Объём оперативной памяти эвм 4 поколения. §3 Второе поколение эвм

29.01.2019

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Филиал государственного образовательного учреждения высшего профессионального

образования «Кемеровский государственный университет» в г.Прокопьевске

(ПФ КемГУ)

Реферат по дисциплине: «Информатика» на тему

История развития вычислительной техники.

Выполнила: Данилова Алёна

Группа: Ф-10.

Проверил: Яскевич

Кирилл Николаевич

г. Прокопьевск

Счётно-решающие средства до появления ЭВМ……………………….3

Первое поколение ЭВМ…………………………………………………..6

Второе поколение ЭВМ…………………………………………………..8

Третье поколение ЭВМ…………………………………………………..10

Четвёртое поколение ЭВМ……………………………………………….12

Пятое поколение ЭВМ……………………………………………………15

Список используемой литературы……………………………………….18

Счетно-решающие средства до появления ЭВМ.

История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, дележ добычи, обмен – все подобные действия связаны со счётом. Для подсчётов люди использовали собственные пальцы, камешки, палочки, узелки и пр.

С развитием мира и появлением денежных единиц возникла потребность в изобретении устройств, помогающих счёту.

Одним из первых устройств (V-IV века до н.э.), облегчающих вычисления, можно считать специальную доску, названную в последствии абаком . Вычисления на ней производились перемещением костей или камешков в углублениях досок из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. В Греции абак существовал ещё в V веке до н.э., у японцев этот прибор назывался «серобян», у китайцев - «суан-пан».

В Древней Руси использовали похожие изобретения и называли их «русский щот». Ближе к XVII веку прибор приобрёл привычный вид русский счётов.

К началу XVII столетия относится создание молодым французским математиком и физиком Блезом Паскалем первой счётной машины, названной Паскалиной , которая выполняла сложение и вычитание.

В 1670-1680 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину , которая выполняла все 4 арифметических действия.

В 1878 году русский учёный П.Чебышев сконструировал счётную машину , выполнявшую сложение и вычитание многозначных чисел. Также широкое распространение получил арифмометр петербургского инженера Однера в 1874 году. Эта конструкция могла довольно быстро выполнять все 4 действия.

В 30-е годы XX столетия в России был разработан более совершенный арифмометр – «Феликс». Эти счётные устройства применялись несколько десятилетий и были основным техническим средством, облегчающим труд людей, связанных с обработкой больших объёмов числовой информации.

Важным событием XIX века было изобретение английского математика Чарлза Беббиджа, который вошёл в историю как изобретатель первой вычислительной машины – прообраза современных компьютеров. В 1812г. Он начал работать над так называемой «разностной» машиной. В качестве основного элемента разностной машины Беббидж использовал зубчатое колесо для запоминания одного разряда десятичного числа. В результате он смог оперировать 18-разрядными числами. К 1822 году он построил небольшую действующую модель и рассчитал на ней таблицу квадратов.

В 1833г. Беббидж решил усовершенствовать свою машину и приступил к разработке аналитической машины. Она должна была отличаться большей скоростью и более простой конструкцией. Согласно проекту, новую машину предполагалось приводить в действие силой пара.

Аналитическая машина была задумана как чисто механический аппарат с тремя основными блоками. Первый блок – устройство для хранения чисел на регистрах из зубчатых колёс и система, которая передает эти числа от одного узла к другому (в современной терминологии - это память). Второй блок – устройство, позволяющее выполнять арифметические операции. Беббидж назвал её «мельницей». Третий блок предназначался для управления последовательностью действий машины. В конструкцию аналитической машины входило также устройство для ввода исходный данных и печати полученных результатов.

Предполагалось, что машина будет действовать по программе, которая задавала бы последовательность выполнения операций и передачи чисел из памяти в мельницу и обратно. Программы, в свою очередь, должны были кодироваться и переноситься на перфокарты. В то время подобные карты уже использовались для автоматического управления ткацкими станками. Тогда же математик леди Ада Лавлейс – дочь английского поэта лорда Байрона – разрабатывает первые программы для машины Беббиджа. Она заложила многие идеи и ввела ряд понятий и терминов, которые используются и по сей день.

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован. Тем не менее его работы имели важное значение; многие последующие изобретатели воспользовались идеями, заложенными в основу придуманных им устройств.

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888г. устройства, названного табулятором , в котором информация, нанесенная на перфокарты, расшифровывалась с помощью электрического тока. Это устройство позволило обработать данные переписи населения всего за 3 года вместо затрачиваемых ранее 8 лет. В 1924г. Холлерит основал фирму IBM для серийного выпуска табуляторов.

Огромное влияние на развитие вычислительной техники оказали теоретические работы математиков: англичанина А. Тьюринга и работавшего независимо от него американца Э.Поста. «Машина Тьюринга (Поста)» - прообраз программируемого компьютера. Эти учёные показали принципиальную возможность решения автоматами любой проблемы при условии, что её можно представить в виде алгоритма, ориентированного на выполняемые машиной операции.

Первое поколение ЭВМ.

Появление электронно-вакуумной лампы позволило учёным претворить в жизнь идею создания вычислительной машины. Она появилась в 1946г. в США и получила название ЭНИАК (ENIAK – Electronic Numerical Integrator and Calculator, «электронный численный интегратор и калькулятор»). Это событие ознаменовало начало пути, по которому пошло развитие электронно-вычислительных машин (ЭВМ).

Дальнейшее совершенствование ЭВМ определялось развитием электроники, появлением новых элементов и принципов действий, т.е. улучшением и расширением элементной базы. Смена поколений обуславливалась появлением новых элементов, изготовленных с применением принципиально иных технологий.

Первое поколение (1946 – середина 50-х гг.). Элементной базой служили электронно-вакуумные лампы, устанавливаемые на специальные шасси, а также резисторы и конденсаторы. Элементы соединяли проводами навесным монтажом. В ЭВМ ЭНИАК было 20 тыс. электронных ламп, из которых ежемесячно заменялось 2000. За одну секунду машина выполняла 300 операций умножения или же 5000 сложений многоразрядных чисел.

Выдающийся математик Джон фон Нейман и его коллеги изложили в своё м отчёте основные принципы логической структуры ЭВМ нового типа, которые позже были реализованы в проекте ЭДВАК. В отчёте утверждалось, что ЭВМ должна создаваться на электронной основе и работать в двоичной системе счисления. В её состав должны входить следующие устройства: арифметическое, Центральное управляющее, запоминающее, для ввода данных и вывода результатов. Учёные также сформулировали два принципа работы: принцип программного управления с последовательным выполнением команд и принцип хранимой программы. Конструкция большинства ЭВМ последующих поколений, где были реализованы эти принципы, получила название «фон-неймановской архитектуры».

Первая отечественная ЭВМ была создана в 1951г. под руководством академика С.А. Лебедева, и называлась она МЭСМ (малая электронная счётная машина). Затем в эксплуатацию ввели БЭСМ-2 (большую электронную счётную машину). Самой мощной ЭВМ 50-х годов в Европе была советская электронно-вычислительная машина М-20 с быстродействием 20тыс. оп/с и объёмом памяти 4000 машинных слов.

С этого времени начался бурный расцвет отечественной вычислительной техники, и к концу 60-х годов в нашей стране успешно функционировала лучшая по производительности (1млн. оп/с.) ЭВМ того времени - БЭСМ-6, в которой были реализованы многие принципы работы последующих поколений компьютеров.

С появлением новых моделей ЭВМ произошли изменения и в названии этой сферы деятельности. Раннее любую технику, используемую для вычислений, обобщенно называли «счётно-решающими приборами и устройствами». Теперь же всё, что имеет к ЭВМ отношение, именуют вычислительной техникой.

Перечислим характерные черты ЭВМ первого поколения:

- Элементная база: электронно-вакуумные лампы, резисторы, конденсаторы. Соединение элементов: навесной монтаж проводами.

- Габариты: ЭВМ выполнена в виде громадных шкафов и занимает специальный машинный зал.

- Быстродействие: 10-20 тыс. оп/с.

Эксплуатация слишком сложна из-за частого выхода из строя электронно-вакуумных ламп. Существует опасность перегрева ЭВМ.

- Программирование: трудоёмкий процесс в машинных кодах. При этом необходимо знать все команды машины, их двоичное представление, архитектуру ЭВМ. Этим в основном были заняты математики-программисты, которые непосредственно и работали за её пультом управления. Обслуживание ЭВМ требовало от персонала высокого профессионализма.

Второе поколение ЭВМ.

Второе поколение приходится на период от конца 50-х до конца 60-х годов.

К этому времени был изобретен транзистор, Который пришёл на смену электронным лампам, Это позволило заменить электронную базу ЭВМ на полупроводниковые элементы (транзисторы, диоды), А также резисторы и конденсаторы более совершенной конструкции. Один транзистор заменял 40 электронных ламп, работал с большой скоростью, был дешевле и надежнее. Средний срок его службы в 1000 раз превосходил продолжительность работы электронных ламп.

Изменилась и технология соединения элементов. Появились первые печатные платы – пластины, из изоляционного материала, например гетинакса, на которые по специальной технологи фотомонтажа наносился токопроводящий материал. Для крепления элементной базы на печатной плате имелись специальные гнёзда.

Такая формальная замена одного типа элементов на другой существенно повлияла на все характеристики ЭВМ: габариты, надежность, производительность, условия эксплуатации, стиль программирования и работы на машине. Изменился технологический процесс изготовления ЭВМ.

Перечислим характерные черты ЭВМ второго поколения:

- Элементная база: полупроводниковые элементы. Соединение элементов: печатные платы и навесной монтаж.

- Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста. Для их размещения требуется специально оборудованный машинный зал, в котором под полом прокладываются кабели, соединяющие между собой многочисленные автономные устройства.

- Производительность: от сотен тысяч до 1 млн. оп/с.

- Эксплуатация: упростилась. Появились вычислительные центры с большим штабом обслуживающего персонала, где устанавливалось обычно несколько ЭВМ. Так возникло понятие централизованной обработки информации на компьютерах. При выходе из строя нескольких элементов производилась замена целиком всей платы, а не каждого элемента в отдельности, как в ЭВМ предыдущего поколения.

- Программирование: Существенно изменилось, так как стало выполняться преимущественно на алгоритмических языках. Программисты уже не работали в зале, а отдавали свои программы на перфокарты или магнитных лентах специально обученным операторам. Решение задач производилось в пакетном (мультипрограммном) режиме, то есть все программы водились в ЭВМ подряд друг за другом, их обработка велась по мере освобождения соответствующих устройств. Результаты решения распечатывались на специальной перфорированной по краям бумаге.

Произошли изменения как в структуре ЭВМ, так и в принципе её организации. Жёсткий принцип управления заменился микропрограммным. Для реализации принципа программируемости необходимо наличие к компьютере постоянной памяти, в ячейках которой всегда присутствуют коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, то есть подключить определенные электрические схемы.

Введён принцип разделения времени, которые обеспечил совмещение во времени работы разных устройств, например одновременно с процессором работает устройство ввода-вывода с магнитной ленты.

Третье поколение ЭВМ.

Этот период продолжается с конца 60-х до конца 70-х годов. Подобно тому, как изобретение транзисторов привело к созданию компьютеров второго поколения, появление интегральных схем ознаменовало новый этап в развитии вычислительной техники – рождение машин третьего поколения.

В 1958 году Джон Килби впервые создал опытную интегральную схему. Такие схемы могут содержать десятки, сотни и даже тысячи транзисторов и других элементов, которые физически неразделимы. Интегральная схема выполняет те же функции, что и аналогичная ей схема на элементной базе ЭВМ второго поколения, но при этом она имеет существенно меньшие размеры и более высокую степень надёжности.

Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 фирмы IBM. Она положила начало большой серии моделей, название которых начинается с IBM, а далее следовал номер, который увеличивался по мере совершенствования моделей этой серии. То есть чем больше был номер, тем большие возможности предоставлялись пользователю.

Аналогичные ЭВМ стали выпускать и в странах СЭВ (Совета экономической взаимопомощи): СССР, Болгарии, Венгрии, Чехословакии, ГДР, Польше. Это были совместные разработки, причём каждая страна специализировалась на определенных устройствах. Выпускались два семейства ЭВМ:

o большие – ЕС ЭВМ (единая система), например ЕС-1022, ЕС-1035, ЕС-1065;

o малые – СМ ЭВМ (система малых), например СМ-2, СМ-3, СМ-4.

В то время любой вычислительный центр оснащался одной-двумя моделям ЕС ЭВМ. Представителей семейства СМ ЭВМ, составляющих класс мини-ЭВМ, можно было довольно часто встретить лабораториях, на производстве, на технологических линиях, на испытательных стендах. Особенность этого класса ЭВМ состояла в том, что все они могли работать в реальном масштабе времени, то есть, ориентируясь на конкретную задачу.

Перечислим характерные черты ЭВМ третьего поколения:

- Элементная база: интегральные схемы, которые вставляются в специальные гнёзда на печатной плате.

- Габариты: внешнее оформление ЕС ЭВМ схоже с ЭВМ второго поколения. Для их размещения также требуется машинный зал. А малые ЭВМ – это в основном две стойки приблизительно в полтора человеческих роста и дисплеё. Они не нуждались, как ЕС ЭВМ, в специально оборудованном помещении.

- Производительность: от сотен тысяч до миллионов операций в секунду.

- Эксплуатация: несколько изменилась. Более оперативно производится ремонт обычных неисправностей, но из-за большой сложности системной организации требуется штат высококвалифицированных специалистов. Большую роль играет системный программист.

- Технология программирования и решения задач: такая же, как на предыдущем этапе, хотя несколько изменился характер взаимодействия с ЭВМ. Во многих вычислительных центрах появились дисплейные залы, где каждый программист в определенное время мог подсоединиться к ЭВМ в режиме разделения времени. Как и прежде, основным оставался режим пакетной обработки задач.

Произошли изменения в структуре ЭВМ. Наряду с микропрограммным способом управления используются принципы модульности и магистральности. Принцип модульности проявляется в построении компьютера на основе набора модулей – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Под магистральностью понимается способ связи между модулями компьютера, то есть все входные и выходные устройства соединены одними и теми же проводами (шинами). Это прообраз современной системы.

Увеличились объёмы памяти. Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.

Четвёртое поколение ЭВМ.

Этот период оказался самым длительным – от конца 70-х годов по настоящее время. Он характеризуется всевозможными новациями, приводящими к существенным изменениям. Однако кардинальных, революционных перемен, позволяющих говорить о смене этого поколения ЭВМ, пока не произошло. Хотя, если сравнивать ЭВМ, например, начала 80-х годов и сегодняшние, то очевидно существенное различие.

Следует особо отметить одну из самых значительных идей, воплощенных в компьютере на данном этапе: использование для вычислений одновременно нескольких процессоров (мультипроцессорная обработка). Также претерпела изменения и структура компьютера.

Новые технологии создания интегральных схем позволили в конце 70-х – начале 80-х годов ЭВМ четвертого поколения на больших интегральных схемах (БИС), степень интеграции которых составляет десятки и сотни тысяч элементов на одном кристалле. Наиболее крупным сдвигом в электронно-вычислительной технике, связанным с применением БИС, стало создание микропроцессоров. Сейчас этот период расценивается как революция в электронной промышленности. Первый микропроцессор был создан фирмой Intel в 1971 году. На одном кристалле удавалось сформировать минимальный по составу аппаратуры процессор, содержащий 2250 транзисторов.

С появлением микропроцессора связано одно из важнейших событий в истории вычислительной техники – создание и применение персональных ЭВМ, что даже повлияло на терминологию. Постепенно прочно укоренившийся термин «ЭВМ» был вытеснен ставшим уже привычным словом «компьютер», а вычислительная техника стала называться компьютерной.

Начало широкой продажи персональных ЭВМ связано с именем С.Джобса и В.Возняка, основателем фирмы «Эппл компьютер» (Apple Computer), которая с 1977 года наладила выпуск персональных «Apple». В компьютерах этого типа за основу был взят принцип создания «дружественной» обстановки работы человека на ЭВМ, когда при создании программного обеспечения одним из основных требований стало обеспечение удобной работы пользователя. ЭВМ повернулось лицом к человеку.

Дальнейшее её совершенствование шло с учётом удобства работы пользователя. Если раньше при эксплуатации ЭВМ был реализован принцип централизованной обработки информации, когда пользователи концентрировались возле одной ЭВМ, то с появление персональных компьютеров произошло обратное движение – децентрализация, когда один пользователь может работать с несколькими компьютерами.

С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена. IBM выпустила документацию по аппаратуре и программные спецификации, что позволило другим фирмам разрабатывать как аппаратное, так и программное обеспечение. Таким образом, появились семейства(клоны) «двойников» персональных компьютеров IBM.

С 1984 года фирмой IBM был разработан персональный компьютер на базе микропроцессора 80286 фирмы Intel с шиной архитектуры промышленного стандарта – ISA (Industry Standart Architecture). С этого времени началась жесткая конкуренция между несколькими корпорациями, производящими персональные компьютеры. Один тип процессора сменял другой, что зачастую требовало дополнительной существенной модернизации, а подчас и полной замены компьютеров. Гонка в поиске всё более и более совершенных технических характеристик всех устройств компьютера продолжается и по сей день. Каждый год требуется проводить коренную модернизацию существующего компьютера.

Общее свойство семейства IMB PC – совместимость программного обеспечения снизу вверх и принцип открытой архитектуры, предусматривающий возможность дополнения имеющихся аппаратных средств без изъятия старых или их модификацию без замены всего компьютера.

Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей.

Компьютер четвертого поколения развивается в двух направлениях: 1-создание многопроцессорных вычислительных систем; 2-изготовление дешёвых персональных компьютеров как в настольном, так и в переносном исполнении, а на их основе – компьютерных сетей.

Пятое поколение ЭВМ.

Пятое поколение ЭВМ это правительственная программа в Японии по развитию вычислительной техники и искусственного интеллекта. Пятое поколение компьютеров это название «плана действий» по развитию IT-индустрии. И не смотря на то, что пятое поколение базируется на микропроцессорах, как и четвертое, тем не менее, сегодняшние компьютеры относят к пятому поколению.

Япония начала свою широкомасштабную программу в начале 80-х. Их цель не изменять элементную базу компьютеров. А изменить и усовершенствовать, технические подходы, методы программирования и развивать научное направление в области искусственного интеллекта. Японский центр по развитию и обработки информации поставил перед собой цели. Главной из них это развитие технологий по логической обработке знаний, одно из ведущих направлений искусственного интеллекта. Создание рабочих станций с высокой производительностью и распределенными функциями. Создание суперкомпьютеров пятого поколения для научных вычислений, которые будут оперировать огромными базами данных и базами знаний. Японский центр по развитию и обработки информации поставил перед собой цели. Главной из них это развитие технологий по логической обработке знаний, одно из ведущих направлений искусственного интеллекта. Создание рабочих станций с высокой производительностью и распределенными функциями. Создание суперкомпьютеров пятого поколения для научных вычислений которые будут оперировать огромными базами данных и базами знаний. Данный проект Япония планировала завершить за 10 лет. И к началу 90-х выйти на новый уровень технического развития. На тот момент Япония прочно завоевала рынок бытовой электроники и автомобильной промышленности, что очень сильно беспокоило США. В ответ американца начали развивать собственные программы в области параллельных вычислений. Наиболее крупными проектами занималась американская корпорация по Микроэлектроники и Компьютерной Технологии (MCC). Европа уверенна в будущем параллельных вычислений. Начинает планы в этой отрасли Британская компания Alvey. В советском союзе предприняли попытку не отстать от западных коллег. Было желание создать свой прототип ЭВМ пятого поколения. Для будущего мультипроцессорного компьютера, придумали яркое название «МАРС». Но уже тогда отставание от японцев, в области микроэлектроники, было на 10-15 лет. Весь проект базировался на старых инженерно-технических решениях. И морально устаревших языках программирования типа Модула-2. Удалось создать многопроцессорный компьютер «МАРС». Это было его единственное отличие от остальных ЭВМ. И данная машина не соответствовала определению: «компьютер пятого поколения».

В качестве базового языка для ЭВМ пятого поколения, был выбран функциональный язык программирования «Пролог». Но он не поддерживал параллельные вычисления. Его работа в мультипроцессорной среде оказалась не эффективна. Не смотря на все попытки модернизировать его. Было принято решение по созданию новых типов языков программирования. Данная задача оказалась весьма сложной. Корпорациями, занимающимися разработкой программного обеспечения были предложены новые языки. Но каждый из них обладал существенными недостатками. Что не позволяло в полной степени использовать параллельные вычисления.

Возникли и аппаратные трудности для создания ЭВМ пятого поколения. Техническое развитие быстро преодолело те трудности, которые перед началом проекта считались не выполнимыми. Параллельная работа нескольких процессоров, не давала той высокой производительности, на которую изначально рассчитывали. Разработанные в лаборатории машины быстро устаревали. Появлялись коммерческие компьютеры, которые по скорости уже превосходили их. Проект под названием «ЭВМ пятого поколения» оказался не удачным. Т.к. развитие информационных технологий пошло по другому пути. Появился графический интерфейс пользователя. Который изначально не был предусмотрен в компьютерах пятого поколения. Появился Интернет, который изменил представления о структуре хранения и обработки информации. Развивались поисковые машины, которые использовали новые методы обработки данных.

Планы замены программных средств их аппаратными аналогами, был неудачен. Такое виденье у инженеров было в предыдущем поколении компьютеров. Но на сегодняшний день. Ситуация изменилась в корне. Процесс развития информационных технологий пошел по обратному пути. Аппаратное обеспечение упрощалось. Предоставляя универсальность. А все задачи перекладывались на программное обеспечение.

Идеи Японских ученых были не удачными. Изначально был не верно выбран вектор развития компьютеров. Перспектива развития аппаратных средств была недооценена. Возможности в развитии искусственного интеллекта были переоценены. Даная область оказалась сложнее, чем рассчитывали. Многие теоретические разработки в данной области так и не нашли своего практического применения. Искусственный интеллект так и не вышел за рамки академических задач. Многие методы так и остались забавой ученых.

Список используемой литературы.

1. Информатика. (Учебник) Могилев А.В., Пак Н.И., Хённер Е.К. (2004, 3-е изд., 848с.)

2. Информатика. Базовый курс. (Учебник) Симонович С.В. (2004, 2-е изд., 640с.)

К четвертому поколению реализованы в СБИС такого нового компьютерного оборудования, как микропроцессоры и создана на основе их микро-ЭВМ. Микропроцессоры и микрокомпьютеры широко используются в устройствах и системах для автоматизации измерений, обработки данных и управления технологическими процессами в строительстве различных специализированных цифровых устройств и машин. Вычислительные возможности микро-ЭВМ было достаточно, чтобы создать на их основе в четвертом поколении компьютеров, по ряду нового спектакля и способ с использованием тип вычислительных устройств - персональных компьютеров, в настоящее время получает широкое распространение. В четвертом поколении компьютеров достигается еще более упростить человек-компьютер контактов, увеличивая уровень машинного языка, значительное расширение функциональности между устройствами (терминалами), используемого людей, чтобы общаться с компьютерами, начинается практическое осуществление голосовой связи с компьютером. Использование LSI позволяет инструментальные средства для реализации некоторых из особенностей операционных систем (аппаратной реализации компиляторов для языков программирования высокого уровня и т.д.), что помогает увеличить производительность машины.

Характеристика большой компьютер четвертого поколения является наличие нескольких процессоров, ориентированных на определенных операций или процедур для решения определенных классов задач. В рамках этого поколения многопроцессорные вычислительные системы с производительностью, несколько десятков и даже сотен миллионов операций в секунду. По тому же поколению и включают многопроцессорные системы управления высокой надежности с автоматическим изменением структуры (автоматическое изменение конфигурации). Примером больших компьютерных систем, которые должны быть отнесены к четвертому поколению, является сложной многопроцессорной "Эльбрус-2" с общей скоростью до 100 млн. операций / сек, с командной системы, недалеко от языков высокого уровня, стек организацию памяти.

> МНОГОПРОЦЕССОРНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ КОМПЛЕКС

"Эльбрус-1" Структура семьи многопроцессорных вычислительных систем включает в себя систему Эльбрус-1 с мощностью 1,5 млн. транзакций в секунду до 10 миллионов операций в секунду и высокоэффективной системы Эльбрус-2 с комбинированной скоростью более 100 млн. операций в секунду. Эльбрус-1 системы и Эльбрус-2 построен на тех же структурных принципах, их модули функционально идентичны, и их процессоры имеют ту же систему и те же команды на одной функций операционной системы (EOC).

"Эльбрус-2" Многопроцессорные системы (10 процессоров) вычислительный комплекс "Эльбрус-2" матрица ECL БИС, выпущен в 1985 году (В.С. Бурцев). Мощность 125 миллионов оп / с (MIPS), емкость памяти до 144 Мб или 16 кристаллов Mc (слово 72 бит), максимальная емкость каналов ввода-вывода - 120 Мб / с. Используется в Центре управления полетами, в области ядерных исследований (Арзамас-16, Челябинск-70) и на объектах Министерства обороны.

“EC-1045” 1979 - начало выпуска Казань модели ЕС -1045. Главный конструктор НА Кучукяном. Область применения: центры обработки данных предприятий, объединений, учреждений. Решение научно-технических экономических и информационно-логических задач.

Основные характеристики. Элементная база: интегральные схемы малого и среднего степень интеграции. Вместимость - 660 млн операций в секунду 800 тысяч операций. Всего каналы пропускной - 5 МБ / с. Объем буферной памяти, имеющей цикл 120 нс - 8 КБ. Оперативной памяти - 4,1 МБ.

Цикл оперативной памяти - 1,2 микросекунды. Ширина образца ОЗУ - 144 разряда. Ускоритель ускоряет 25 "длинные" операции аппарата. Возможность подключения процессора матрицу ЕС -2345. Средства прямого контроля для создания систем с двумя машины. Универсальный интерфейс для связи с внешними устройствами. Пять сочетаний с процессором блок мультиплексированных каналов с общей мощностью 5 Мб / с. Два встроенных адаптера канал - канал. Диски на съемный магнитный диск 29 и емкостью 100 МБ. Ленточные накопители с плотностью записи 32 и 64 импульсов на 1 мм. Автоматическая система мониторинга питания автоматического измерения программного обеспечения и стресс изменяет вторичные источники питания. Представить основную созданную область - 120 квадратных метров. Рабочая температура -5-40C. Мощность, потребляемая компьютером - 35 кВА.

“ЕС - 1035B” Электронно-вычислительные ЕС - 1035B, связанные с UCS "Range -2 ", предназначен для решения широкого круга научных, технических, экономических и других проблем, и может быть успешно использован в системах пакетной обработки общих данных в удаленных системах данных, разработанных в реальном -Time Systems. ЕС - 1035B доступна в Болгарии. Программное обеспечение EC -1035 может работать DOS операционной тип операционной системы OS ил ЕС ЕС. Последний работает наиболее эффективно в моделях UCS с большим количеством основной памяти (256 - 512Kbayt). Эта система обеспечивает работу в режиме одного программ и многозадачности с фиксированным или переменным числом задач. ОС ЕС планирует приоритеты задач в соответствии с установленными приоритетами и реализует динамическое распределение ресурсов. Тем не менее, серьезная машина работа не только с номерами, но с текстом. Для кодирования все цифры, буквы и специальные символы, необходимые для увеличения битный процессор. В результате, в 1972 году было восемь - i8008, а в 1974 был разработан i8080. Это восемь -разрядный микропроцессор был выполнен по технологии МОП (N -канальный МОП), и его тактовая частота не должна превышать 2 МГц. У него было большое разнообразие микрокоманд. Кроме того, это был первый микропроцессор, который мог делить числа. I8080 процессор оказала значительное влияние на дальнейшее развитие компьютерных технологий. Таким образом, история электроники пришли к созданию персональных компьютеров. Во второй половине 70-х годов. благоприятная ситуация для их появления на рынке. Был потребность в недорогих компьютеров, способных поддерживать одну рабочее место. Многие персональные компьютеры того времени были основаны на 8 - разрядных процессоров, таких как i8080 и его дальнейшего развития на Zilog Corporation - Z80. Стандартный операционная система для персональных компьютеров стала разработанная Digital Research CP / M (управляющая программа для микрокомпьютеров).

Электромеханический этап

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет - от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ - счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Поколение современных ЭВМ

А теперь я бы хотела рассказать о современных ЭВМ, об их истории и развитии.

Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения -- весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

П О К О Л Е Н И Я Э В М

ХАРАКТЕРИСТИКИ

Годы применения

1972 - настоящее время

Основной элемент

Транзистор

Количество ЭВМ в мире (шт.)

Десятки тысяч

Миллионы

Быстродействие (операций в секунду)

Носитель информации

Перфокарта, Перфолента

Магнитная Лента

Гибкий и лазерный диск

Размеры ЭВМ

Значительно меньше

микроЭВМ

I поколение

Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.

Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

Основные компьютеры первого поколения:

1946г. ЭНИАК

В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж. У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину - "Эниак" (Electronic Numerical Integrator and Computer). Которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем "Марк-1", выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём - 85 м 3 ., вес - 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.

· 1949г. ЭДСАК.

Первая машина с хранимой программой - "Эдсак" - была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения - 8,5 мс.

1951г. МЭСМ

В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ - Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20­разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.

1951г. UNIVAC-1. (Англия)

В 1951 г. была создана машина "Юнивак"(UNIVAC) - первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.

1952-1953г. БЭСМ-2

Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) с быстродействием около 10 тыс. операций в секунду над 39-разрядными двоичными числами. Оперативная память на электронно-акустических линиях задержки - 1024 слова, затем на электронно-лучевых трубках и позже на ферритовых сердечниках. ВЗУ состояло из двух магнитных барабанов и магнитной ленты емкостью свыше 100 тыс. слов.

II поколение

В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работал с большей скоростью.

Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты ("БЭСМ-6", "Минск-2","Урал-14") и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.

В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.

Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

III поколение

В 1960 г. появились первые интегральные системы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС - это кремниевый кристалл, площадь которого примерно 10 мм 2 . 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный "Эниак". А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.

В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

Машины третьего поколения -- это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения -- семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

IV поколение

(с 1972 г. по настоящее время)

Четвёртое поколение -- это теперешнее поколение компьютерной техники, разработанное после 1970 года.

Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см 2 .). БИСы применялись уже в таких компьютерах, как "Иллиак", "Эльбрус", "Макинтош ". Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) -- ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ


Татарский Институт Содействия Бизнесу

Реферат по информатики на тему:

История вычислительной техники: четвертое поколение.

Выполнил: Группа И-017 Шайдуллин Айрат

Преподаватель: Козин Александр Николаевич

Казань 2001


Первые приспособления. О том, когда человечество научилось считать мы можем строить лишь догадки. Но можно с уверенностью сказать, что для простого подсчета наши предки использовали пальцы рук, способ который мы с успехом используем до сих пор. А как поступить в том случае если вы хотите запомнить результаты вычислений или подсчитать то чего больше чем пальцев рук. В этом случае можно сделать насечки на дереве или на кости. Скоре всего так и поступали первые люди, о чем и свидетельствуют археологические раскопки. Пожалуй самым древним из найденных таких инструментов считается кость с зарубками найденная в древнем поселении Дольни Вестоници на юго-востоке Чехии в Моравии. Этот предмет получивший название «вестоницкая кость» предположительно использовался за 30 тыс. лет до н. э. Несмотря на то, что на заре человеческих цивилизаций, были изобретены уже довольно сложные системы исчисления использование засечек для счета продолжалось еще довольно таки долго. Так, к примеру за 2 тыс. лет до н.э. на коленях статуи шумерского царя Гудеа была высечена линейка, поделенная на шестнадцать равных частей. Одна из этих частей была в свою очередь поделена на две, вторая на три, третья на четыре, четвертая на пять, а пятая на шесть равных частей. При этом в пятой части длина каждого деления составляла 1 мм.

Первое поколение ЭВМ
(1948 - 1958 гг.
)

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

Первое поколение ЭВМ (1948 - 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ , БЭCМ -1, М-1, М-2, М-З, “Стрела ”, “Минск -1”, “Урал -1”, “Урал-2”, “Урал-3”, M-20, "Сетунь Раздан ". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти-2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).

Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10 -3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

Второе поколение ЭВМ (1959 - 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

  • ЭВМ М-40, -50 для систем противоракетной обороны;
  • Урал -11 , -14 , -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;
  • Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;
  • Минск -22 предназначена для решения научно-технических и планово-экономических задач;
  • БЭСМ -3 -4 , -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;
  • М-20 , -220 , -222 машина общего назначения, ориентированная на решение сложных математических задач;
  • МИР -1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,
  • "Наири " машина общего назначения, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;
  • Рута-110 мини ЭВМ общего назначения;

и ряд других ЭВМ.

ЭВМ БЭСМ-4 , М-220, М-222 имели быстродействие порядка 20-30 тысяч операций в секунду и оперативную память-соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется , обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

Была достигнута уже величина времени доступа 1х10 -6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

Третье поколение ЭВМ (1968 - 1973 гг.)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны - члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "Наири-34". Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П. Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, "Электроника -79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др.

К машинам третьего поколения относились "Днепр-2 ", ЭВМ Единой Системы (ЕС-1010, ЕС-1020 , ЕС-1030 , ЕС-1040, ЕС-1050 , ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2 , "Наири-2" и ряд других.

Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

МиниЭВМ начали применяться и для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования вычислительных машин в качестве средств проектирования.

Применение распределенных вычислительных систем явилось базой для децентрализации решения задач, связанных с обработкой данных на заводах, в банках и других учреждениях. Вместе с тем для данного периода характерным является хронический дефицит кадров, подготовленных в области электронных вычислительных машин. Это особенно касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени.

Четвертое поколение ЭВМ (1974 - 1982 гг.)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора) - набора программ, которые организуют непрерывную работу машины без вмешательства человека.

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2х10 -9 с. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии.

Программное обеспечение для малых вычислительных машин вначале было совсем элементарным, однако уже к 1968 г. появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс системы. Все это обеспечило доступность малых машин для широкого круга приложений. Сегодня едва ли можно найти такую отрасль промышленности, в которой бы эти машины в той или иной форме успешно не применялись. Их функции на производстве очень многообразны; так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, системы управления процессами. Следует подчеркнуть, что управляющая вычислительная машина теперь все чаще вторгается в область коммерческой обработки данных, где применяется для решения коммерческих задач.

Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о "кризисе программного обеспечения". Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования.

К этому поколению можно отнести ЭВМ ЕС : ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036 , -1046, -1066 , СМ-1420 , -1600 , -1700 , все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841 , -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус ". " Эльбрус -1КБ " имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мс лов (слово 72 разряда), максимальная пропускная способность каналов ввода -вывода - 120 Мб/с.

ЭЛЬБРУС-1

В состав семейства многопроцессорных вычислительных комплексов входит система Эльбрус-1 с производительностью от 1,5 млн. операций в сек до 10 млн. операций в сек и высокопроизводительная система Эльбрус-2 с суммарным быстродействием более 100 млн. операций в сек. Системы Эльбрус-1 и Эльбрус-2 построены на одних и тех же структурных принципах, их модули функционально идентичны, а их процессоры имеют одинаковую систему команд и одинаковую по функциям единую операционную систему (ЕОС).

“ЭЛЬБРУС-2”

Симметричный Многопроцессорный (10 процессоров) вычислительный комплекс "Эльбрус-2" на матричных ECL БИС, выпущен в 1985 г. (В.С. Бурцев). Производительностью 125 млн. оп/сек (MIPS), емкость оперативной памяти до 144 Мб или 16 Мс лов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с. Применялся в Центре управления космическими полетами, в области ядерных исследований (Арзамас-16, Челябинск-70) и на объектах Министерства обороны.

ЕС-1045

1979 г. - начало выпуска в Ереване и Казане модели ЕС-1045. Главный конструктор А.Т. Кучукян.

Область применения: вычислительные центры предприятий, объединений, ведомств. Решение научно-технических планово-экономических и информационно-логических задач.

Основные характеристики.

Элементная база: интегральные микросхемы малой и средней степени интеграции. Производительность - 660 тыс. операций в секунду 800 тыс. операций. Суммарная пропускная способность каналов - 5 Мб/с. Объем буферного ЗУ, имеющего цикл 120 нс - 8 Кб. Объем оперативного ЗУ - 1-4 Мб. Цикл ОЗУ - 1,2 мкс. Ширина выборки из ОЗУ - 144 разряда. Акселератор, ускоряющий выполнение 25 "длинных" машинных операций. Возможность подключения матричного процессора ЕС-2345. Средства прямого управления для создания двухмашинных комплексов. Универсальный интерфейс для связи с внешними устройствами. Пять совмещенных с процессором блок-мультиплексных каналов с общей пропускной способностью 5 Мб/с. Два встроенных адаптера канал - канал. Накопители на сменных магнитных дисках емкостью 29 и 100 Мб. Накопители на магнитных лентах с плотностью записи 32 и 64 импульсов на 1 мм. Автоматическая система контроля и диагностики электропитания, осуществляющая автоматическое измерение и программное изменение напряжений вторичных источников питания. Занимаемая основным комплектом площадь - 120 кв. м. Рабочая температура окружающего воздуха - 5-40С. Мощность, потребляемая ЭВМ, - 35 кВА.

ЕС -1035Б

Электронная вычислительная машина ЕС-1035Б, относящаяся к ЕС ЭВМ «Ряд-2», предназначена для решения широкого круга научно-технических, экономических и других задач и может быть успешно применена в систе­мах пакетной обработки данных коллективного пользования, в развитых системах телеобработки данных, в системах реального времени. ЕС-1035Б выпускается в НРБ. Программное обеспечение ЕС-1035 может работать под управлением операционной системы типа ДОС ЕС ил ОС ЕС. Последняя наиболее эффективно функционирует на моделях ЕС ЭВМ с большим объемом основ­ной памяти (256-512Кбайт). Эта система обеспечивает работу в одно­программном режиме и режимах мультипрограммирования с фиксирован­ным или переменным числом задач. ОС ЕС планирует очередность выполнения задач соответственно заданным приоритетам и реализует динамиче­ское распределение ресурсов.

О днако серьезные машины работают не только с цифрами, но и с текстом. Для того чтобы закодировать все цифры, буквы и специальные символы необходимо было увеличить разрядность процессора. В результате в 1972 году появился восьмиразрядный i8008, а в 1974 был разработан i8080. Этот восьмиразрядный микропроцессор был выполнен по NMOS (N-channel Metal Oxide Semiconductor) технологии, а его тактовая частота не превышала 2 МГц. У него было более широкое множество микрокоманд. Кроме того, это был первый микропроцессор, который мог делить числа. Процессор i8080 оказал значительное влияние на дальнейшее развитие вычислительной техники. Таким образом история развития электроники подошла к созданию персональных компьютеров. Во второй половине 70-х гг. сложилась благоприятная ситуация для их появления на рынке. Ощущалась потребность в недорогих ЭВМ, способных поддерживать одно рабочее место. Многие персональные компьютеры того времени базировались на 8-разрядных процессорах, таких как i8080 и его дальнейшей разработкой компанией Zilog Corporation - Z80. Стандартом операционной системы для персональных компьютеров стала разработанная компанией Digital Research CP/M (Control Program for Microcomputers). Она была сделана по образу операционных систем больших ЭВМ, но размеры были гораздо меньше, что давало возможность работать на микропроцессоре.

Какими должны быть компьютеры пятого поколения?

Ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс" . Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера. Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

Литература:

http://www.pokolenia.ok.ru

http://www.bdxc.ru/konkurs/russian/generate.htm

Еще из раздела Информатика, программирование:

  • Реферат: Разработка базы данных для объекта автоматизации: гомеопатическая аптека
  • Контрольная работа: Текстовый редактор Microsoft Word (основы работы)

ЭВМ 2-го поколения были разработаны в 1950-60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды итранзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин - это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу. Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др. Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера­тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

Основные технические характеристики ЭВМ "Урал-16": Структура команд двухадресная. Система счисления двоичная, Способ представления чисел: с плавающей запятой. Разрядность: 36 двоичных разрядов (мантисса числа - 29 разрядов, знак мантиссы -- 1 разряд, порядок - 5 разрядов, знак порядка - 1 разряд). Быстродействие 5000 операций/с. Количество команд (основных) 17. Каждая операция имеет 8 модификаций. Характеристики запоминающих устройств. Емкость ОЗУ на ферритах 2 К слов; время обращения к ОЗУ 24 мкс, Емкость внешнего НМЛ 120000 чисел; скорость считывания с НМЛ 2000 чисел/с. Устройства ввода - вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с. Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц. Потребляемая мощность около 3 кВт. Занимаемая площадь 20 кв. м.

§4 Третье поколение эвм

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи­мо друг от друга, оперативно взаимодействовать с машиной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника - 100/25», «Электроника - 79», «СМ-3», «СМ-4» и др. Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера. Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.