоение этого приема уйдет суммарно не более нескольких часов работы с текстом.

Курсор в начало или конец текста

Очень часто нужно перейти в начало или конец редактируемого документа. Для этого тоже существуют очень удобные сочетания. Причем они работают абсолютно везде, где бы вы не редактировали текст — будь то документ из нескольких сотен страниц, или же комментарий состоящий из нескольких строк. Вы всегда можете «перепрыгивать» курсором в начало и конец текста. Это позволяют делать сочетания Ctl+Home — начало текста и Ctrl+End — соответственно конец.

Как удалить слово в тексте

В Ворде или любом другом месте — работает опять же везде. Незаменимый прием — пословесное удаление текста. Представьте себе, что вы ошиблись в середине слова, или хотите вместо него набрать другое слово. Вспомните, такое ведь часто происходит, когда мы ошибаемся и нужно убрать только что набранное слово. Для стирания предыдущего символа (слева от курсора), как известно, служит клавиша Backspace. А вот для стирания целого слова, думаю можно догадаться логически, если вы читали выше о перемещении курсора через слово. Для этого служит комбинация Ctrl+Backspace. Нажиматься она должна левым и правым мизинцами, какой куда думаю разберетесь самостоятельно.

Удаление слова справа от курсора? Ну конечно же Ctrl+Delete. Однако замечу, что эта комбинация работает не всегда. В некоторых программах она не работает, или работает не так как нужно. Но в текстовых редакторах, процессорах она будет работать обязательно. Эргономика точно такая же как и с предыдущей комбинацией.

Курсор через слово

Теперь, рассмотрим очень мощный и действенный прием, который знают и используют еще меньше людей. Это пословарное перемещение курсора по тексту. То есть можно перемещаться по строке «перепрыгивая» целые слова. Это просто незаменимый метод, улучшает эффективность и скорость работы с текстом в десятки раз. Я не преувеличиваю, попробуйте его в деле и вы больше не сможете жить без него.

Делается это следующим образом — перемещение на одно слово вправо — Ctrl+Right. Соответственно перемещение на слово влево — Ctrl+Left. Правильный способ нажатия этих комбинаций — левый мизинец на левый ctrl и правый мизинец на нужную клавишу-стрелку.

Это сложно, если вы недостаточно хорошо владеете клавиатурой и описываемая мной эргономика работы с клавиатурой сложна даже для опытных пользователей. И она является наиболее верной, если вы в действительности с опытом хотите научиться эффективно пользоваться клавиатурой. Но даже если вы будете пользоваться этими комбинациями так, как кажется удобным вам, прелесть их от этого нисколько не уменьшается. Просто пока вы еще не привыкли, рекомендую сразу учиться правильно, чтобы потом не переучиваться.

Кроме того, замечу еще одну вещь — чем сложнее комбинация которую вы учитесь использовать, тем легче будут даваться вам приемы работы с клавиатурой в дальнейшем — пальцы очень быстро к этому привыкают. Это навык нарастает как снежный ком, пока не доводится до автоматизма, когда вам уже даже не нужно задумываться какую клавишу нужно нажать. Напротив, с опытом раздражение вызывают ситуации когда нужно тянуться за мышью:)

Перемещение курсора на абзац.

Рассмотрим еще некоторые сочетания, позволяющие «летать» по тексту. Есть шорткаты позволяющие моментально перескакивать с одного абзаца на другой. Особенно в текстовых редакторах и процессорах, это очень хорошо работает. Это сочетания Ctrl+Up и Ctrl+Down. Эргономика использования — левый мизинец на левый ctrl и правый на up или down.

— Выделение текста.

Не все пальцы на руке имеют одинаковую длину. Посмотрите и убедитесь в этом. Видите? Одни длиннее, другие короче. Те, что покороче, наверняка стали такими из-за того, что вы неправильно нажимаете клавиши со стрелками - другими словами, слишком часто без помощи CTRL . Это неразумно. Ведь перемешаться по документу можно гораздо более быстрым способом.

Постоянное тыканье пальцем в клавиатуру может привести к возникновению опасного (и трудноизлечимого) синдрома дятла. Поэтому советуем учесть советы следующего раздела.

Вверх и вниз на один экран

PgUp на языке клавиатуры означает Page Up (На страницу вверх), PgDn - Page Down (На страницу вниз). На вашей клавиатуре имеется два комплекта таких клавиш: на вспомогательной цифровой клавиатуре и на блоке клавиш для управления курсором (справа от основного блока клавиш). Очень мило, не так ли?

Логично предположить, что нажатие клавиш PgUp и PgDn переносит вас, соответственно, на страницу вверх и вниз. На самом деле это не так. Эти клавиши служат для перемещения вверх и вниз на один экран.

Word наделен особой логикой, привыкайте.

Как и в случае с клавишами управления курсором, вы можете комбинировать клавиши PgUp и PgDn с клавишей CTRL . В результате вы получите несколько специальных эффектов.

Обратите внимание на следующее: можно изменить назначение этих комбинаций клавиш. Убедитесь, что вы используете правильный метод.

Что касается меня, то я никогда не пользуюсь этими клавишами. Мне намного удобнее протащить мышь по тексту и щелкнуть в выбранной области.

Существуют и другие комбинации клавиш, которые неудобно нажимать, но при должной практике они очень полезны.

Компьютеры вообще наделены весьма своеобразной логикой.

Перемещение в начало или конец документа (строки)

При работе с документом часто приходится переходить в начало (или конец) документа (или строки). Для этого используются специальные клавиши с очень удачными названиями.

Комбинацию клавиш CTRL + End очень просто нажать случайно. В таком случае вы будете отброшены в конец документа. Если это произошло вопреки вашему желанию, нажмите SHIFT + F5 , чтобы вернуться на прежнюю позицию. (См. также ниже раздел "Как вернуться к предыдущей позиции курсора".)